HBOT as a Potential Adjunctive Therapy for Wound Healing in Dental Surgery—A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Objectives
2.2. Literature Search
2.3. Eligibility and Selection
2.4. Data Extraction and Synthesis
3. Physiological Basis of Hyperbaric Oxygen Therapy
3.1. Effects of HBOT on Fibroblasts, Angiogenesis, and Collagenogenesis
3.1.1. Fibroblast Proliferation and Activity
3.1.2. Angiogenesis and Vasculogenesis
3.1.3. Collagen Synthesis and Extracellular Matrix Organization
4. Applications of HBOT in General Medicine as a Reference Point
5. HBOT in Oral Surgery: Literature Review
5.1. Osteoradionecrosis of the Maxilla and Mandible
5.1.1. Evidence from Systematic Reviews and Randomized Trials
5.1.2. Observational and Translational Data
5.1.3. Limitations and Future Directions
5.1.4. Future Research Priorities
5.2. Medication-Related Osteonecrosis of the Jaw
5.3. Healing After Implantation and Extractions in Compromised Patients
5.3.1. Evidence from In Vivo Studies
5.3.2. Evidence from Clinical Studies
5.3.3. Synthesis and Clinical Implications
5.3.4. Study Limitations and Clinical Constraints
5.4. Regenerative Surgery and Periodontology
5.4.1. Evidence from Non-Surgical Periodontal Therapy (SRP ± HBOT)
5.4.2. Evidence from Regenerative and Surgical Applications
5.4.3. Synthesis and Periodontal Implications
5.4.4. Methodological Limitations in Periodontal Applications
5.5. Rare Maxillomandibular Conditions Potentially Benefiting from HBOT
5.5.1. Osteopetrosis-Associated Osteomyelitis
5.5.2. Primary Chronic Osteomyelitis of the Jaws
5.5.3. Other Rare Maxillofacial Entities
5.5.4. Synthesis and Clinical Implications
5.5.5. Evidence Limitations in Rare Maxillomandibular Conditions
6. Contraindications for Patient Eligibility for HBOT
7. Discussion
8. Conclusions
- HBOT may be a biologically justified adjunctive therapy in dental and maxillofacial surgery, acting through enhanced tissue oxygenation, stimulation of angiogenesis, modulation of inflammation, and improved antimicrobial defense.
- Clinical benefits may be most evident in early and high-risk conditions, including ORN, MRONJ, and refractory osteomyelitis, where HBOT can accelerate granulation, reduce pain, and support mucosal closure.
- Evidence for long-term bone regeneration, prevention of complications, and implant survival remains limited. Routine prophylactic use of HBOT in irradiated or high-risk patients is not currently supported by high-quality data.
- HBOT should be applied selectively, as an adjunct to established surgical and pharmacologic protocols, particularly when wound healing is compromised by local ischemia, infection, or systemic comorbidities such as diabetes.
- Clinical success depends on individualized patient selection, standardized protocols, and interdisciplinary coordination between oral surgeons, radiation oncologists, and hyperbaric specialists.
- Patient selection should always include screening for contraindications such as pneumothorax, intraocular gas, or severe pulmonary disease, as these factors may preclude safe HBOT administration.
- Future research should focus on high-quality multicenter randomized trials with uniform HBOT parameters, longer follow-up, and inclusion of patient-reported and cost-effectiveness outcomes.
- In rare maxillomandibular conditions such as osteopetrosis-related or primary chronic osteomyelitis, current evidence is anecdotal; HBOT should be regarded as experimental and considered only on a case-by-case basis.
- Overall, HBOT may represent a physiologically coherent and clinically valuable support modality for complex wound healing in dentistry, effective in selected indications but not yet established as a universal standard of care.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef]
- Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265sr266. [Google Scholar] [CrossRef]
- Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Rodrigues, M.; Kosaric, N.; Bonham, C.A.; Gurtner, G.C. Wound Healing: A Cellular Perspective. Physiol. Rev. 2019, 99, 665–706. [Google Scholar] [CrossRef] [PubMed]
- Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef] [PubMed]
- Heyboer, M., 3rd; Sharma, D.; Santiago, W.; McCulloch, N. Hyperbaric Oxygen Therapy: Side Effects Defined and Quantified. Adv. Wound Care 2017, 6, 210–224. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.L.; Bell, C.N. Hyperbaric oxygen: Its uses, mechanisms of action and outcomes. QJM 2004, 97, 385–395. [Google Scholar] [CrossRef]
- Delanian, S.; Lefaix, J.L. The radiation-induced fibroatrophic process: Therapeutic perspective via the antioxidant pathway. Radiother. Oncol. 2004, 73, 119–131. [Google Scholar] [CrossRef]
- Martin, M.; Lefaix, J.; Delanian, S. TGF-beta1 and radiation fibrosis: A master switch and a specific therapeutic target? Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 277–290. [Google Scholar] [CrossRef]
- Barker, H.E.; Paget, J.T.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015, 15, 409–425. [Google Scholar] [CrossRef]
- Yarnold, J.; Brotons, M.C. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 2010, 97, 149–161. [Google Scholar] [CrossRef]
