Robotic Horizons in Plastic Surgery: A Look Toward the Future
Abstract
1. Introduction
2. Methods
3. Current Applications in Plastic Surgery
3.1. Flap Harvest
| S.N | Author, Year | Study Design | LOE | Country | Procedure/Flap Type | Number of Patients | Indication | Robot Used | Application/Role of Robot |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Selber et al., 2012 [16] | Cadaveric Study | N/A | USA | Latissimus dorsi flap | 10 | Breast reconstruction | Da Vinci S | Flap harvest |
| 2 | Clemens et al., 2014 | Retrospective chart review | 3 | USA | Latissimus dorsi flap | 146 | Breast reconstruction | Da Vinci | Flap harvest |
| 3 | Chung et al., 2015 | Case series | 4 | Korea | Latissimus dorsi flap | 12 | Breast reconstruction | Da Vinci S | Flap harvest |
| 4 | Gundlapalli et al., 2018 [10] | Case Report | 5 | USA | TAPP DIEP | 1 | Breast reconstruction | Da Vinci | Flap harvest |
| 5 | Benjoar et al., 2018 | Case Report | 5 | USA | TEP DIEP | 1 | Breast reconstruction | Da Vinci SI | Flap harvest |
| 6 | Shakir et al., 2020 | Cohort | 3 | USA | TAPP DIEP | 3 | Breast reconstruction | Da Vinci XI | Flap harvest |
| 7 | Winocour et al., 2020 | Cohort | 3 | USA | Latissimus dorsi flap | 25 | Breast reconstruction | Da Vinci | Flap harvest |
| 8 | Daar et al., 2021 | Case Series | 4 | USA | TAPP DIEP | 4 | Breast reconstruction | Da Vinci XI | Flap harvest |
| 9 | Day et al., 2021 | Case Report | 5 | USA | Omentum flap | 1 | Breast reconstruction | Da Vinci | Flap harvest |
| 10 | Joo et al., 2021 | Case report | 5 | Korea | Latissimus dorsi flap | 1 | Breast reconstruction | Da Vinci SP | Flap harvest |
| 11 | Wittesaele and Vandervoort, 2022 | Case Series | 4 | Belgium | TAPP DIEP | 10 | Breast reconstruction | Da Vinci | Flap harvest |
| 12 | Bishop et al., 2022 [19] | Case Series | 4 | USA | TAPP DIEP | 21 | Breast reconstruction | Da Vinci | Flap harvest |
| 13 | Lee et al., 2022 [13] | Cohort | 3 | Korea | TEP DIEP | 21 | Breast reconstruction | Da Vinci SP | Flap harvest |
| 14 | Cheon et al., 2022 [14] | Case Series | 4 | Korea | Latissimus dorsi flap | 41 | Breast reconstruction | Da Vinci Si, Da Vinci Xi, Da Vinci SP | Flap harvest |
| 15 | Shuck et al., 2022 | Cohort | 3 | USA | Latissimus dorsi flap | 15 | Breast reconstruction | Da Vinci | Flap harvest |
| 16 | Dayaratna et al., 2022 | Case Report | 5 | Australia | TAPP DIEP | 1 | Breast reconstruction | Da Vinci Xi | Flap harvest |
| 17 | Hwang et al., 2022 [18] | Case series | 4 | Korea | Latissimus dorsi flap | 3 | Breast reconstruction | Da Vinci SP | Flap harvest |
| 18 | Jung et al. 2022 | Case report | 5 | Korea | TEP DIEP | 1 | Breast reconstruction | Da Vinci SP | Flap harvest |
| 19 | Tsai et al., 2023 [20] | Cohort | 3 | Taiwan | TAPP DIEP | 13 | Breast reconstruction | Da Vinci XI | Flap harvest |
| 20 | Moreira et al., 2024 | Cohort | 3 | USA | TAPP DIEP | 23 | Breast reconstruction | Da Vinci X/XI | Flap harvest |
| 21 | Kim et al., 2024 | Cohort | 3 | Korea | DIEP/NSM | 153 (rNSM), 64 (rDIEP) | Breast reconstruction | Da Vinci SP | Flap harvest/Mastectomy |
| 22 | Phuyal et al., 2025 [8] | Case Report | 5 | USA | TAPP DIEP | 1 | Breast reconstruction | Da Vinci Xi | Flap harvest |
| 23 | Kuo et al., 2025 | Cohort | 3 | Taiwan | DIEP/mastectomy | 14 | Breast reconstruction | Da Vinci Xi | Flap harvest/Mastectomy |
| 24 | Bishop et al., 2025 [12] | Retrospective review | 3 | USA | Unilateral TEP DIEP | NR | Breast Reconstruction | Da Vinci Xi | Flap harvest/mastectomy |
| Other Indications | |||||||||
| 1 | Patel et al., 2011 | Case report | 5 | USA | Latissimus dorsi flap | 1 | Shoulder reconstruction | Da Vinci | Flap Harvest |
| 2 | Patel and Pedersen, 2012 | Case Report and preclinical study | 5 | USA | Rectus abdominis muscle | 1 | Lower extremity reconstruction | Da Vinci | Flap Harvest |
| 3 | Pedersen et al., 2014 [15] | Cohort Study | 3 | USA | Rectus abdominis muscle | 10 | Pelvic reconstruction | Da Vinci | Flap Harvest |
