Association of Mitochondrial DNA Haplogroups with Pediatric Systemic Lupus Erythematosus Disease Activity, Damage Scores, and Lupus Nephritis
Abstract
1. Introduction
2. Materials and Methods
2.1. Epidemiology and Clinical History of Pediatric Patients with SLE
2.2. DNA Extraction
2.3. Next-Generation Sequencing Method
2.4. Statistics
3. Results
3.1. Baseline Demographic Age
3.2. Age and Disease Duration
3.3. Correlating Disease with mtDNA Haplogroup
3.4. Associations of Disease Duration with Disease Activity
3.5. Lupus Nephritis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hochberg, M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, D.K. Updates in Pediatric Rheumatology. Adv. Pediatr. 2016, 63, 281–332. [Google Scholar] [CrossRef] [PubMed]
- Petty, R.E.; Laxer, R.M.; Lindsley, C.B.; Wedderburn, L.R. Systemic lupus erythematosus. In Textbook of Pediatric Rheumatology; Laxer, R.M., Lindsley, C.B., Wedderburn, L.R., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2016. [Google Scholar]
- Yen, E.Y.; Shaheen, M.; Woo, J.M.; Mercer, N.; Li, N.; McCurdy, D.K.; Karlamangla, A.; Singh, R.R. 46-Year Trends in Systemic Lupus Erythematosus Mortality in the United States, 1968 to 2013: A Nationwide Population-Based Study. Ann. Intern. Med. 2017, 167, 777–785. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gladman, D.D.; Ibañez, D.; Urowitz, M.B. Systemic lupus erythematosus disease activity index 2000. J. Rheumatol. 2002, 29, 288–291. [Google Scholar] [PubMed]
- Gladman, D.; Ginzler, E.; Goldsmith, C.; Fortin, P.; Liang, M.; Sanchez-Guerrero, J.; Urowitz, M.; Bacon, P.; Bombardieri, S.; Hanly, J.; et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum. 1996, 39, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Fogo, A.B.; Lusco, M.A.; Najafian, B.; Alpers, C.E. AJKD Atlas of Renal Pathology: Focal and Diffuse Lupus Nephritis (ISN/RPS Class III and IV). Am. J. Kidney Dis. 2017, 70, e9–e11. [Google Scholar] [CrossRef] [PubMed]
- Ravi, S.; Mitchell, T.; Kramer, P.A.; Chacko, B.; Darley-Usmar, V.M. Mitochondria in monocytes and macrophages-implications for translational and basic research. Int. J. Biochem. Cell Biol. 2014, 53, 202–207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, H.; Li, T.; Chen, S.; Gu, Y.; Ye, S. Neutrophil Extracellular Trap Mitochondrial DNA and Its Autoantibody in Systemic Lupus Erythematosus and a Proof-of-Concept Trial of Metformin. Arthritis Rheumatol. 2015, 67, 3190–3200. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-C.; Chun, S.; Kim, K.; Mak, A. Update on the Genetics of Systemic Lupus Erythematosus: Genome-Wide Association Studies and Beyond. Cells 2019, 8, 1180. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jenks, S.A.; Cashman, K.S.; Zumaquero, E.; Marigorta, U.M.; Patel, A.V.; Wang, X.; Tomar, D.; Woodruff, M.C.; Simon, Z.; Bugrovsky, R.; et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 2018, 49, 725–739.e6, Erratum in Immunity 2020, 52, 203. https://doi.org/10.1016/j.immuni.2019.12.005. PMID: 30314758; PMCID: PMC6217820. [Google Scholar] [CrossRef]