- Tolentino Ede, S.; Centurion, B.S.; Ferreira, L.H.; Souza, A.P.; Damante, J.H.; Rubira-Bullen, I.R. Oral adverse effects of head and neck radiotherapy: Literature review and suggestion of a clinical oral care guideline for irradiated patients. J. Appl. Oral Sci. 2011, 19, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Faisal, M.; Berend, P.D.; Seemann, R.; Janik, S.; Grasl, S.; Ritzengruber, A.; Mendel, H.; Jamshed, A.; Hussain, R.; Erovic, B.M. Impact of Previous Irradiation on Wound Healing after Negative Pressure Wound Therapy in Head and Neck Cancer Patients-A Systematic Review. Cancers 2021, 13, 2482. [Google Scholar] [CrossRef] [PubMed]
- Strojan, P.; Hutcheson, K.A.; Eisbruch, A.; Beitler, J.J.; Langendijk, J.A.; Lee, A.W.M.; Corry, J.; Mendenhall, W.M.; Smee, R.; Rinaldo, A.; et al. Treatment of late sequelae after radiotherapy for head and neck cancer. Cancer Treat. Rev. 2017, 59, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Haubner, F.; Ohmann, E.; Pohl, F.; Strutz, J.; Gassner, H.G. Wound healing after radiation therapy: Review of the literature. Radiat. Oncol. 2012, 7, 162. [Google Scholar] [CrossRef]
- Jacobson, L.; Johnson, M.; Dedhia, D.; Solmaz, N.-B.; Wong, A. Impaired Wound Healing After Radiation Therapy: A Systematic Review of Pathogenesis and Treatment. JPRAS Open 2017, 13, 92–105. [Google Scholar] [CrossRef]
- Singh, A.; Huryn, J.M.; Kronstadt, K.L.; Yom, S.K.; Randazzo, J.R.; Estilo, C.L. Osteoradionecrosis of the jaw: A mini review. Front. Oral Health 2022, 3, 980786. [Google Scholar] [CrossRef]
- Chrcanovic, B.R.; Reher, P.; Sousa, A.A.; Harris, M. Osteoradionecrosis of the jaws--a current overview--part 1: Physiopathology and risk and predisposing factors. Oral Maxillofac. Surg. 2010, 14, 3–16. [Google Scholar] [CrossRef]
- Bennett, M.H.; Feldmeier, J.; Hampson, N.B.; Smee, R.; Milross, C. Hyperbaric oxygen therapy for late radiation tissue injury. Cochrane Database Syst. Rev. 2016, 4, Cd005005. [Google Scholar] [CrossRef]
- Shaw, R.J.; Butterworth, C.J.; Silcocks, P.; Tesfaye, B.T.; Bickerstaff, M.; Jackson, R.; Kanatas, A.; Nixon, P.; McCaul, J.; Praveen, P.; et al. HOPON (Hyperbaric Oxygen for the Prevention of Osteoradionecrosis): A Randomized Controlled Trial of Hyperbaric Oxygen to Prevent Osteoradionecrosis of the Irradiated Mandible After Dentoalveolar Surgery. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 530–539. [Google Scholar] [CrossRef]
- Annane, D.; Depondt, J.; Aubert, P.; Villart, M.; Géhanno, P.; Gajdos, P.; Chevret, S. Hyperbaric oxygen therapy for radionecrosis of the jaw: A randomized, placebo-controlled, double-blind trial from the ORN96 study group. J. Clin. Oncol. 2004, 22, 4893–4900. [Google Scholar] [CrossRef]
- Ajayi, O.D.; Gaskill, Z.; Kelly, M.; Logue, C.J.; Hendricksen, S.M. A comparison of two hyperbaric oxygen regimens: 2.0 ATA for 120 minutes to 2.4 ATA for 90 minutes in treating radiation-induced cystitis Are these regimens equivalent? Undersea Hyperb. Med. 2020, 47, 581–589. [Google Scholar] [CrossRef]
- Ortega, M.A.; Fraile-Martinez, O.; García-Montero, C.; Callejón-Peláez, E.; Sáez, M.A.; Álvarez-Mon, M.A.; García-Honduvilla, N.; Monserrat, J.; Álvarez-Mon, M.; Bujan, J.; et al. A General Overview on the Hyperbaric Oxygen Therapy: Applications, Mechanisms and Translational Opportunities. Medicina 2021, 57, 864. [Google Scholar] [CrossRef]
- De Wolde, S.D.; Hulskes, R.H.; Weenink, R.P.; Hollmann, M.W.; Van Hulst, R.A. The Effects of Hyperbaric Oxygenation on Oxidative Stress, Inflammation and Angiogenesis. Biomolecules 2021, 11, 1210. [Google Scholar] [CrossRef] [PubMed]
- Weaver, L.K.; Hopkins, R.O.; Chan, K.J.; Churchill, S.; Elliott, C.G.; Clemmer, T.P.; Orme, J.F., Jr.; Thomas, F.O.; Morris, A.H. Hyperbaric oxygen for acute carbon monoxide poisoning. N. Engl. J. Med. 2002, 347, 1057–1067. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.; Sami, A.; Nallakumarasamy, A.; Jeyaraman, N.; Jain, V.K. Hyperbaric Oxygen Therapy in Orthopaedics: An Adjunct Therapy with an Emerging Role. Indian J. Orthop. 2023, 57, 748–761. [Google Scholar] [CrossRef]
- Sunkari, V.G.; Lind, F.; Botusan, I.R.; Kashif, A.; Liu, Z.J.; Ylä-Herttuala, S.; Brismar, K.; Velazquez, O.; Catrina, S.B. Hyperbaric oxygen therapy activates hypoxia-inducible factor 1 (HIF-1), which contributes to improved wound healing in diabetic mice. Wound Repair. Regen. 2015, 23, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Lerche, C.J.; Christophersen, L.J.; Kolpen, M.; Nielsen, P.R.; Trøstrup, H.; Thomsen, K.; Hyldegaard, O.; Bundgaard, H.; Jensen, P.; Høiby, N.; et al. Hyperbaric oxygen therapy augments tobramycin efficacy in experimental Staphylococcus aureus endocarditis. Int. J. Antimicrob. Agents 2017, 50, 406–412. [Google Scholar] [CrossRef]
- Capó, X.; Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Batle, J.M.; Tur, J.A.; Pons, A.; Sureda, A.; Tejada, S. Hyperbaric Oxygen Therapy Reduces Oxidative Stress and Inflammation, and Increases Growth Factors Favouring the Healing Process of Diabetic Wounds. Int. J. Mol. Sci. 2023, 24, 7040. [Google Scholar] [CrossRef]
- Bosco, G.; Brizzolari, A.; Paganini, M.; Camporesi, E.; Vezzoli, A.; Mrakic-Sposta, S. Oxy-inflammation in hyperbaric oxygen therapy applications. Eur. J. Transl. Myol. 2025, 35, 12783. [Google Scholar] [CrossRef]
- Sen, S.; Sen, S. Therapeutic effects of hyperbaric oxygen: Integrated review. Med. Gas. Res. 2021, 11, 30–33. [Google Scholar] [CrossRef]
- Jones, M.W.; Brett, K.; Han, N.; Cooper, J.S.; Wyatt, H.A. Hyperbaric Physics. In StatPearls; StatPearls Publishing Copyright© 2025; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448104/ (accessed on 2 September 2025).