| 4 | Ciudad et al., 2016 | Case Report | 5 | Korea | Gastroepiploic lymph node flap | 1 | Lymphedema | Da Vinci | Flap dissection and inset |
| 5 | Ozkan et al., 2019 | Case Report | 5 | Turkey | Omentum flap | 1 | Lower extremity reconstruction | Da Vinci | Flap Harvest |
| 6 | Moon et al., 2020 | Cohort Study | 3 | South Korea | Latissimus dorsi flap | 21 | Poland syndrome/chest wall reconstruction | Da Vinci | Flap Harvest |
| 7 | Fouarge et al., 2020 | Case series | 4 | Belgium | Latissimus dorsi flap | 6 | Upper/lower limb reconstruction | Da Vinci Xi, Da Vinci SP | Flap harvest |
| 8 | Frey et al., 2020 [22] | Case series | 4 | USA | Omentum flap | 5 | Vascularized lymph node transfer for upper extremity lymphedema | Da Vinci SP | Flap harvest |
| 9 | Teven et al., 2021 | Case Report | 5 | USA | VOLT | 1 | Lymphedema | Da Vinci SP | omental harvest |
| 10 | Asaad et al., 2021 | Case series | 4 | USA | Rectus abdominis flap | 7 | Pelvis reconstruction | NR | Muscle harvest |
| 11 | Haverland et al., 2021 | Case series | 4 | USA | Rectus abdominis flap | 6 | Vesicovaginal fistula, complex pelvic organ prolapses, anterior and posterior exenteration, partial and total vaginectomy, partial vulvectomy, and abdominoperineal resection. | NR | Flap harvest |
| 12 | Armando et al., 2022 | Cohort Study | 3 | USA | Rectus abdominis flap | 36 | Pelvic reconstruction | Da Vinci | Flap harvest |
| 13 | Sanchez-Rodriguez et al., 2024 | Case Report | 5 | Spain | Omentum flap | 1 | Lymphedema | Da Vinci Xi | Omental Dissection |
| 14 | Iftekhar et al., 2025 | Retrospective review | 3 | USA | Rectus abdominis flap | 32 | posterior vaginal wall reconstruction | Da Vinci | Flap harvest |
3.2. Robotic Breast Reconstruction with Prosthesis
3.3. Robotic Microscope
3.4. Microsurgery
| S.N | Author, Year | Study Design | LOE | Country | Procedure/Flap Type | Number of Patients | Indication | Robot Used | Application/Role of Robot |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Boyd et al., 2006 | Case series | 4 | USA | Muscle-sparing TRAM flap (11), SGA flap (6), SIEA flap (4), and SGAP flap (1) | 20 | Breast reconstruction | Aesop | Internal Mamary Artery Dissection |
| 2 | Barbon et al., 2022 | Case Series | 4 | Switzerland | PAP, gracilis neurovascular flap, SCIP | 22 | Lymphatic reconstructive surgery (18), free flap reconstruction (3), nerve coaptation (1) | Symani | Robot-assisted anastomosis |
| 3 | van Mulken et al., 2022 | Cohort Study | 3 | The Netherlands | LVA | 8 | Lymphedema | MicroSure MUSA | Robot-assisted anastomosis |
| 4 | Lindenblatt et al., 2022 | Cohort Study | 3 | Switzerland | LVA/free vascularized lymph node transfer | 5 | Lymphedema | Symani | Robot-assisted anastomosis |
| 5 | Beier et al., 2023 | Case Series | 4 | Germany | Radial forearm flap (11), ALT-flap (7), fibular flap (4), and anterior serrate muscle flap (1) | 23 | Free flap reconstruction (various) | Symani | Robot-assisted anastomosis |
| 6 | Besmens et al., 2023 | Case Series | 4 | Switzerland | medial femoral condyle free flap (2), ALT free flap (1), lateral arm free flap (1), nerve grafting with nerve allograft (2) | 6 | Arterial anastomoses (4), nerve grafting (2) | Symani | Robot-assisted anastomosis |
| 7 | Schafer et al., 2023 | Case report | 5 | Germany | Nerve transfer/Intercostal nerves to long thoracic and thoracodorsal nerve | 1 | Brachial Plexus Palsy | Symani | Nerve transfer |
| 8 | Grunherz et al., 2023 | Case report | 5 | Switzerland | Central lymphatic reconstruction | 1 | Central lymphatic dilation | Symani | Microsurgical anastomoses |
| 9 | Innocenti et al., 2023 | Case report | 5 | Italy | ALT | 1 | Post traumatic | Symani | Microsurgical anastomoses |
| 10 | Martin et al., 2024 | Case Series | 4 | Germany | Peripheral nerve surgery | 19 | Nerve transfer, muscle reinnervation, neurotized free flaps, autologous nerve grafts | Symani | Nerve coaptation |