- Brown, G.J.; Cañete, P.F.; Wang, H.; Medhavy, A.; Bones, J.; Roco, J.A.; He, Y.; Qin, Y.; Cappello, J.; Ellyard, J.I.; et al. TLR7 gain-of-function genetic variation causes human lupus. Nature 2022, 605, 349–356. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caielli, S.; Athale, S.; Domic, B.; Murat, E.; Chandra, M.; Banchereau, R.; Baisch, J.; Phelps, K.; Clayton, S.; Gong, M.; et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 2016, 213, 697–713. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leishangthem, B.D.; Sharma, A.; Bhatnagar, A. Role of altered mitochondria functions in the pathogenesis of systemic lupus erythematosus. Lupus 2016, 25, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Shah, D.; Mahajan, N.; Sah, S.; Nath, S.K.; Paudyal, B. Oxidative stress and its biomarkers in systemic lupus erythematosus. J. Biomed. Sci. 2014, 21, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, H.-T.; Lin, C.-S.; Lee, C.-S.; Tsai, C.-Y.; Wei, Y.-H. Increased 8-hydroxy-2′-deoxyguanosine in plasma and decreased mRNA expression of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus. Clin. Exp. Immunol. 2014, 176, 66–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Lopez, M.; Joseph, J.; Zielonka, J.; Dwinell, M.B. A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol. 2018, 14, 316–327, Erratum in Redox Biol. 2018, 16, 426–427. https://doi.org/10.1016/j.redox.2018.03.001. PMID: 29017115; PMCID: PMC5633086.. [Google Scholar] [CrossRef]
- Dujon, B. Mitochondrial genetics revisited. Yeast 2020, 37, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Kaniak-Golik, A.; Skoneczna, A. Mitochondria-nucleus network for genome stability. Free Radic. Biol. Med. 2015, 82, 73–104. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.R.; Nunnari, J. Mitochondrial form and function. Nature 2014, 505, 335–343. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fairbrother-Browne, A.; Ali, A.T.; Reynolds, R.H.; Garcia-Ruiz, S.; Zhang, D.; Chen, Z.; Ryten, M.; Hodgkinson, A. Mitochondrial-nuclear cross-talk in the human brain is modulated by cell type and perturbed in neurodegenerative disease. Commun. Biol. 2021, 4, 1262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kivisild, T. Maternal ancestry and population history from whole mitochondrial genomes. Investig. Genet. 2015, 6, 3. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruiz-Pesini, E.; Mishmar, D.; Brandon, M.; Procaccio, V.; Wallace, D.C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 2004, 303, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Wallace, D.C. Mitochondrial DNA sequence variation in human evolution and disease. Proc. Natl. Acad. Sci. USA 1999, 91, 8739–8746. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wallace, D.C.; Chalkia, D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a021220. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Souza Breda, C.N.; Davanzo, G.G.; Basso, P.J.; Câmara, N.O.S.; Moraes-Vieira, P.M.M. Mitochondria as central hub of the immune system. Redox Biol. 2019, 26, 101255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weinberg, S.E.; Sena, L.A.; Chandel, N.S. Mitochondria in the regulation of innate and adaptive immunity. Immunity 2015, 42, 406–417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, H.S.; Suh, H.-W.; Kim, S.-J.; Jo, E.-K. Mitochondrial Control of Innate Immunity and Inflammation. Immune Netw. 2017, 17, 77–88. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Angajala, A.; Lim, S.; Phillips, J.B.; Kim, J.-H.; Yates, C.; You, Z.; Tan, M. Diverse Roles of Mitochondria in Immune Responses: Novel Insights into Immuno-Metabolism. Front. Immunol. 2018, 9, 1605. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kenney, M.C.; Chwa, M.; Atilano, S.R.; Falatoonzadeh, P.; Ramirez, C.; Malik, D.; Tarek, M.; del Carpio, J.C.; Nesburn, A.B.; Boyer, D.S.; et al. Molecular and bioenergetic differences between cells with African versus European inherited mitochondrial DNA haplogroups: Implications for population susceptibility to diseases. Biochim. Biophys. Acta 2014, 1842, 208–219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, Y.; Wang, L.; Zhu, M.; Yang, M.; Zhong, K.; Du, Q.; Zhang, H.; Gui, M. Association of mtDNA M/N haplogroups with systemic lupus erythematosus: A case-control study of Han Chinese women. Sci. Rep. 2015, 5, 10817. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Braga, P.C.; Alves, M.G.; Rodrigues, A.S.; Oliveira, P.F. Mitochondrial Pathophysiology on Chronic Kidney Disease. Int. J. Mol. Sci. 2022, 23, 1776. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Udar, N.; Iyer, A.; Porter, M.; Haigis, R.; Smith, S.; Dhillon, S.; Meier, K.; Ward, D.; Lu, J.; Wenz, P.; et al. Development and Analytical Validation of a DNA Dual-Strand Approach for the US Food and Drug Administration-Approved Next-Generation Sequencing-Based Praxis Extended RAS Panel for Metastatic Colorectal Cancer Samples. J. Mol. Diagn. 2020, 22, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Weissensteiner, H.; Pacher, D.; Kloss-Brandstätter, A.; Forer, L.; Specht, G.; Bandelt, H.-J.; Kronenberg, F.; Salas, A.; Schönherr, S. HaploGrep 2: Mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 2016, 44, W58–W63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jönsen, A.; Yu, X.; Truedsson, L.; Nived, O.; Sturfelt, G.; Ibrahim, S.; Bengtsson, A. Mitochondrial DNA polymorphisms are associated with susceptibility and phenotype of systemic lupus erythematosus. Lupus 2009, 18, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Yan, Z.-Y.; Wang, L.-L.; Wang, Y.-H.; Zhang, T.-Y.; Li, Z.; Liu, S.; Cai, J.; Chen, Y.-F.; Li, M.; et al. Mitochondrial DNA genetic variants are associated with systemic lupus erythematosus susceptibility, glucocorticoids efficacy and prognosis. Rheumatology 2022, 61, 2652–2662. [Google Scholar] [CrossRef] [PubMed]
- Tranah, G.J.; Manini, T.M.; Lohman, K.K.; Nalls, M.A.; Kritchevsky, S.; Newman, A.B.; Harris, T.B.; Miljkovic, I.; Biffi, A.; Cummings, S.R.; et al. Mitochondrial DNA variation in human metabolic rate and energy expenditure. Mitochondrion 2011, 11, 855–861. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, L.; Hu, X.; Xiao, F.; Zhang, X.; Zhao, L.; Wang, M. Mitochondrial impairment and repair in the pathogenesis of systemic lupus erythematosus. Front. Immunol. 2022, 13, 929520. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ye, B.; Chen, B.; Guo, C.; Xiong, N.; Huang, Y.; Li, M.; Lai, Y.; Li, J.; Zhou, M.; Wang, S.; et al. C5a-C5aR1 axis controls mitochondrial fission to promote podocyte injury in lupus nephritis. Mol. Ther. 2024, 32, 1540–1560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caza, T.N.; Fernandez, D.R.; Talaber, G.; Oaks, Z.; Haas, M.; Madaio, M.P.; Lai, Z.