- Zhang, Y.; Zhou, Y.; Jia, Y.; Wang, T.; Meng, D. Adverse effects of hyperbaric oxygen therapy: A systematic review and meta-analysis. Front. Med. 2023, 10, 1160774. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.; Liu, K.J. Does normobaric hyperoxia increase oxidative stress in acute ischemic stroke? A critical review of the literature. Med. Gas. Res. 2015, 5, 11. [Google Scholar] [CrossRef]
- Leveque, C.; Mrakic Sposta, S.; Theunissen, S.; Germonpré, P.; Lambrechts, K.; Vezzoli, A.; Bosco, G.; Lévénez, M.; Lafère, P.; Guerrero, F.; et al. Oxidative Stress Response Kinetics after 60 Minutes at Different (1.4 ATA and 2.5 ATA) Hyperbaric Hyperoxia Exposures. Int. J. Mol. Sci. 2023, 24, 12361. [Google Scholar] [CrossRef]
- Oh, S.; Lee, E.; Lee, J.; Lim, Y.; Kim, J.; Woo, S. Comparison of the effects of 40% oxygen and two atmospheric absolute air pressure conditions on stress-induced premature senescence of normal human diploid fibroblasts. Cell Stress. Chaperones 2008, 13, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Ciarlone, G.E.; Hinojo, C.M.; Stavitzski, N.M.; Dean, J.B. CNS function and dysfunction during exposure to hyperbaric oxygen in operational and clinical settings. Redox Biol. 2019, 27, 101159. [Google Scholar] [CrossRef]
- Manning, E.P. Central Nervous System Oxygen Toxicity and Hyperbaric Oxygen Seizures. Aerosp. Med. Hum. Perform. 2016, 87, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.S.; Gorti, G.K.; Quan, S.Y.; Ho, M.; Koch, R.J. Effect of hyperbaric oxygen on the growth factor profile of fibroblasts. Arch. Facial Plast. Surg. 2004, 6, 31–35. [Google Scholar] [CrossRef]
- Huang, X.; Liang, P.; Jiang, B.; Zhang, P.; Yu, W.; Duan, M.; Guo, L.; Cui, X.; Huang, M.; Huang, X. Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis. Life Sci. 2020, 259, 118246. [Google Scholar] [CrossRef]
- Hong, W.X.; Hu, M.S.; Esquivel, M.; Liang, G.Y.; Rennert, R.C.; McArdle, A.; Paik, K.J.; Duscher, D.; Gurtner, G.C.; Lorenz, H.P.; et al. The Role of Hypoxia-Inducible Factor in Wound Healing. Adv. Wound Care 2014, 3, 390–399. [Google Scholar] [CrossRef]
- Lindenmann, J.; Kamolz, L.; Graier, W.; Smolle, J.; Smolle-Juettner, F.M. Hyperbaric Oxygen Therapy and Tissue Regeneration: A Literature Survey. Biomedicines 2022, 10, 3145. [Google Scholar] [CrossRef]
- Oley, M.H.; Oley, M.C.; Langi, F.; Langi, Y.A.; Keppel, B.J.; Tangkilisan, A.N.; Lampus, H.F.; Sipayung, E.F.; Aling, D.M.R.; Faruk, M. Predicting hyperbaric oxygen therapy success using the decision tree approach. Ann. Med. Surg. 2021, 69, 102725. [Google Scholar] [CrossRef]
- Fosen, K.M.; Thom, S.R. Hyperbaric oxygen, vasculogenic stem cells, and wound healing. Antioxid. Redox Signal 2014, 21, 1634–1647. [Google Scholar] [CrossRef] [PubMed]
- Boykin, J.V., Jr.; Baylis, C. Hyperbaric oxygen therapy mediates increased nitric oxide production associated with wound healing: A preliminary study. Adv. Skin. Wound Care 2007, 20, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Uusijärvi, J.; Eriksson, K.; Larsson, A.C.; Nihlén, C.; Schiffer, T.; Lindholm, P.; Weitzberg, E. Effects of hyperbaric oxygen on nitric oxide generation in humans. Nitric Oxide 2015, 44, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Růžička, J.; Dejmek, J.; Bolek, L.; Beneš, J.; Kuncová, J. Hyperbaric oxygen influences chronic wound healing-a cellular level review. Physiol. Res. 2021, 70, S261–S273. [Google Scholar] [CrossRef]
- Susilo, I.; Devi, A.; Purwandhono, A. The effects of hyperbaric oxygen therapy in improvement of Tnf- A, Hsp 70, Enos, Vegf, collagen 3, and Il 6 protein expression in wound healing. Int. J. Health Sci. 2022, 6, 6907–6916. [Google Scholar] [CrossRef]
- Peña-Villalobos, I.; Casanova-Maldonado, I.; Lois, P.; Prieto, C.; Pizarro, C.; Lattus, J.; Osorio, G.; Palma, V. Hyperbaric Oxygen Increases Stem Cell Proliferation, Angiogenesis and Wound-Healing Ability of WJ-MSCs in Diabetic Mice. Front. Physiol. 2018, 9, 995. [Google Scholar] [CrossRef]
- O’Reilly, D.; Pasricha, A.; Campbell, K.; Burke, N.; Assasi, N.; Bowen, J.M.; Tarride, J.E.; Goeree, R. Hyperbaric oxygen therapy for diabetic ulcers: Systematic review and meta-analysis. Int. J. Technol. Assess. Health Care 2013, 29, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Löndahl, M. Hyperbaric oxygen therapy as adjunctive treatment for diabetic foot ulcers. Int. J. Low. Extrem. Wounds 2013, 12, 152–157. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S.K.; Mudgal, S.K.; Jelly, P.; Thakur, K. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcer, a systematic review and meta-analysis of controlled clinical trials. Sci. Rep. 2021, 11, 2189. [Google Scholar] [CrossRef]
- Brouwer, R.J.; Lalieu, R.C.; Hoencamp, R.; van Hulst, R.A.; Ubbink, D.T. A systematic review and meta-analysis of hyperbaric oxygen therapy for diabetic foot ulcers with arterial insufficiency. J. Vasc. Surg. 2020, 71, 682–692.e681. [Google Scholar] [CrossRef] [PubMed]
- Savvidou, O.D.; Kaspiris, A.; Bolia, I.K.; Chloros, G.D.; Goumenos, S.D.; Papagelopoulos, P.J.; Tsiodras, S. Effectiveness of Hyperbaric Oxygen Therapy for the Management of Chronic Osteomyelitis: A Systematic Review of the Literature. Orthopedics 2018, 41, 193–199. [Google Scholar] [CrossRef]
- Chen, C.E.; Ko, J.Y.; Fu, T.H.; Wang, C.J. Results of chronic osteomyelitis of the femur treated with hyperbaric oxygen: A preliminary report. Chang Gung Med. J. 2004, 27, 91–97. [Google Scholar]
- Cooper, J.S.; Hanley, M.E.; Hendriksen, S. Hyperbaric Treatment of Chronic Refractory Osteomyelitis. In StatPearls; StatPearls Publishing Copyright© 2025; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025; Available online: https://www.statpearls.com/point-of-care/31649/ (accessed on 2 September 2025).