| 11 | Reibnitz et al., 2024 | Cohort Study | 3 | Switzerland | LTT/LVA/LLA | 67 | Lymphedema | Symani | Robot-assisted anastomosis |
| 12 | Tolksdorf et al., 2024 | Cohort Study | 3 | Germany | Radial forearm, fibula, latissimus dorsi, scapula | 30 | Cranio- and maxillofacial surgery | Symani | Robot-assisted anastomosis |
| 13 | Struebing et al., 2024 | Cohort Study | 3 | Germany | Free flap (ALT, latissimis dorsi, DIEP, etc.), Nerve surgery, LVA (Various) | 100 | Various | Symani | Various |
| 14 | Struebing et al., 2024 | Cohort Study | 3 | Germany | ALT, medial femoral condyle, latissimus dorsi | 16 | Upper extremity defects | Symani | Robot-assisted anastomosis |
| 15 | Dastagir et al., 2024 | Retrospective chart review | 3 | Germany | Finger replantation (8), finger blood vessel injury (13) | 21 | Hand reconstruction | Symani | Robot-assisted anastomosis |
| 16 | Reilly et al., 2024 [29] | Cohort Study | 3 | Sweden | LVA | 12 | Lymphedema | MUSA-2 | Robot-assisted anastomosis |
| 17 | Mori et al., 2024 | Cohort Study | 3 | Italy | ALT (5), medial plantar (1), SCIP (1), latissimus dorsi (2), serratus anterior (1), medical femoral condyle (1), free fibular (3), free toe pulp (1), sensate free-style perforator flap from ulnar artery (1) | 16 | Various | Symani | Robot-assisted anastomosis |
| 18 | Lilja, et al., 2024 | Case Report | 5 | Denmark | LVA/lymphocele excision | 1 | Lymphocele | Symani | Robot-assisted anastomosis, excision |
| 19 | Gorji et al., 2024 | Retrospective review | 3 | Germany | DIEP (10), ALT (4), gracilis (4), SCIP (2), PAP (2), latissimus dorsi (1) | 23 | Cancer, posttraumatic | Symani robot, RoboticScope microscope | Microsurgical anastomoses |
| 20 | Vollbach et al., 2024 | Case Report | 5 | Germany | DIEP | 1 | Breast Reconstruction | Symani | Robot-assisted anastomosis |
| 21 | Watson et al., 2025 | Cohort Study | 5 | Switzerland | Free ALT or latissimus dorsi to scalp/facial artery and vein | 6 | Free tissue transfers for defects of the scalp | Symani | Robot-assisted anastomosis |
| 22 | Chen et al., 2025 [17] | Case Series | 4 | USA | Lymph node-to-vein anastomosis | 20 | Lymphedema | Symani | Robot-assisted anastomosis |
| 23 | Spille et al., 2025 | Cohort Study | 3 | Germany | Radial forearm flap, ulnar forearm, fibula | 93 | Head and neck reconstruction | Symani | Robot-assisted anastomosis |
| 24 | Sorensen et al., 2025 | Cohort Study | 3 | Denmark | ALT, DIEP, fibular, helical and LVA | 12 | Various | Symani | robot-assisted anastomosis |
| 25 | Paternoster et al., 2025 | Case report | 5 | UK | DIEP | 1 | Chest wall reconstruction | Symani | robot-assisted anastomosis |
| 26 | Kukreja-Pandey et al., 2025 | Case report | 5 | USA | LVB | 1 | Breast lymphedema | Symani | LVB |
| 27 | Konneker et al., 2025 | Cohort Study | 3 | Switzerland | SCIP (2), ALT (6) | 8 | Upper and lower extremity reconstruction | Symani | Robot-assisted anastomosis |
3.5. Head and Neck/Craniofacial Reconstruction
3.6. Esthetic Procedures
3.7. Gender-Affirming Surgery
3.8. The Promise of AI in Robotic Surgery
3.9. Path Toward Autonomous Surgical Robotics
3.10. Training and the Learning Curve
3.11. Soft Robotics and Future Directions
4. Current Limitations and Challenges
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ALT | Anterolateral Thigh |
| DIEP | Deep Inferior Epigastric Perforator |
| FUE | Follicular Unit Extraction |
| LVA | Lymphaticovenular Anastomosis |
| NSM | Nipple-Sparing Mastectomy |
| OSA | Obstructive Sleep Apnea |
| SP | Single-Port |
| TEP | Totally Extraperitoneal |
| TORS | Trans-Oral Robotic Surgery |
| VR | Virtual Reality |
References
- Wah, J.N.K. The rise of robotics and AI-assisted surgery in modern healthcare. J. Robot. Surg. 2025, 19, 311. [Google Scholar] [CrossRef]
