A Shift from Standard Median Sternotomy to Robotic-Assisted Thoracic Surgery for Resection of Anterior Mediastinal Tumors
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Inclusion and Exclusion Criteria
2.3. Perioperative Period
2.4. Histopathology
2.5. Data Analysis
3. Results
3.1. Demographic and Clinical Descriptive Statistics of the Cohort
3.2. Perioperative Morbidity and Mortality
3.3. Histopathology and Additional Treatment
3.4. RATS vs. Median Sternotomy
3.5. Multivariate Models Predicting Overall Complications and Hospital Stay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CO2 | Carbon Dioxide CT-Computed Tomography |
| ECG | Electrocardiogram |
| HITHOC | Hyperthermic Intrathoracic Chemotherapy |
| LIA | Local Infiltration Anesthesia |
| MG | Myasthenia Gravis |
| MRI | Magnetic Resonance Imaging |
| MGFA | Myasthenia Gravis Foundation of America |
| OR | Odds Ratio |
| PFT | Pulmonary Function Tests |
| PVB | Paravertebral Block |
| RATS | Robotic-Assisted Thoracic Surgery |
| TEA | Thoracic Epidural Anesthesia |
| VATS | Video-Assisted Thoracic Surgery |
References
- Shen, C.; Li, J.; Li, J.; Che, G. Robot-assisted thoracic surgery versus video-assisted thoracic surgery for treatment of patients with thymoma: A systematic review and meta-analysis. Thorac. Cancer 2022, 13, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.-J.; Zhang, F.-Y.; Xiao, Q.; Li, X.-K. Does robotic-assisted thymectomy have advantages over video-assisted thymectomy in short-term outcomes? A systematic view and meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2021, 33, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Q.; Wang, J.; Liu, F.-Y.; Wang, W. Robot-assisted thoracoscopic surgery vs. sternotomy for thymectomy: A systematic review and meta-analysis. Front. Surg. 2023, 9, 1048547. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-J.; Hsu, J.-S.; Kao, E.-L. Characteristics of thymoma successfully resected by videothoracoscopic surgery. Surg. Today 2007, 37, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Peer, M.; Azzam, S.; Gofman, V.; Kushnir, M.; Davidson, B.; Armon, C. Robotic Mediastinal Surgery in Patients with Suspected Thymic Neoplasms: First Israeli Experience. Isr. Med. Assoc. J. 2018, 20, 637–641. [Google Scholar] [PubMed]
- Masaoka, A.; Monden, Y.; Nakahara, K.; Tanioka, T. Follow-up study of thymomas with special reference to their clinical stages. Cancer 1981, 48, 2485–2492. [Google Scholar] [CrossRef] [PubMed]
- Rosai, J.; Sobin, L.H. Histological Typing of Tumors of the Thymus. In World Health Organization International Histological Classification of Tumors, 2nd ed.; Springer: New York, NY, USA, 1999; pp. 5–23. [Google Scholar]
- Pasnoor, M.; Wolfe, G.I.; Barohn, R.J. Myasthenia gravis. Clin. Neurol. 2024, 203, 185–203. [Google Scholar]
- Bruni, A.; Stefani, A.; Perna, M.; Borghetti, P.; Levra, N.G.; D’aNgelo, E.; D’oNofrio, A.; Rubino, L.; Frassinelli, L.; Salvestrini, V.; et al. The role of postoperative radiotherapy for thymomas: A multicentric retrospective evaluation from three Italian centers and review of the literature. J. Thorac. Dis. 2020, 12, 7518–7530. [Google Scholar] [CrossRef] [PubMed]
- Ruffini, E.; Filosso, P.L.; Guerrera, F.; Lausi, P.; Lyberis, P.; Oliaro, A. Optimal surgical approach to thymic malignancies: New trends challenging old dogmas. Lung Cancer 2018, 118, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Marulli, G.; Maessen, J.; Melfi, F.; Schmid, T.A.; Keijzers, M.; Fanucchi, O.; Augustin, F.; Comacchio, G.M.; Mussi, A.; Hochstenbag, M.; et al. Multi-institutional European experience of robotic thymectomy for thymoma. Ann. Cardiothorac. Surg. 2016, 5, 18–25. [Google Scholar] [PubMed]