-W.; Miklossy, G.; Singh, R.R.; Chudakov, D.M.; et al. HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE. Ann. Rheum. Dis. 2014, 73, 1888–1897. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Giordano, L.; Ware, S.A.; Lagranha, C.J.; Kaufman, B.A. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun. Signal. 2025, 23, 192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jacobs, J.L.; Coyne, C.B. Mechanisms of MAVS regulation at the mitochondrial membrane. J. Mol. Biol. 2013, 425, 5009–5019. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, M.-M.; Shu, H.-B. Mitochondrial DNA-triggered innate immune response: Mechanisms and diseases. Cell. Mol. Immunol. 2023, 20, 1403–1412. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aloraini, G.S. Mitochondrial DNA release and cGAS-STING activation: Emerging insights into anti-tumor immunity. Pathol. Res. Pract. 2025, 273, 156158. [Google Scholar] [CrossRef] [PubMed]
- Sim, T.M.; Ong, S.J.; Mak, A.; Tay, S.H. Type I Interferons in Systemic Lupus Erythematosus: A Journey from Bench to Bedside. Int. J. Mol. Sci. 2022, 23, 2505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maciolek, J.A.; Pasternak, J.A.; Wilson, H.L. Metabolism of activated T lymphocytes. Curr. Opin. Immunol. 2014, 27, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Long, X.; Fu, S.; Zhang, Y.; Liu, Z.; Xu, X.; Wu, M. Mitochondrial DNA copy number and the risk of autoimmune diseases: A Mendelian randomization study with meta-analysis. J. Transl. Autoimmun. 2024, 9, 100251. [Google Scholar] [CrossRef] [PubMed]

| Number/Haplogroup Identity | Age at Dx | Age | SLE Duration | Sex | Haplogroup | SLEDAI 2K | SDI | Renal Bx WHO Class |
|---|---|---|---|---|---|---|---|---|
| African | ||||||||
| 20–03 | 9 | 15 | 6 | F | L1c2b1b | 8 | 2 | DPGN IV |
| 20–16 | 18 | 19 | 1 | M | L1c3 | 10 | 3 | DPGN IV ESRD |
| 20–19 | 10 | 12 | 2 | F | L3 | 8 | 0 | FPGN III |
| 20–23 | 6 | 21 | 15 | F | L3 | 2 | 0 | DPGN IV |
| 21–55 | 7 | 8 | 1 | F | L3 | 8 | 0 | No bx |
| Amerindian | ||||||||
| 20–05 | 11 | 17 | 6 | M | A2u | 14 | 5 | DPGN IV/CKD |
| 20–07 | 16 | 18 | 2 | F | A2j | 16 | 2 | Mem V |
| 20–09 | 8 | 14 | 6 | M | A2 | 18 | 1 | FPGN III |
| 20–11 | 11 | 12 | 1.5 | F | A2h1 | 12 | 1 | DPGN IV/Mem V |
| 20–13 | 12 | 14 | 2 | F | D1c | 10 | 2 | DPGN IV |
| 20–15 | 16 | 17 | 1 | F | A2o | 6 | 0 | DPGN IV |
| 20–21 | 7 | 23 | 17 | F | A2w | 8 | 16 | DPGN IV/CKD |
| 20–25 | 8 | 12 | 4 | F | C1c*4 | 6 | 3 | DPGN IV |
| 20–34 | 11 | 12 | 0.5 | F | B2d | 12 | 0 | No bx |
| 21–37 | 2 | 18 | 16 | F | A2 | 2 | 0 | DPGN IV |
| 21–39 | 8 | 9 | 1 | F | A2 | 29 | 0 | DPGN IV |
| 21–57 | 15 | 16 | 1 | F | C1b | 8 | 0 | DPGN IV |
| Caucasian | ||||||||
| 20–01 | 17 | 17 | 0.25 | F | H1aq1 | 6 | 0 | No bx |
| 20–17 | 10 | 16 | 6 | F | U5a1d1 | 0 | 0 | No bx |
| 20–32 | 4 | 12 | 8 | F | H3 | 8 | 0 | DPGN IV |
| 20–35 | 12 | 16 | 4 | F | T2b21 | 5 | 0 | Mes II/Mem V |
| Asian | ||||||||
| 20–29 | 8 | 20 | 12 | M | B4c1b2a | 4 | 0 | Mes II/Mem V |
| 21–44 | 14 | 19 | 5 | F | N | 4 | 0 | Mes II/Mem V |
| 21–53 | 12 | 20 | 8 | F | D4 | 2 | 0 | No bx |
| 21–59 | 5 | 9 | 5 | F | D5c2 | 2 | 0 | No bx |