- Henn, D.; Trotsyuk, A.A.; Barrera, J.A.; Sivaraj, D.B.; Chen, K.; Mittal, S.B.; Mermin-Bunnell, A.M.B.; Chattopadhyay, A.; Larson, M.R.B.; Kinney, B.M.; et al. Robotics in Plastic Surgery: It’s Here. Plast. Reconstr. Surg. 2023, 152, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Selber, J.C. The Robotic DIEP Flap. Plast. Reconstr. Surg. 2020, 145, 340. [Google Scholar] [CrossRef] [PubMed]
- Rusch, M.; Hoffmann, G.; Wieker, H.; Bürger, M.; Kapahnke, S.; Berndt, R.; Rusch, R. Evaluation of the MMI Symani® robotic microsurgical system for coronary-bypass anastomoses in a cadaveric porcine model. J. Robot. Surg. 2024, 18, 168. [Google Scholar] [CrossRef]
- Gall, T.M.H.; Alrawashdeh, W.; Soomro, N.; White, S.; Jiao, L.R. Shortening surgical training through robotics: Randomized clinical trial of laparoscopic versus robotic surgical learning curves. BJS Open 2020, 4, 1100–1108. [Google Scholar] [CrossRef]
- George, E.I.; Brand, T.C.; LaPorta, A.; Marescaux, J.; Satava, R.M. Origins of Robotic Surgery: From Skepticism to Standard of Care. JSLS 2018, 22, e2018.00039. [Google Scholar] [CrossRef] [PubMed]
- Marescaux, J.; Leroy, J.; Gagner, M.; Rubino, F.; Mutter, D.; Vix, M.; Butner, S.E.; Smith, M.K. Transatlantic robot-assisted telesurgery. Nature 2001, 413, 379–380. [Google Scholar] [CrossRef]
- Phuyal, D.; Mordukhovich, I.; Gaston, J.; Rios-Diaz, A.J.; Darras, O.; Obeid, R.; Djohan, R.; Schwarz, G.; Gurunian, R.; Bishop, S.N. Optimizing Donor Site Morbidity in DIEP Flap Reconstruction: Advancements in Minimizing Anterior Fascial Defects: A Systematic Review. J. Reconstr. Microsurg. 2025. [Google Scholar] [CrossRef]
- Lindenblatt, N.; Gruenherz, L.; Farhadi, J. A systematic review of donor site aesthetic and complications after deep inferior epigastric perforator flap breast reconstruction. Gland. Surg. 2019, 8, 389–398. [Google Scholar] [CrossRef]
- Gundlapalli, V.S.; Ogunleye, A.A.; Scott, K.; Wenzinger, E.; Ulm, J.P.; Tavana, L.; Pullatt, R.C.; Delaney, K.O. Robotic-assisted deep inferior epigastric artery perforator flap abdominal harvest for breast reconstruction: A case report. Microsurgery 2018, 38, 702–705. [Google Scholar] [CrossRef]
- Manrique, O.J.; Bustos, S.S.; Mohan, A.T.; Nguyen, M.-D.; Martinez-Jorge, J.; Forte, A.J.; Terzic, A. Robotic-Assisted DIEP Flap Harvest for Autologous Breast Reconstruction: A Comparative Feasibility Study on a Cadaveric Model. J. Reconstr. Microsurg. 2020, 36, 362–368. [Google Scholar] [CrossRef]
- Bishop, S.N.; Djohan, R.; Phuyal, D.; Ozmen, B.B.; Ramos, R.; Petro, C.C.; Beffa, L.R.; Schwarz, G.S. Unilateral Multiport Robotic Totally Extraperitoneal Deep Inferior Epigastric Perforator Flap. Plast. Reconstr. Surg.–Glob. Open 2025, 13, e7312. [Google Scholar] [CrossRef]
- Lee, M.J.; Won, J.; Song, S.Y.; Park, H.S.; Kim, J.Y.; Shin, H.J.; Kwon, Y.I.; Lee, D.W.; Kim, N.Y. Clinical outcomes following robotic versus conventional DIEP flap in breast reconstruction: A retrospective matched study. Front. Oncol. 2022, 12, 989231. [Google Scholar] [CrossRef]
- Cheon, J.H.; Kim, H.E.; Park, S.H.; Yoon, E.S. Ten-year experience of robotic latissimus muscle flap reconstructive surgery at a single institution. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 3664–3672. [Google Scholar] [CrossRef]
- Pedersen, J.; Song, D.H.; Selber, J.C. Robotic, intraperitoneal harvest of the rectus abdominis muscle. Plast. Reconstr. Surg. 2014, 134, 1057–1063. [Google Scholar] [CrossRef]
- Selber, J.C.; Baumann, D.P.; Holsinger, F.C. Robotic latissimus dorsi muscle harvest: A case series. Plast. Reconstr. Surg. 2012, 129, 1305–1312. [Google Scholar] [CrossRef]
- Murariu, D.; Chen, B.; Bailey, E.; Nelson, W.; Fortunato, R.; Nosik, S.; Moreira, A. Transabdominal Robotic Harvest of Bilateral DIEP Pedicles in Breast Reconstruction: Technique and Interdisciplinary Approach. J. Reconstr. Microsurg. 2025, 41, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.J.; Chung, J.H.; Lee, H.C.; Park, S.H.; Yoon, E.S. Single-Port Transaxillary Robot-Assisted Latissimus Dorsi Muscle Flap Reconstruction for Poland Syndrome: Concomitant Application of Robotic System to Contralateral Augmentation Mammoplasty. Arch. Plast. Surg. 2022, 49, 373–377. [Google Scholar] [CrossRef] [PubMed]