- Shields, R.C.; Nichols, F.C.; Buchta, W.G.; Claus, P.L. Hyperbaric oxygen therapy for chronic refractory osteomyelitis of the sternum. Ann. Thorac. Surg. 2010, 89, 1661–1663. [Google Scholar] [CrossRef]
- Kjellberg, A.; Zhao, A.; Lussier, A.; Hassler, A.; Al-Ezerjawi, S.; Boström, E.; Catrina, S.B.; Bergman, P.; Rodriguez-Wallberg, K.A.; Lindholm, P. Hyperbaric oxygen therapy as an immunomodulatory intervention in COVID-19-induced ARDS: Exploring clinical outcomes and transcriptomic signatures in a randomised controlled trial. Pulm. Pharmacol. Ther. 2024, 87, 102330. [Google Scholar] [CrossRef]
- Huang, E.T.; Mansouri, J.; Murad, M.H.; Joseph, W.S.; Strauss, M.B.; Tettelbach, W.; Worth, E.R. A clinical practice guideline for the use of hyperbaric oxygen therapy in the treatment of diabetic foot ulcers. Undersea Hyperb. Med. 2015, 42, 205–247. [Google Scholar] [PubMed]
- Li, W.; Fu, C.; Xv, L.; Yang, B.; Liu, G.; Fan, W. Hyperbaric oxygen therapy for chronic diabetic foot ulcers: An overview of systematic reviews. Diabetes Res. Clin. Pract. 2021, 176, 108862. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Xu, Y.; Liu, D. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcers: An updated systematic review and meta-analysis. Asian J. Surg. 2022, 45, 68–78. [Google Scholar] [CrossRef]
- Freiberger, J.J.; Padilla-Burgos, R.; Chhoeu, A.H.; Kraft, K.H.; Boneta, O.; Moon, R.E.; Piantadosi, C.A. Hyperbaric oxygen treatment and bisphosphonate-induced osteonecrosis of the jaw: A case series. J. Oral Maxillofac. Surg. 2007, 65, 1321–1327. [Google Scholar] [CrossRef]
- Shaw, R.; Butterworth, C.; Tesfaye, B.; Bickerstaff, M.; Dodd, S.; Smerdon, G.; Chauhan, S.; Brennan, P.; Webster, K.; McCaul, J.; et al. HOPON (Hyperbaric Oxygen for the Prevention of Osteoradionecrosis): A randomised controlled trial of hyperbaric oxygen to prevent osteoradionecrosis of the irradiated mandible: Study protocol for a randomised controlled trial. Trials 2018, 19, 22. [Google Scholar] [CrossRef]
- Dholam, K.P.; Gurav, S.V. Dental implants in irradiated jaws: A literature review. J. Cancer Res. Ther. 2012, 8, S85–S93. [Google Scholar] [CrossRef]
- Toneatti, D.J.; Graf, R.R.; Burkhard, J.P.; Schaller, B. Survival of dental implants and occurrence of osteoradionecrosis in irradiated head and neck cancer patients: A systematic review and meta-analysis. Clin. Oral Investig. 2021, 25, 5579–5593. [Google Scholar] [CrossRef] [PubMed]
- Chouinard, A.F.; Giasson, L.; Fortin, M. Hyperbaric Oxygen Therapy for Head and Neck Irradiated Patients with Special Attention to Oral and Maxillofacial Treatments. J. Can. Dent. Assoc. 2016, 82, g24. [Google Scholar] [PubMed]
- Lin, Z.C.; Bennett, M.H.; Hawkins, G.C.; Azzopardi, C.P.; Feldmeier, J.; Smee, R.; Milross, C. Hyperbaric oxygen therapy for late radiation tissue injury. Cochrane Database Syst. Rev. 2023, 8, Cd005005. [Google Scholar] [CrossRef]
- El-Rabbany, M.; Duchnay, M.; Raziee, H.R.; Zych, M.; Tenenbaum, H.; Shah, P.S.; Azarpazhooh, A. Interventions for preventing osteoradionecrosis of the jaws in adults receiving head and neck radiotherapy. Cochrane Database Syst. Rev. 2019, 2019, CD011559. [Google Scholar] [CrossRef]
- Jenwitheesuk, K.; Mahakkanukrauh, A.; Punjaruk, W.; Jenwitheesuk, K.; Chowchuen, B.; Jinaporntham, S.; Uraiwan, K.; Limrattanapimpa, P. Efficacy of Adjunctive Hyperbaric Oxygen Therapy in Osteoradionecrosis. Biores. Open Access 2018, 7, 145–149. [Google Scholar] [CrossRef]
- Mohandas, R.; Mohapatra, S.; Narkhede, R.; Kheur, S. Effectiveness of Hyperbaric Oxygen Therapy in the Management of Osteoradionecrosis of the Jaw: A Systematic Review. J. Health Allied Sci. NU 2023, 14, 295–302. [Google Scholar] [CrossRef]
- Geçkil, N. Treatment approaches in cases of mandibular osteoradionecrosis: A systematic meta-analysis. J. Stomatol. Oral Maxillofac. Surg. 2025, 126, 102316. [Google Scholar] [CrossRef]
- Fritz, M.A.; Arianpour, K.; Liu, S.W.; Lamarre, E.D.; Genther, D.J.; Ciolek, P.J.; Byrne, P.J.; Prendes, B.L. Managing Mandibular Osteoradionecrosis. Otolaryngol. Head. Neck Surg. 2025, 172, 406–418. [Google Scholar] [CrossRef]
- Dang, B.; Gamage, S.; Sethi, S.; Jensen, E.D.; Sambrook, P.; Goss, A. The role of hyperbaric oxygen in osteoradionecrosis-a prophylactic insight. Aust. Dent. J. 2023, 68, 171–178. [Google Scholar] [CrossRef]
- Peterson, D.E.; Koyfman, S.A.; Yarom, N.; Lynggaard, C.D.; Ismaila, N.; Forner, L.E.; Fuller, C.D.; Mowery, Y.M.; Murphy, B.A.; Watson, E.; et al. Prevention and Management of Osteoradionecrosis in Patients with Head and Neck Cancer Treated with Radiation Therapy: ISOO-MASCC-ASCO Guideline. J. Clin. Oncol. 2024, 42, 1975–1996. [Google Scholar] [CrossRef]
- He, L.; Sun, X.; Liu, Z.; Qiu, Y.; Niu, Y. Pathogenesis and multidisciplinary management of medication-related osteonecrosis of the jaw. Int. J. Oral Sci. 2020, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.L.; Dodson, T.B.; Aghaloo, T.; Carlson, E.R.; Ward, B.B.; Kademani, D. American Association of Oral and Maxillofacial Surgeons’ Position Paper on Medication-Related Osteonecrosis of the Jaws-2022 Update. J. Oral Maxillofac. Surg. 2022, 80, 920–943. [Google Scholar] [CrossRef]