- Kneuertz, P.J.; Kamel, M.K.; Stiles, B.M.; Lee, B.E.; Rahouma, M.; Nasar, A.; Altorki, N.K.; Port, J.L. Robotic Thymectomy Is Feasible for Large Thymomas: A Propensity-Matched Comparison. Ann. Thorac. Surg. 2017, 104, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
- Azenha, L.F.; Deckarm, R.; Minervini, F.; Dorn, P.; Lutz, J.; Kocher, G.J. Robotic vs. Transsternal Thymectomy: A Single Center Experience over 10 Years. J. Clin. Med. 2021, 10, 4991. [Google Scholar] [CrossRef] [PubMed]
- Wilshire, C.L.; Blitz, S.L.; Fuller, C.C.; Rückert, J.C.; Li, F.; Cerfolio, R.J.; Ghanim, A.F.; Onaitis, M.W.; Sarkaria, I.S.; Wigle, D.A.; et al. Minimally invasive thymectomy for myasthenia gravis favours left-sided approach and low severity class. Eur. J. Cardiothorac. Surg. 2021, 60, 898–905. [Google Scholar] [CrossRef]
- Weis, C.A.; Yao, X.; Deng, Y.; Detterbeck, F.C.; Marino, M.; Nicholson, A.G.; Huang, J.; Ströbel, P.; Antonicelli, A.; Marx, A. The impact of thymoma histotype on prognosis in a worldwide database. J. Thorac. Oncol. 2015, 10, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Inoue, M.; Kadota, Y.; Shiono, H.; Shintani, Y.; Nakagiri, T.; Funaki, S.; Sawabata, N.; Minami, M.; Okumura, M. The oncological feasibility and limitations of video-assisted thoracoscopic thymectomy for early-stage thymomas. Eur. J. Cardiothorac. Surg. 2013, 44, e214–e218. [Google Scholar] [CrossRef] [PubMed]
- Nachira, D.; Congedo, M.T.; Bertolaccini, L.; Novellis, P.; Bertoglio, P.; De Palma, A.; Romano, R.; Raveglia, F.; Kuzmych, K.; Senatore, A.; et al. Robotic thymectomy for large thymomas: A multicenter study. J. Robot. Surg. 2025, 1, 307. [Google Scholar] [CrossRef] [PubMed]
- Girard, N.; Ruffini, E.; Marx, A.; Faivre-Finn, C.; Peters, S.; ESMO Guidelines Committee. Thymic epithelial tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v40–v55. [Google Scholar] [CrossRef] [PubMed]
- Burt, B.M.; Yao, X.; Shrager, J.; Antonicelli, A.; Padda, S.; Reiss, J.; Wakelee, H.; Su, S.; Huang, J.; Scott, W. Determinants of Complete Resection of Thymoma by Minimally Invasive and Open Thymectomy: Analysis of an International Registry. J. Thorac. Oncol. 2017, 12, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Burt, B.M.; Nguyen, D.; Groth, S.S.; Palivela, N.; Ripley, R.T.; Makris, K.I.; Farjah, F.; Cornwell, L.; Massarweh, N.N. Utilization of Minimally Invasive Thymectomy and Margin-Negative Resection for Early-Stage Thymoma. Multicenter Study. Ann. Thorac. Surg. 2019, 108, 405–411. [Google Scholar] [CrossRef] [PubMed]


| Variable | N | % | Notes | M | SD |
|---|---|---|---|---|---|
| Sex | |||||
| 54 | 48.6 | |||
| 57 | 51.4 | |||
| Age | 57.19 | 23.10 | |||
| Anterior mediastinal tumor surgery | 111 | 100 | |||
| Type of operation | |||||
| 93 | 83.8 | |||
| 15 | 13.5 | |||
| 3 | 2.7 | Two VATS, one thoracotomy | ||
| Side of RATS/VATS/thoracotomy | |||||
| 31 | 27.9 | Thirty RATS, one VATS | ||
| 65 | 58.6 | Sixty-three RATS, one VATS, one thoracotomy | ||
| Overall complications | 11 | 9.9 | |||
| 3 | 2.7 | |||
| 2 | 1.8 | |||
| 2 | 1.8 | |||
| 1 | 0.9 | |||
| 1 | 0.9 | |||
| 1 | 0.9 | |||
| 1 | 0.9 | |||
| 1 | 0.9 | |||
| 1 | 0.9 | |||
| R0 resection for thymomas | 63 | 56.8 | |||
| R0 (direct pericardial involvement) | 7 | 6.3 | |||
| R0 (capsular invasion) | 7 | 6.3 | One with pericardial involvement | ||
| R0 (lung and phrenic nerve involvement) | 4 (2 lung and 2 phrenic nerve) | 3.6 | One converted to sternotomy, and one was performed initially by sternotomy | ||
| R1 resection (thymic and mediastinal fat invasion) | 2 | 1.8 | One with pericardial involvement and both with capsular invasion | ||