- Bishop, S.N.; Asaad, M.; Liu, J.; Chu, C.K.M.; Clemens, M.W.; Kapur, S.S.; Largo, R.D.; Selber, J.C.M. Robotic Harvest of the Deep Inferior Epigastric Perforator Flap for Breast Reconstruction: A Case Series. Plast. Reconstr. Surg. 2022, 149, 1073. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Kim, B.S.; Kuo, W.L.; Liu, K.-H.; Chang, T.N.-J.; Cheong, D.C.-F.; Huang, J.-J.M. Novel Port Placement in Robot-Assisted DIEP Flap Harvest Improves Visibility and Bilateral DIEP Access: Early Controlled Cohort Study. Plast. Reconstr. Surg. 2023, 152, 590e. [Google Scholar] [CrossRef] [PubMed]
- Jeger, J.L.; Kandi, L.; Yi, J.; Jungbauer, W.N.; Teven, C.M.; Casey, W.J.; Rebecca, A. Single Port Robotic Vascularized Omental Lymph Node Transfer for Lymphedema: A Novel Comparison to Open Technique. J. Reconstr. Microsurg. 2025. [Google Scholar] [CrossRef] [PubMed]
- Frey, J.D.; Yu, J.W.; Cohen, S.M.; Zhao, L.C.; Choi, M.; Levine, J.P. Robotically Assisted Omentum Flap Harvest: A Novel, Minimally Invasive Approach for Vascularized Lymph Node Transfer. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2505. [Google Scholar] [CrossRef]
- Toesca, A.; Manconi, A.; Peradze, N.; Loschi, P.; Panzeri, R.; Granata, M.; Guerini, S.; Gabriella, P.; Mazzocco, K.; Corso, G.; et al. 1931 Preliminary report of robotic nipple-sparing mastectomy and immediate breast reconstruction with implant. Eur. J. Cancer 2015, 51, S309. [Google Scholar] [CrossRef]
- Kim, H.B.; Hur, J.; Lee, S.B.; Kim, J.S.; Ko, B.S.; Eom, J.S.; Han, H.H. Comparison of Robot-assisted Implant-based Breast Reconstruction Systems: Single-site da Vinci Xi System Versus SP System. Plast. Reconstr. Surg.–Glob. Open 2025, 13, e6970. [Google Scholar] [CrossRef]
- Dermietzel, A.; Aitzetmüller, M.; Klietz, M.L.; Kampshoff, D.; Varnava, C.; Wiebringhaus, P.; Hirsch, T.; Kueckelhaus, M. Free flap breast reconstruction using a novel robotic microscope. J. Plast. Reconstr. Aesthetic Surg. 2022, 75, 2387–2440. [Google Scholar] [CrossRef]
- Chung, J.H.; Kim, D.J.; Yoon, E.S.; Park, S.H. First experience of lymphaticovenular anastomosis using BHC RobotiScope: A case report. Medicine 2023, 102, e33841. [Google Scholar] [CrossRef]
- van Mulken, T.J.M.; Schols, R.M.; Scharmga, A.M.J.; Winkens, B.; Cau, R.; Schoenmakers, F.B.F.; Qiu, S.S.; van der Hulst, R.R.W.J.; MicroSurgical Robot Research Group; Keuter, X.H.A.; et al. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: A randomized pilot trial. Nat. Commun. 2020, 11, 757. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.J.; Yung, A.E.; Steffens, D.; Hogan, S.; Clark, J.R.; Ch’ng, S. Feasibility and Current Applications of the Symani Surgical System: A Systematic Review. Plast. Reconstr. Surg.–Glob. Open 2025, 13, e6939. [Google Scholar] [CrossRef]
- Reilly, F.O.F.; Nilsson, A.; Frieberg, H.; Mayr-Riedler, M.S.; Mani, M. Implementation of robot-assisted lymphaticovenous anastomoses in a microsurgical unit. Eur. J. Plast. Surg. 2024, 47, 17. [Google Scholar] [CrossRef]
- Engström, O.; Mani, M. Surgical treatments of lymphedema—A literature review on robot-assisted lymphovenous anastomosis (LVA). Gland. Surg. 2024, 13, 1066–1075. [Google Scholar] [CrossRef]
- O’Malley, B.W.; Weinstein, G.S.; Snyder, W.; Hockstein, N.G. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 2006, 116, 1465–1472. [Google Scholar] [CrossRef]
- Garfein, E.S.; Greaney, P.J.J.; Easterlin, B.; Schiff, B.; Smith, R.V. Transoral Robotic Reconstructive Surgery Reconstruction of a Tongue Base Defect with a Radial Forearm Flap. Plast. Reconstr. Surg. 2011, 127, 2352. [Google Scholar] [CrossRef]