- Freiberger, J.J.; Padilla-Burgos, R.; McGraw, T.; Suliman, H.B.; Kraft, K.H.; Stolp, B.W.; Moon, R.E.; Piantadosi, C.A. What is the role of hyperbaric oxygen in the management of bisphosphonate-related osteonecrosis of the jaw: A randomized controlled trial of hyperbaric oxygen as an adjunct to surgery and antibiotics. J. Oral Maxillofac. Surg. 2012, 70, 1573–1583. [Google Scholar] [CrossRef]
- Beth-Tasdogan, N.H.; Mayer, B.; Hussein, H.; Zolk, O.; Peter, J.U. Interventions for managing medication-related osteonecrosis of the jaw. Cochrane Database Syst. Rev. 2022, 2022, CD012432. [Google Scholar] [CrossRef]
- Govaerts, D.; Piccart, F.; Ockerman, A.; Coropciuc, R.; Politis, C.; Jacobs, R. Adjuvant therapies for MRONJ: A systematic review. Bone 2020, 141, 115676. [Google Scholar] [CrossRef] [PubMed]
- Ceponis, P.; Keilman, C.; Guerry, C.; Freiberger, J.J. Hyperbaric oxygen therapy and osteonecrosis. Oral Dis. 2017, 23, 141–151. [Google Scholar] [CrossRef]
- Biancardi, M.; Júnior, L.; Fischer-Bullen, I.; Santos, P. Hyperbaric Oxygen and Medication-Related Osteonecrosis of the Jaw (MRONJ): An Integrative Review. Int. J. Odontostomatol. 2022, 15, 806–811. [Google Scholar] [CrossRef]
- Tanabe, T.; Kimura, T.; Sakata, K.I.; Ohga, N.; Yanagawa-Matsuda, A.; Kobori, Y. Medication-Related Osteonecrosis Successfully Treated with Hyperbaric Oxygen Therapy and Conservative Treatment: A Case Report. Cureus 2025, 17, e79213. [Google Scholar] [CrossRef]
- Frutuoso, F.; Freitas, F.; Vilares, M.; Francisco, H.; Marques, D.; Caramês, J.; Moreira, A. Medication-Related Osteonecrosis of the Jaw: A Systematic Review of Case Reports and Case Series. Diseases 2024, 12, 205. [Google Scholar] [CrossRef]
- Byrne, H.; O’Reilly, S.; Weadick, C.S.; Brady, P.; Ríordáin, R.N. How we manage medication-related osteonecrosis of the jaw. Eur. J. Med. Res. 2024, 29, 402. [Google Scholar] [CrossRef]
- Liao, J.; Ren, J.; Qing, W.; Mu, Y.D.; Li, P. Impact of Hyperbaric Oxygen on the Healing of Teeth Extraction Sockets and Alveolar Ridge Preservation. Clin. Oral Investig. 2020, 24, 2591–2601. [Google Scholar] [CrossRef]
- Altug, H.A.; Tatli, U.; Coskun, A.T.; Erdogan, Ö.; Özkan, A.; Sencimen, M.; Kürkçü, M. Effects of hyperbaric oxygen treatment on implant osseointegration in experimental diabetes mellitus. J. Appl. Oral Sci. 2018, 26, e20180083. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.A.; Oliveira, A.M.; Pablos, A.B.; Costa, F.O.; Silva, G.A.; Santos, J.N.; Cury, P.R. Influence of hyperbaric oxygen therapy on peri-implant bone healing in rats with alloxan-induced diabetes. J. Clin. Periodontol. 2012, 39, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Chambrone, L.; Mandia, J., Jr.; Shibli, J.A.; Romito, G.A.; Abrahao, M. Dental implants installed in irradiated jaws: A systematic review. J. Dent. Res. 2013, 92, 119s–130s. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Worthington, H.V. Interventions for replacing missing teeth: Hyperbaric oxygen therapy for irradiated patients who require dental implants. Cochrane Database Syst. Rev. 2013, 2019, CD003603. [Google Scholar] [CrossRef]
- Benites Condezo, A.F.; Araujo, R.Z.; Koga, D.H.; Curi, M.M.; Cardoso, C.L. Hyperbaric oxygen therapy for the placement of dental implants in irradiated patients: Systematic review and meta-analysis. Br. J. Oral Maxillofac. Surg. 2021, 59, 625–632. [Google Scholar] [CrossRef]
- Cho, Y.D.; Kim, K.H.; Lee, Y.M.; Ku, Y.; Seol, Y.J. Periodontal Wound Healing and Tissue Regeneration: A Narrative Review. Pharmaceuticals 2021, 14, 456. [Google Scholar] [CrossRef]
- Chen, T.-L.; Xu, B.; Liu, J.-C.; Li, S.-G.; Li, D.-Y.; Gong, G.-C.; Wu, Z.-F.; Lin, S.-L.; Zhou, Y.-J. Effects of hyperbaric oxygen on aggressive periodontitis and subgingival anaerobes in Chinese patients. J. Indian Soc. Periodontol. 2012, 16, 492–497. [Google Scholar] [CrossRef]
- Burcea, A.; Mihai, L.L.; Bechir, A.; Suciu, M.; Bechir, E.S. Clinical Assessment of the Hyperbaric Oxygen Therapy Efficacy in Mild to Moderate Periodontal Affections: A Simple Randomised Trial. Medicina 2022, 58, 234. [Google Scholar] [CrossRef]
- Latusek, K.; Słotwińska-Pawlaczyk, A.; Warakomska, A.; Kubicka-Musiał, M.; Wiench, R.; Orzechowska-Wylęgała, B. Pilot Study: The Effectiveness of Hyperbaric Oxygen Therapy in the Treatment of Periodontitis in Patients with Type 2 Diabetes. Healthcare 2023, 11, 1344. [Google Scholar] [CrossRef]
- Nogueira-Filho, G.R.; Rosa, B.T.; David-Neto, J.R. Effects of hyperbaric oxygen therapy on the treatment of severe cases of periodontitis. Undersea Hyperb. Med. 2010, 37, 107–114. [Google Scholar] [PubMed]
- Lombardo, G.; Pardo, A.; Signoretto, C.; Signoriello, A.; Simeoni, E.; Rovera, A.; Nocini, P.F. Hyperbaric oxygen therapy for the treatment of moderate to severe periodontitis: A clinical pilot study. Undersea Hyperb. Med. 2020, 47, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Giacon, T.A.; Giancola, F.; Paganini, M.; Tiengo, C.; Camporesi, E.M.; Bosco, G. Hyperbaric Oxygen Therapy and A-PRF Pre-Treated Implants in Severe Periodontitis: A Case Report. Int. J. Environ. Res. Public Health 2021, 18, 413. [Google Scholar] [CrossRef] [PubMed]