| African n = 5 | Amerindian n = 13 | Caucasian n = 4 | Asian n = 4 | Average % | p | |
|---|---|---|---|---|---|---|
| 1 Sex, n (%) | 0.99 | |||||
| Female | 4 (80%) | 11 (85%) | 4 (100%) | 3 (75%) | 85% | |
| Male | 1 (20%) | 2 (15%) | 1 (25%) | 15% | ||
| 2 Current Age (years), Mean (SD) | 15.0 (5.2) | 15.5 (3.8) | 15.2 (2.2) | 17 (5.4) | NA | 0.90 |
| 2 Age at Diagnosis (years), Mean (SD) | 10.0 (4.7) | 10.8 (4.1) | 10.8 (5.4) | 9.8 (4.0) | NA | 0.97 |
| 2 SLE Duration (years), Mean (SD) | 5.0 (6.0) | 4.9 (5.5) | 4.6 (3.3) | 7.5 (3.3) | NA | 0.82 |
| African n = 5 | Amerindian n = 13 | Caucasian n = 4 | Asian n = 4 | Omnibus p 1 | African vs. Amerindian p 2 | African vs. Caucasian p 2 | African vs. Asian p 2 | Amerindian vs. Caucasian p 2 | Amerindian vs. Asian p 2 | Caucasian vs. Asian p 2 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| SLEDAI-2K, Median [25th, 75th] | 8 [8, 8] | 10 [6, 14] | 5.5 [2.5, 7] | 3 [2, 4] | 0.017 | 0.293 | 0.159 | 0.074 | 0.045 | 0.008 | 0.242 |
| SDI, Median [25th, 75th] | 0 [0, 2] | 1 [0, 2] | 0 [0, 0] | 0 [0, 0] | 0.121 | 0.672 | 0.179 | 0.179 | 0.075 | 0.075 | NE |
| Non-Zero SDI, n (%) | 2 (40%) | 7 (54%) | 0 (0%) | 0 (0%) | 0.103 | 1.000 | 0.444 | 0.444 | 0.102 | 0.102 | NE |
| Average Age (Years) | Disease Duration | SLEDAI > 6 | SDI > 1 | |
|---|---|---|---|---|
| Amerindian (n = 13) | 15.5 | 4.9 | 92% * | 54% † |
| African (n = 5) | 15.0 | 5.0 | 80% * | 40% |
| Caucasian (n = 4) | 15.3 | 4.6 | 50% | 0% |
| Asian (n = 4) | 17.0 | 7.5 | 0% | 0% |
| Lupus Nephritis Disease Class II | Lupus Nephritis Class III/IV | Lupus Nephritis Class V | CKD/ESRD | |
|---|---|---|---|---|
| Amerindian (n = 13) | 0% | 85% | 7% | 15% |
| African (n = 5) | 0% | 80% | 0% | 20% |
| Caucasian (n = 4) | 25% | 50% | 25% | 0% |
| Asian (n = 4) | 50% | 0% | 50% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Udar, V.; Atilano, S.R.; Stephens, A.V.; Chang, R.Y.-S.; Jackson, N.J.; Chang, S.Y.; Chwa, M.; McCurdy, D. Association of Mitochondrial DNA Haplogroups with Pediatric Systemic Lupus Erythematosus Disease Activity, Damage Scores, and Lupus Nephritis. J. Clin. Med. 2026, 15, 86. https://doi.org/10.3390/jcm15010086
Udar V, Atilano SR, Stephens AV, Chang RY-S, Jackson NJ, Chang SY, Chwa M, McCurdy D. Association of Mitochondrial DNA Haplogroups with Pediatric Systemic Lupus Erythematosus Disease Activity, Damage Scores, and Lupus Nephritis. Journal of Clinical Medicine. 2026; 15(1):86. https://doi.org/10.3390/jcm15010086
Chicago/Turabian StyleUdar, Viraat, Shari R. Atilano, Alexis V. Stephens, Ryan Yu-Sheng Chang, Nicholas J. Jackson, Steven Y. Chang, Marilyn Chwa, and Deborah McCurdy. 2026. "Association of Mitochondrial DNA Haplogroups with Pediatric Systemic Lupus Erythematosus Disease Activity, Damage Scores, and Lupus Nephritis" Journal of Clinical Medicine 15, no. 1: 86. https://doi.org/10.3390/jcm15010086
APA StyleUdar, V., Atilano, S. R., Stephens, A. V., Chang, R. Y.-S., Jackson, N. J., Chang, S. Y., Chwa, M., & McCurdy, D. (2026). Association of Mitochondrial DNA Haplogroups with Pediatric Systemic Lupus Erythematosus Disease Activity, Damage Scores, and Lupus Nephritis. Journal of Clinical Medicine, 15(1), 86. https://doi.org/10.3390/jcm15010086