- Kayhan, F.T.; Kaya, K.H.; Koç, A.K.; Yegin, Y.; Yazici, Z.M.; Türkeli, S.; Sayin, I. Multilevel Combined Surgery With Transoral Robotic Surgery for Obstructive Sleep Apnea Syndrome. J. Craniofacial Surg. 2016, 27, 1044. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhao, Z.; Han, W.; Kim, B.S.; Yan, Y.; Chen, X.; Lin, L.; Shen, W.; Chai, G. Accuracy and safety of robotic navigation-assisted distraction osteogenesis for hemifacial microsomia. Front. Pediatr. 2023, 11, 1158078. [Google Scholar] [CrossRef] [PubMed]
- Cammaroto, G.; Stringa, L.M.; Zhang, H.; Capaccio, P.; Galletti, F.; Galletti, B.; Meccariello, G.; Iannella, G.; Pelucchi, S.; Baghat, A.; et al. Alternative Applications of Trans-Oral Robotic Surgery (TORS): A Systematic Review. J. Clin. Med. 2020, 9, 201. [Google Scholar] [CrossRef]
- Rybakin, A.V.; Borovikov, A.M.; Manturova, N.E.; Gladyshev, D.V.; Kamalov, D.M.; Shcherbakov, K.G.; Staisupov, V.J.; Kuzin, D.A. Robotic-Assisted Upper Face Rejuvenation. Plast. Reconstr. Surg.–Glob. Open 2016, 4, e747. [Google Scholar] [CrossRef]
- Bernstein, R.M.; Wolfeld, M.B. Robotic Follicular Unit Graft Selection. Dermatol. Surg. 2016, 42, 710. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, K.; Kato, H.; Mori, M.; Sakae, Y.; Okazaki, M. Robotically Assisted Recipient Site Preparation in Hair Restoration Surgery: Surgical Safety and Clinical Outcomes in 31 Consecutive Patients. Dermatol. Surg. 2021, 47, 1365. [Google Scholar] [CrossRef]
- Borisenko, A.S.; Sharobaro, V.I.; Vetshev, F.P.; Avdeev, A.E.; Bilyalov, I.R.; Ahmed Alsheikh, Y.M. Simultaneous Robot-assisted Lipoabdominoplasty and Cholecystectomy. Plast. Reconstr. Surg. –Glob. Open 2024, 12, e6249. [Google Scholar] [CrossRef]
- Boztosun, A.; Olgan, S. Robotic Sigmoid Vaginoplasty in an Adolescent Girl With Mayer-Rokitansky-Kuster-Hauser Syndrome. Urogynecology 2016, 22, e32. [Google Scholar] [CrossRef]
- Blasdel, G.; Hemal, K.; Dubach-Reinhold, C.; Parker, A.; Amro, C.; Zhao, L.C.; Bluebond-Langner, R. Gender-Affirming Vaginoplasty Using Robotic Peritoneal Flap Method: Long Term Outcomes of 500 Cases. Ann. Surg. 2025. [Google Scholar] [CrossRef]
- Bashir, M.; Harky, A. Artificial Intelligence in Aortic Surgery: The Rise of the Machine. Semin. Thorac. Cardiovasc. Surg. 2019, 31, 635–637. [Google Scholar] [CrossRef] [PubMed]
- Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst. 2014, 2, 3. [Google Scholar] [CrossRef]
- Maier-Hein, L.; Vedula, S.S.; Speidel, S.; Navab, N.; Kikinis, R.; Park, A.; Eisenmann, M.; Feussner, H.; Forestier, G.; Giannarou, S.; et al. Surgical data science for next-generation interventions. Nat. Biomed. Eng. 2017, 1, 691–696. [Google Scholar] [CrossRef]
- Panesar, S.; Cagle, Y.; Chander, D.; Morey, J.; Fernandez-Miranda, J.; Kliot, M. Artificial Intelligence and the Future of Surgical Robotics. Ann. Surg. 2019, 270, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Tao, J.; Zhao, J.; Dong, M.; Li, J.; Pan, C. Integrated intelligent tactile system for a humanoid robot. Sci. Bull. 2023, 68, 1027–1037. [Google Scholar] [CrossRef]
- Azadi, S.; Green, I.C.; Arnold, A.; Truong, M.; Potts, J.; Martino, M.A. Robotic Surgery: The Impact of Simulation and Other Innovative Platforms on Performance and Training. J. Minim. Invasive Gynecol. 2021, 28, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Burgner-Kahrs, J.; Rucker, D.C.; Choset, H. Continuum Robots for Medical Applications: A Survey. IEEE Trans. Robot. 2015, 31, 1261–1280. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, Z.; Huang, H.; Liang, X. Pioneering healthcare with soft robotic devices: A review. Smart Med. 2024, 3, e20230045. [Google Scholar] [CrossRef]
| S.N | Author, Year | Study Design | LOE | Country | Procedure Type | Number of Patients | Indication | Robot Used | Application/Role of Robot |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Lai et al., 2020 | Case–control | 3 | Taiwan | NSM with immediate implant-based reconstruction | 40 | Breast Reconstruction | Da Vinci | Dissection/mastectomy + IPBR |