| M1 (pleural and diaphragm metastases) | 1 | 0.9 | With pericardial involvement | ||
| Hospital Stay | 4.62 | 6.04 |
| Tumor Pathology | 111 pts, Mean Tumor Size * | MG, 38 pts | RATS, 93 pts * | Sternotomy, 15 pts | Other *** |
|---|---|---|---|---|---|
| Thymoma | 65 pts (6.9 cm) | 17 pts | 51 pts ** (6.3 cm) | 11 pts (9.1 cm) | 3 pts |
| Thymus hyperplasia | 27 pts | 20 pts | 27 pts | ||
| Thymic cyst | 3 pts | 1 pt | 3 pts | ||
| Bronchogenic cyst | 5 pts (3.2 cm) | 4 pts (1.5 cm) | 1 pt (9.1 cm) | ||
| Thymic carcinoma | 2 pts (3.8 cm) | 2 pts (3.8 cm) | |||
| Retrosternal goiter | 1 pt (8.7 cm) | 1 pt (8.7 cm) | |||
| Lymphoma | 1 pt (7.5 cm) | 1 pt (7.5 cm) | |||
| Paraganglioma | 1 pt (6.1 cm) | 1 pt (6.1 cm) | |||
| Carcinoid | 1 pt (3.7 cm) | 1 pt (3.7 cm) | |||
| Teratoma | 1 pt (9.0 cm) | 1 pt (9.0 cm) | |||
| Cavernous hemangioma | 1 pt (1.0 cm) | 1 pt (1.0 cm) | |||
| Other thymic benign pathology **** | 3 pts | 3 pts |
| Variable | Median Sternotomy (n = 15) | RATS (n = 93) | χ2 | t | p | ||
|---|---|---|---|---|---|---|---|
| N (%) | M (SD) | N (%) | M (SD) | ||||
| Sex | 0.46 | 0.49 | |||||
| 9 (60.0%) | 47 (50.5%) | |||||
| 6 (40.0%) | 46 (49.5%) | |||||
| Age | 73.07 (31.11) | 53.37 (19.95) | 2.35 | 0.002 | |||
| Anterior mediastinal tumor surgery | 15 (100.0%) | 75 (80.6%) | 3.48 | 0.070 | |||
| Chronic Diseases | 10 (66.7%) | 59 (63.4%) | 0.06 | 0.809 | |||
| Overall complications | 1 (6.7%) | 9 (9.7%) | 0.14 | 0.709 | |||
| Hospital Stay | 10.67 (14.39) | 3.64 (2.09) | 1.88 | 0.040 | |||
| Variable | OR | p | 95% CI of OR | |
|---|---|---|---|---|
| Lower bound | Upper bound | |||
| Sex (Male vs. Female) | 1.78 | 0.50 | 0.34 | 9.31 |
| Age | 1.02 | 0.38 | 0.98 | 1.07 |
| Anterior mediastinal tumor surgery | 1.48 | 0.75 | 0.14 | 15.78 |
| Chronic Diseases | 0.26 | 0.13 | 0.05 | 1.49 |
| Type of operation (RATS vs. median sternotomy) | 2.19 | 0.56 | 0.15 | 31.10 |
| Variable | B | p | 95% CI of B | |
|---|---|---|---|---|
| Lower bound | Upper bound | |||
| Sex (Male vs. Female) | −1.73 | 0.20 | −4.41 | 0.95 |
| Age | 0.03 | 0.35 | −0.04 | 0.10 |
| Anterior mediastinal tumor surgery | −0.10 | 0.96 | −3.56 | 3.37 |
| Chronic Diseases | −0.46 | 0.75 | −3.30 | 2.37 |
| Type of operation (RATS vs. median sternotomy) | −6.07 | <0.001 | −9.78 | −2.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Peer, M.; Azzam, S.; Nesher, N.; Kolodii, M.; Abramov, Y.; Verenkin, V.; Shaylor, R.; Karni, A.; Gadoth, A.; Pompeo, E.; et al. A Shift from Standard Median Sternotomy to Robotic-Assisted Thoracic Surgery for Resection of Anterior Mediastinal Tumors. J. Clin. Med. 2026, 15, 638. https://doi.org/10.3390/jcm15020638
Peer M, Azzam S, Nesher N, Kolodii M, Abramov Y, Verenkin V, Shaylor R, Karni A, Gadoth A, Pompeo E, et al. A Shift from Standard Median Sternotomy to Robotic-Assisted Thoracic Surgery for Resection of Anterior Mediastinal Tumors. Journal of Clinical Medicine. 2026; 15(2):638. https://doi.org/10.3390/jcm15020638
Chicago/Turabian StylePeer, Michael, Sharbel Azzam, Nachum Nesher, Marina Kolodii, Yaacov Abramov, Vladimir Verenkin, Ruth Shaylor, Arnon Karni, Avi Gadoth, Eugenio Pompeo, and et al. 2026. "A Shift from Standard Median Sternotomy to Robotic-Assisted Thoracic Surgery for Resection of Anterior Mediastinal Tumors" Journal of Clinical Medicine 15, no. 2: 638. https://doi.org/10.3390/jcm15020638
APA StylePeer, M., Azzam, S., Nesher, N., Kolodii, M., Abramov, Y., Verenkin, V., Shaylor, R., Karni, A., Gadoth, A., Pompeo, E., Matot, I., & Merimsky, O. (2026). A Shift from Standard Median Sternotomy to Robotic-Assisted Thoracic Surgery for Resection of Anterior Mediastinal Tumors. Journal of Clinical Medicine, 15(2), 638. https://doi.org/10.3390/jcm15020638