- Heck, T.; Lohana, D.; Mallela, D.; Mandil, O.; Sun, L.; Saxena, P.; Decker, A.M.; Wang, H.-L. Hyperbaric oxygen therapy as an adjunct treatment of periodontitis, MRONJ, and ONJ: A systematic literature review. Clin. Oral Investig. 2024, 28, 77. [Google Scholar] [CrossRef]
- Winsness, A.; Fallin, G.; Herring, K. What is the Effect of Hyperbaric Oxygen Therapy on Pocket Depths as an Adjunct to Conventional Scaling and Root Planning? Dent. Rev. 2024, 4, 100123. [Google Scholar] [CrossRef]
- Berglund, C.; Ekströmer, K.; Abtahi, J. Primary Chronic Osteomyelitis of the Jaws in Children: An Update on Pathophysiology, Radiological Findings, Treatment Strategies, and Prospective Analysis of Two Cases. Case Rep. Dent. 2015, 2015, 152717. [Google Scholar] [CrossRef]
- García, C.M.; García, M.A.; García, R.G.; Gil, F.M. Osteomyelitis of the mandible in a patient with osteopetrosis. Case report and review of the literature. J. Maxillofac. Oral Surg. 2013, 12, 94–99. [Google Scholar] [CrossRef]
- Lentrodt, S.; Lentrodt, J.; Kübler, N.; Mödder, U. Hyperbaric oxygen for adjuvant therapy for chronically recurrent mandibular osteomyelitis in childhood and adolescence. J. Oral Maxillofac. Surg. 2007, 65, 186–191. [Google Scholar] [CrossRef]
- Stark, Z.; Savarirayan, R. Osteopetrosis. Orphanet J. Rare Dis. 2009, 4, 5. [Google Scholar] [CrossRef]
- Murai, C.; Sakata, K.-i.; Nakamura, K.; Yoshikawa, K.; Sato, J.; Matsuda, A.; Kitagawa, Y. Refractory maxillary osteomyelitis with osteopetrosis: A case report. J. Oral Maxillofac. Surg. Med. Pathol. 2023, 36, 615–623. [Google Scholar] [CrossRef]
- Sharma, A.; Ingole, S.N.; Deshpande, M.D.; Kazi, N.; Meshram, D.; Ranadive, P. A Rare Case of Osteoclast-poor Osteopetrosis (RANKL Mutation) with Recurrent Osteomyelitis of Mandible: A Case Report. Int. J. Clin. Pediatr. Dent. 2020, 13, 717–721. [Google Scholar] [CrossRef]
- Monis, P.L.; Bhat, V.; Shetty, S.; Salins, P.C. Hyperbaric Oxygen Therapy in the Management of Zygomatic Bone Osteomyelitis. J. Maxillofac. Oral Surg. 2021, 20, 414–417. [Google Scholar] [CrossRef]
- Kato, C.; de Arruda, J.A.A.; Mendes, P.A.; Neiva, I.M.; Abreu, L.G.; Moreno, A.; Silva, T.A.; Souza, L.N.; Mesquita, R.A. Infected Cemento-Osseous Dysplasia: Analysis of 66 Cases and Literature Review. Head. Neck Pathol. 2020, 14, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Anand, R.; Bhagat, N.; Chakarvarty, K.; Jaiswal, Y. Florid Cemento-Osseous Dysplasia Presenting as Secondary Osteomyelitis: A Case Report of an Undiagnosed Condition. Cureus 2024, 16, e70291. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, S.F.H.; Bakht, D.; Amir, M.; Haris, H.M.; Ain, N.U.; Qureshi, M.S.; Yousaf, F.; Yousaf, R.; Ali, K.; Javed, M.A.; et al. Granulicatella infections: Comprehensive review of an elusive opportunistic pathogen. World J. Clin. Cases 2025, 13, 110965. [Google Scholar] [CrossRef]
- Gawdi, R.; Yrastorza, J.; Cooper, J.S. Hyperbaric Oxygen Therapy Contraindications. In StatPearls; StatPearls Publishing Copyright© 2025; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557661/ (accessed on 2 September 2025).
- Baude, J.; Cooper, J.S. Hyperbaric Contraindicated Chemotherapeutic Agents. In StatPearls; StatPearls Publishing Copyright© 2025; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560873/ (accessed on 2 September 2025).
- Camporesi, E.M. Side effects of hyperbaric oxygen therapy. Undersea Hyperb. Med. 2014, 41, 253–257. [Google Scholar]
- Torp, K.D.; Carraway, M.S.; Ott, M.C.; Stolp, B.W.; Moon, R.E.; Piantadosi, C.A.; Freiberger, J.J. Safe administration of hyperbaric oxygen after bleomycin: A case series of 15 patients. Undersea Hyperb. Med. 2012, 39, 873–879. [Google Scholar]
- Sadri, R.A.; Cooper, J.S. Hyperbaric Complications. In StatPearls; StatPearls Publishing Copyright© 2025; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459191/ (accessed on 2 September 2025).
- Karagoz, B.; Suleymanoglu, S.; Uzun, G.; Bilgi, O.; Aydinoz, S.; Haholu, A.; Turken, O.; Onem, Y.; Kandemir, E.G. Hyperbaric oxygen therapy does not potentiate doxorubicin-induced cardiotoxicity in rats. Basic. Clin. Pharmacol. Toxicol. 2008, 102, 287–292. [Google Scholar] [CrossRef]
- Brenna, C.T.; Khan, S.; Djaiani, G.; Buckey, J.C., Jr.; Katznelson, R. The role of routine pulmonary imaging before hyperbaric oxygen treatment. Diving Hyperb. Med. 2022, 52, 197–207. [Google Scholar] [CrossRef]
- Brenna, C.T.A.; Khan, S.; Djaiani, G.; Au, D.; Schiavo, S.; Wahaj, M.; Janisse, R.; Katznelson, R. Pulmonary function following hyperbaric oxygen therapy: A longitudinal observational study. PLoS ONE 2023, 18, e0285830. [Google Scholar] [CrossRef] [PubMed]
- DuBose, K.J.; Cooper, J.S. Hyperbaric Patient Selection. In StatPearls; StatPearls Publishing Copyright© 2025; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499820/ (accessed on 2 September 2025).