| 2 | Jeon et al., 2021 | Case series | 4 | Korea | Mastectomy, direct-to-implant reconstruction | 16 | Breast reconstruction | Da Vinci Xi | Mastectomy + IPBR |
| 3 | Joo et al., 2021 | Case series | 4 | Korea | Mastectomy, direct-to-implant reconstruction | 2 | Breast Reconstruction | Da Vinci SP | Mastectomy + IPBR |
| 4 | Kijima et al., 2025 | Case report | 5 | Japan | NSM with implant-based reconstruction | 1 | Breast Reconstruction | Da Vinci | NSM + IPBR |
| 5 | Kim et al., 2025 [24] | Cohort Study | 3 | Korea | Implant based breast reconstruction | 49 | Breast reconstruction | Da Vinci Xi and SP | Implant based breast reconstruction |
| S.N | Author, Year | Study Design | LOE | Country | Procedure/Flap Type | Number of Patients | Indication | Robot Used | Application/Role of Robot |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Dermietzel et al., 2022 [25] | Cohort | 3 | Germany | PAP flap, DIEP | 5 | Breast reconstruction | RoboticScope | Visualizing anastomosis |
| 2 | Chung et al., 2023 [26] | Case Report | 5 | Korea | LVA | 1 | Lymphedema | RoboticScope | Visualizing anastomosis |
| 3 | De Virgilio et al., 2024 | Case Report | 5 | Italy | Free fibula flap | 1 | Oral squamous cell carcinoma | RoboticScope | Visualizing anastomosis |
| 4 | Mokhtar et al., 2025 | Cohort | 3 | United Arab Emirates | Palatoplasty | 4 | Cleft palate/lip | RoboticScope | Dissection and visualization |
| S.N | Author, Year | Study Design | LOE | Country | Procedure Type | Number of Patients | Indication | Robot Used | Application/Role of Robot |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Garfein et al., 2011 [32] | Case report | 5 | USA | RFFF | 1 | Squamous cell carcinoma of base of tongue | Da Vinci | Flap inset |
| 2 | Bonawitz and Duvvuri, 2012 | Case Report | 5 | USA | ALT flap (2), RFFF (2) | 4 | TORS for malignant tumor | NR | Oral reconstruction, vessel anastomosis |
| 3 | Song et al., 2013 | Cohort Study | 3 | Korea | TORS with RFFF, ALT | 5 | Head and neck reconstruction | Da Vinci S | TORS tumor dissection, flap inset |
| 4 | Bonawitz and Duvvuri, 2013 | Case series | 4 | USA | FAMM flap | 5 | TORS for malignant tumor | NR | Tumor resection |
| 5 | Duvvuri et al., 2013 | Retrospective review | 3 | USA | TORS/Base of Tongue with epiglottoplasty | 12 | Malignant neoplasm, post-surgical VPI, velopharyngeal stenosis | NR | Flap harvest |
| 6 | Hans et al., 2013 | Case report | 5 | France | TORS | 2 | hypopharyngeal carcinoma | Da Vinci | Flap harvest |
| 7 | Lin et al., 2016 | Feasibility Study | N/A | China | Mandibular angle split osteotomy | 5 | Prominent mandibular angle | Unnamed, surgical robotic arm and AR system | Positioning |
| 8 | Kayhan et al., 2016 [33] | Cohort | 3 | Turkey | TORS/base of tongue with epiglottoplasty | 25 | OSA | Da Vinci | Base of tongue reduction, epiglottoplasty |
| 9 | Nadjmi, 2016 | Case Series | 4 | Iran | TORS | 10 | Cleft Palate | Da Vinci | Palate muscle dissection |
| 10 | Biron et al., 2017 | Case series | 4 | Canada | RFFF | 18 | TORS for oropharyngeal squamous cell carcinoma | Da Vinci S | Tumor resection |
| 11 | Lin et al., 2021 | Case series | 4 | China | Genioplasty | 6 | Asymmetry, dysplasia, overdevelopment | CPSR-I system | Positioning and surgeon force perception |
| 12 | Lin et al., 2021 | Randomized Controlled Trial | 2 | China | Genioplasty, mandibular angle osteotomy | 15 | Craniofacial disease | Unnamed | Osteotomy navigation |
| 13 | Zhang et al. 2023 [34] | Clinical study | 2 | China | MDO | 4 | HFM | Aurora V3, NDI | Distraction Osteogenesis/Intraoperative Guidance |
| 14 | Ebeling et al., 2023 | Case Report | 5 | USA | Le Fort I osteotomy | 1 | Skeletal class III malocclusion | CARLO | Linear laser osteotomy |
| 15 | Porcuna et al., 2023 | Cohort Study | 3 | Spain | TORS/tracheostomy and resection with free flap reconstruction (ALT/RFFF) | 15 | Oropharyngeal squamous cell carcinoma | Da Vinci Xi | Dissection, vessel exposure, flap inset |
| 16 | Li et al., 2025 | Cohort | 3 | China | Mandibular osteotomy | 42 | Cosmetic, hemifacial microsomia | NR | Mandibular osteotomy, distraction osteogenesis |
| S.N | Year | Author, Year | Study Design | LOE | Country | Procedure Type | Number of Patients | Indication | Robot Used | Application/Role of Robot |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2016 | Bernstein et al., 2016 [37] | Case Series | 4 | USA | FUE hair transplant | 24 | Follicular unit graft selection | ARTAS | Graft harvest |
| 2 | 2021 | Kanayama et al., 2021 [38] | Cohort | 3 | Japan | FUE hair transplant | 31 | Alopecia | ARTAS | Follicular harvest |
| 3 | 2023 | Rybakin et al., 2023 | Cohort | 3 | Russia | Rhytidectomy | 5 | Facial Rejuvenation | Da Vinci Si | Dissection |
| 4 | 2024 | Borisenko et al., 2024 [39] | Case Report | 5 | Russia | Esthetic lipoabdominoplasty, cholecystectomy | 1 | Diastasis of the rectus abdominis muscles, cholelithiasis, calculous cholecystits | NR | Dissection, cholecystectomy |
| S.N | Author, Year | Study Design | LOE | Country | Procedure Type | Number of Patients | Indication | Robot Used | Application/Role of Robot |
|---|---|---|---|---|---|---|---|---|---|
| 1 | Boztosun and Olgan, 2016 [40] | Case Report | 5 | Turkey | Sigmoid vaginoplasty | 1 | Mayer-Rokitansky-Kuster-Hauser Syndrome | Da Vinci Xi | Dissection of sigmoid colon graft |
| 2 | Jacaby et al., 2019 | Retrospective review | 3 | USA | Vaginoplasty | 41 | Gender-affirming surgery | Da Vinci | Flap dissection |
| 3 | Acar et al. 2020 | Case series | 4 | USA | Vaginoplasty | 11 | Gender-affirming surgery | Da Vinci Xi, Da Vinci SP | Peritoneal flap harvest and suturing |
| 4 | Oriana et al., 2020 | Case Report | 5 | USA | Vaginectomy | 16 | Gender-affirming surgery | NR | Robotic asissted vaginectomy and muscle harvest |
| 5 | Dy et al., 2021 | Retrospective review | 3 | USA | Peritoneal flap revision vaginoplasty | 24 | Gender-affirming surgery | Da Vinci Xi, Da Vinci SP | Flap harvest and inset |
| 6 | Jun et al., 2021 | Retrospective review | 3 | USA | Vaginectomy | 42 | Gender-affirming surgery | Da Vinci Xi, Da Vinci SP | Flap dissection |
| 7 | Dy et al., 2022 | Retrospective review | 3 | USA | Peritoneal flap vaginoplasty | 145 | Gender-affirming surgery | Da Vinci Xi, Da Vinci SP | Flap harvest and inset |
| 8 | Blasdel et al., 2023 | Case series | 4 | USA | Vaginoplasty | 43 | Gender-affirming surgery | Da Vinci SP | Vaginal canal dissection and peritoneal flap creation |
| 9 | Corral et al., 2024 | Case series | 4 | USA | Vaginoplasty | 6 | Gender-affirming surgery | NR | Flap harvest |
| 10 | Blasdel et al., 2025 [41] | Case series | 4 | USA | Vaginoplasty | 500 | Gender-affirming surgery | Da Vinci Xi, Da Vinci SP | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Foroutan, A.; Phuyal, D.; Babb, G.; Ting, J.; Mashhadiagha, G.; Najafi, N.; Djohan, R.; Bishop, S.N.; Schwarz, G.S. Robotic Horizons in Plastic Surgery: A Look Toward the Future. J. Clin. Med. 2026, 15, 602. https://doi.org/10.3390/jcm15020602
Foroutan A, Phuyal D, Babb G, Ting J, Mashhadiagha G, Najafi N, Djohan R, Bishop SN, Schwarz GS. Robotic Horizons in Plastic Surgery: A Look Toward the Future. Journal of Clinical Medicine. 2026; 15(2):602. https://doi.org/10.3390/jcm15020602
Chicago/Turabian StyleForoutan, Ali, Diwakar Phuyal, Georgia Babb, Julia Ting, Ghazal Mashhadiagha, Niayesh Najafi, Risal Djohan, Sarah N. Bishop, and Graham S. Schwarz. 2026. "Robotic Horizons in Plastic Surgery: A Look Toward the Future" Journal of Clinical Medicine 15, no. 2: 602. https://doi.org/10.3390/jcm15020602
APA StyleForoutan, A., Phuyal, D., Babb, G., Ting, J., Mashhadiagha, G., Najafi, N., Djohan, R., Bishop, S. N., & Schwarz, G. S. (2026). Robotic Horizons in Plastic Surgery: A Look Toward the Future. Journal of Clinical Medicine, 15(2), 602. https://doi.org/10.3390/jcm15020602