- Lee, J.-H.; Lee, H.-Y.; Sun, K.-H.; Heo, T.; Lee, S.-M. Risk Factors for Middle Ear Barotrauma in Patients with Carbon Monoxide Poisoning Undergoing Monoplace Hyperbaric Oxygen Therapy: A Retrospective Cohort Study. J. Clin. Med. 2025, 14, 2984. [Google Scholar] [CrossRef]
- Lima, M.A.; Farage, L.; Cury, M.C.; Bahmad, F., Jr. Middle ear barotrauma after hyperbaric oxygen therapy-the role of insuflation maneuvers. Int. Tinnitus J. 2012, 17, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Marinov, A.; Clarke, H.; Schiavo, S.; Greer, E.; Djaiani, G.; Tarshis, J.; Katznelson, R. Safety of hyperbaric oxygen therapy in non-emergent patients with a history of seizures: A retrospective cohort study. PLoS ONE 2025, 20, e0317586. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, S.; Brenna, C.T.A.; Albertini, L.; Djaiani, G.; Marinov, A.; Katznelson, R. Safety of hyperbaric oxygen therapy in patients with heart failure: A retrospective cohort study. PLoS ONE 2024, 19, e0293484. [Google Scholar] [CrossRef]
| Mechanism | Description | Key Effects | References |
|---|---|---|---|
| Increased oxygen solubility (Henry’s law) | Elevated pressure (2–3 ATA) leads to a tenfold increase in plasma oxygen content, enabling diffusion into hypoxic tissues. | Improved perfusion in ischemic areas; plasma oxygen concentration may reach approximately 4–6 mL/dL at ~2.0 ATA, depending on temperature and hemoglobin concentration. | Ortega et al., 2021 [23]; Heyboer et al., 2017 [6]; Jeyaraman et al., 2023 [26] |
| Induction of oxidative stress (ROS/RNS) | Generation of reactive oxygen/nitrogen species as molecular signaling mediators, modulation of NF-κB/IκBα pathway. | Reduction in pro-inflammatory cytokines (observed in studies using ~2.0–2.5 ATA for 60–90 min, single or limited sessions); this effect may invert with higher pressures or prolonged exposure | De Wolde et al., 2021 [24], Fosen & Thom, 2014 [44] |
| Activation of HIF-1α | HBOT, through alternating hyperoxia and normoxia, secondarily stabilizes HIF-1α and increases VEGF and SDF-1 expression. | Stimulation of angiogenesis and fibroblast proliferation. | Lindenmann et al., 2022 [42]; Sunkari et al., 2015 [27] |
| Effects on fibroblasts and collagenogenesis | Enhanced fibroblast proliferation, increased type III collagen synthesis, and extracellular matrix reorganization. | Accelerated wound healing, improved granulation tissue architecture. | Kang et al., 2004 [39]; Huang et al., 2020 [40]; Růžička et al., 2021 [47] |
| Immunomodulatory and antibacterial effect | Increased ROS generation in neutrophils, suppression of NF-κB. | Enhanced phagocytosis, reduced infection, transition toward proliferative phase. | Lerche et al., 2017 [28]; Capó et al., 2023 [29]; Gill & Bell, 2004 [7] |
| Study | Study Type/Population | Intervention | Key Outcomes | Conclusions and Limitations |
|---|---|---|---|---|
| Lin et al., 2023 (Cochrane) [67] | Systematic review of late radiation tissue injury/(soft tissue + osseous) | HBOT vs. no HBOT | Benefit for selected soft-tissue LRTI (e.g., cystitis, proctitis); uncertain effect for ORN | Moderate–low certainty; heterogeneous RCTs; inconsistent endpoints |
| El-Rabbany et al., 2019 (Cochrane) [68] | Systematic review of ORN prevention/(4 RCTs; ~n = 340) | Peri-operative HBOT vs. standard dental care | No clear prophylactic advantage of HBOT | Very low certainty; small trials; underpowered |
| Shaw et al., 2019 (HOPON RCT) [20] | Multicenter RCT/n = 144; dentoalveolar surgery in irradiated mandible | HBOT 2.4 ATA × 30 sessions (pre + post) vs. standard care | ORN: 6.4% (HBOT) vs. 5.7% (control); NS | No preventive benefit; low baseline ORN incidence in both arms |
| Jenwitheesuk et al., 2018 [69] | Retrospective clinical study/n = 84; ORN stages I–III | HBOT as adjunct (2.4 ATA × 30) | Improved healing in stages I–II; limited effect in stage III | Non-randomized; single-center; variable co-interventions |
| Mohandas et al., 2023 (Thieme SR) [70] | Systematic review/6 studies; 3 RCTs; ~n = 300 | HBOT ± surgery/antibiotics vs. control | Possible benefit in early ORN or as adjuvant to surgery | Low–moderate quality; inconsistent healing definitions |
| Geçkil et al., 2025 [71] | Meta-analysis/treatment strategies for mandibular ORN | HBOT + surgery vs. single-modality therapy | Combination superior to HBOT or surgery alone | Heterogeneous protocols/outcomes; limited high-quality data |
| Peterson et al., 2024 (ISOO–MASCC–ASCO Guideline) [74] | Evidence-based clinical guideline/- | Review of SRs/MAs + expert consensus | HBOT not recommended routinely; consider case-by-case (early ORN/adjunct) | Few modern RCTs; emphasis on prevention and optimized dental/surgical care |
| Fritz et al., 2025 (Review) [72] | Narrative state-of-the-art review/mandibular ORN | — | Paradigm shift away from routine HBOT; emphasis on PENTO/PENTOCLO and reconstructive surgery | Narrative synthesis; integrates recent SRs and guidelines |
| Dang et al., 2023 (Aust Dent J) [73] | Retrospective audit + narrative review/n = 121 extractions post-RT | Prophylactic HBOT before/after extractions | ORN ≈ 9%; incomplete HBOT adherence; no clear efficacy signal | Heterogeneous cohort; confounding by indication |
| Study | Study Type/Population | Intervention | Primary Outcomes | Conclusions and Limitations |
|---|---|---|---|---|
| Freiberger et al., 2012 [77] | RCT/49 randomized, 46 analyzed; adults with BP-ONJ | HBOT 2.0 ATA, twice daily, 40 sessions + surgery/antibiotics vs. standard care | Clinical improvement: 68% HBOT vs. 38.1% control (p = 0.043). Time to first improvement: 39.7 vs. 67.9 weeks (p = 0.03). Faster pain resolution (p < 0.01). Complete gingival healing: 52% vs. 33.3% (NS). | Significant symptomatic benefit and faster recovery; no significant difference in mucosal closure; single-center, small RCT. |
| Freiberger et al., 2007 [62] | Prospective case series/n = 16 adults with BP-ONJ | Adjunctive HBOT + standard care (protocol per study) | Clinical improvement: 87.5%; stable remission: 62.5%; recurrence earlier if bisphosphonate use continued (8.5 vs. 20.1 months, p = 0.006). | Suggests supportive effect of HBOT in early stages; uncontrolled, small sample; recurrence risk when bisphosphonates continued. |
| Beth-Tasdogan et al., 2022 (Cochrane) [78] | Systematic review/management of MRONJ (includes Freiberger RCT) | Various interventions (including HBOT as adjunct) vs. standard | Very low–low certainty for most interventions; HBOT evidence limited to one small RCT; no conclusive benefit. | Highest-quality SR available; major heterogeneity and small sample sizes; need for robust modern RCTs. |
| Govaerts et al., 2020 [79] | Systematic review/adjuvant therapies for MRONJ (laser, L-PRF, fluorescence-guided surgery, HBOT) | Adjuvant + standard care vs. standard | Strongest evidence for laser and L-PRF; HBOT reported in few small heterogeneous case series; overall low evidence quality. | Broad review; risk of bias and heterogeneity; calls for controlled studies comparing adjuvants including HBOT. |
| Ceponis et al., 2017 [80] | Narrative review/HBOT in osteonecrosis (radiation- and medication-related) | — | Discusses mechanistic rationale (angiogenesis, anti-inflammatory effects); acknowledges clinical and economic controversies; recommends multimodal therapy (surgery + antibiotics + HBOT). | Conceptual synthesis; not a meta-analysis; integrates mechanistic and clinical insights. |
| Biancardi et al., 2021 [81] | Integrative review/HBOT in MRONJ | — | Signals of improved pain and quality of life in case series; no modern RCTs; evidence uncertain. | Integrative review mainly of case reports; calls for higher-quality studies. |
| Frutuoso et al., 2024 [83] | Systematic review/MRONJ (case reports and series including HBOT) | Various interventions (case-based) | HBOT may aid healing and symptom relief in selected patients; very low-level evidence (case-based). | SR based on case studies; describes emerging trends but lacks comparative data. |
| Byrne et al., 2024 [84] | Narrative/clinical review/MRONJ management in cancer patients on BMAs | — | HBOT discussed as optional adjunct; main focus on prevention, surgery, and pharmacologic therapy (e.g., PENTO protocol). | Practical, experience-based guidance; emphasizes prevention and combined care. |
| Study/Year | Study Type/Population | Intervention (HBOT Protocol) | Main Outcomes | Conclusions |
|---|---|---|---|---|
| Chen T-L et al., 2012 [92] | RCT/60 patients with aggressive periodontitis, 4-arm RCT (HBOT, SRP, HBOT + SRP, control) | 100% O2, 2.4 ATA, 90 min × 20 sessions | ↓ PD, ↓ BOP, ↓ anaerobic flora; greatest effect in HBOT + SRP group | HBOT + SRP significantly improved clinical and microbiological parameters; benefits sustained for >2 years |
| Burcea A et al., 2022 [93] | RCT/71 patients with mild–moderate periodontitis, two-arm randomization | SRP ± HBOT (20 sessions, 2.4 ATA, 90 min) | Improved OHI-S, SBI, PD reduction, and tooth mobility vs. SRP alone (p < 0.05) | Adjunctive HBOT enhanced clinical outcomes after SRP |
| Latusek K et al., 2023 [94] | Pilot Clinical Trial/14 patients with type 2 diabetes and chronic periodontitis | SRP ± HBOT (30 sessions, 2.5 ATA, 90 min) | ↓ PD and ↑ CAL in HBOT group; BOP similar in both groups | HBOT selectively improves attachment gain in metabolically compromised patients |
| Nogueira-Filho GR et al., 2010 [95] | Controlled Prospective Study/Patients with severe periodontitis (n ≈ 20) | SRP ± HBOT (2.4 ATA, 10 sessions) | ↓ PD and ↓ anaerobic bacteria count | HBOT provided short-term clinical and microbiological benefit |
| Lombardo G et al., 2020 [96] | Pilot Study/Chronic periodontitis patients (n = 20) | Full-mouth ultrasonic debridement ± 10 HBOT sessions | ↓ BOP and delayed recolonization of anaerobic flora | HBOT reduced inflammation and microbial recolonization |
| Giacon TA et al., 2021 [97] | Case Report/Advanced periodontitis with implants treated using A-PRF + HBOT | 2.4 ATA, multiple perioperative sessions | Stable implants after 6 months, complete remission after 14 months | Suggests potential synergy of HBOT with A-PRF in bone regeneration |
| Heck T et al. 2024 [98] | Systematic Review/16 studies (5 RCTs, 11 prospective); periodontitis, MRONJ, ORN | Various HBOT protocols (2.0–2.5 ATA, 10–30 sessions) | Mixed results: methodological heterogeneity precluded meta-analysis | HBOT has strong biological rationale but inconsistent clinical evidence |
| Winsness A et al. 2024 [99] | Narrative synthesis/HBOT in dentistry and periodontology | Review of clinical and mechanistic evidence | Consistent short-term PD improvements reported; heterogeneous protocols | HBOT is promising but requires protocol standardization and long-term trials |
| Clinical Condition or Factor | Type of Contraindication | Clinical Rationale | References |
|---|---|---|---|
| Untreated pneumothorax | Absolute | Risk of tension pneumothorax under increased pressure | Gawdi et al., 2025 [110]; Baude et al., 2024 [111] |
| Intraocular gas (C3F8, SF6, C2F6) | Absolute (conditionally permissible) | Rapid rise in intraocular pressure, risk of blindness | Gawdi et al., 2025 [110] |
| Bleomycin | Relative | Risk of pulmonary toxicity; therapy possible ≥3–4 months after administration | Baude et al., 2024 [111]; Torp et al., 2012 [113] |
| Doxorubicin | Relative | Potential cardiotoxicity; recommended interval ≥ 72 h | Baude et al., 2024 [111]; Karagöz et al., 2008 [115] |
| Cisplatin | Relative | Impaired wound healing and fibroblast activity | Baude et al., 2024 [111] |
| Chronic obstructive pulmonary disease (COPD), pulmonary bullae, emphysema | Relative | Risk of barotrauma, pneumothorax; particularly in emphysema with hyperinflation | Brenna et al., 2022 [116]; Gawdi et al., 2025 [110] |
| Stable bronchial asthma | Relative | Requires airway reactivity assessment; possible therapy under pharmacological control | DuBose et al., 2023 [118] |
| Middle ear and sinus pressure disorders (ETD, URTI, sinusitis) | Relative | Risk of middle ear and sinus barotrauma; most common adverse events | Sadri et al., 2022 [114]; Lee et al., 2025 [119]; Lima et al., 2012 [120] |
| Claustrophobia | Functional | Intolerance of monoplace chamber may prevent therapy | DuBose et al., 2023 [118]; Gawdi et al., 2025 [110] |
| Epilepsy/history of seizures | Relative | Risk of oxygen-induced seizures, especially in hyperoxia; low but present | Park et al., 2025 [121]; Sadri et al., 2022 [114] |
| Heart failure (EF < 35%) | Relative | Possible hemodynamic overload and pulmonary edema | Schiavo et al., 2024 [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wiśniewska, B.; Piekarski, K.; Spychała, S.; Golusińska-Kardach, E.; Perek, B.; Wyganowska, M.L. HBOT as a Potential Adjunctive Therapy for Wound Healing in Dental Surgery—A Narrative Review. J. Clin. Med. 2026, 15, 605. https://doi.org/10.3390/jcm15020605
Wiśniewska B, Piekarski K, Spychała S, Golusińska-Kardach E, Perek B, Wyganowska ML. HBOT as a Potential Adjunctive Therapy for Wound Healing in Dental Surgery—A Narrative Review. Journal of Clinical Medicine. 2026; 15(2):605. https://doi.org/10.3390/jcm15020605
Chicago/Turabian StyleWiśniewska, Beata, Kosma Piekarski, Sandra Spychała, Ewelina Golusińska-Kardach, Bartłomiej Perek, and Marzena Liliana Wyganowska. 2026. "HBOT as a Potential Adjunctive Therapy for Wound Healing in Dental Surgery—A Narrative Review" Journal of Clinical Medicine 15, no. 2: 605. https://doi.org/10.3390/jcm15020605
APA StyleWiśniewska, B., Piekarski, K., Spychała, S., Golusińska-Kardach, E., Perek, B., & Wyganowska, M. L. (2026). HBOT as a Potential Adjunctive Therapy for Wound Healing in Dental Surgery—A Narrative Review. Journal of Clinical Medicine, 15(2), 605. https://doi.org/10.3390/jcm15020605

