Transcatheter Pulmonary Valve Outcomes and Mechanisms of Dysfunction
Abstract
1. Introduction
2. Indications and Technical Considerations
3. Types of Transcatheter Pulmonary Valves
3.1. Transcatheter Balloon-Expandable Valves
3.2. Outcomes of Balloon-Expandable Valves
3.3. Self-Expandable Platforms
3.4. Outcomes of Self-Expandable Valves
4. Mechanisms and Predictors of TPV Dysfunction
4.1. Age, TPV Size, and Patient Prosthesis Mismatch (PPM)
4.2. Residual Gradient
4.3. Mechanical Compression
4.4. Infective Endocarditis (IE)
4.5. Thrombosis and Leaflet Dysfunction
5. Learning Curve with TPVR
6. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonhoeffer, P.; Boudjemline, Y.; Saliba, Z.; Merckx, J.; Aggoun, Y.; Bonnet, D.; Acar, P.; Le Bidois, J.; Sidi, D.; Kachaner, J. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 2000, 356, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, S.; Ewert, P.; Eicken, A.; Hager, A.; Hörer, J.; Cleuziou, J.; Meierhofer, C.; Tanase, D. Munich Comparative Study. Circ. Cardiovasc. Interv. 2020, 13, e008963. [Google Scholar] [CrossRef] [PubMed]
- Stout, K.K.; Daniels, C.J.; Aboulhosn, J.A.; Bozkurt, B.; Broberg, C.S.; Colman, J.M.; Crumb, S.R.; Dearani, J.A.; Fuller, S.; Gurvitz, M.; et al. 2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e698–e800. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.-P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease: The Task Force for the management of adult congenital heart disease of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Adult Congenital Heart Disease (ISACHD). Eur. Heart J. 2020, 42, 563–645. [Google Scholar] [CrossRef]
- Ferraz Cavalcanti, P.E.; Sá, M.P.; Santos, C.A.; Esmeraldo, I.M.; de Escobar, R.R.; de Menezes, A.M.; de Azevedo, O.M., Jr.; de Vasconcelos Silva, F.P.; Lins, R.F.; Lima Rde, C. Pulmonary valve replacement after operative repair of tetralogy of Fallot: Meta-analysis and meta-regression of 3,118 patients from 48 studies. J. Am. Coll. Cardiol. 2013, 62, 2227–2243. [Google Scholar] [CrossRef]
- Frigiola, A.; Tsang, V.; Bull, C.; Coats, L.; Khambadkone, S.; Derrick, G.; Mist, B.; Walker, F.; van Doorn, C.; Bonhoeffer, P.; et al. Biventricular response after pulmonary valve replacement for right ventricular outflow tract dysfunction: Is age a predictor of outcome? Circulation 2008, 118, S182–S190. [Google Scholar] [CrossRef]
- Buechel, E.R.; Dave, H.H.; Kellenberger, C.J.; Dodge-Khatami, A.; Pretre, R.; Berger, F.; Bauersfeld, U. Remodelling of the right ventricle after early pulmonary valve replacement in children with repaired tetralogy of Fallot: Assessment by cardiovascular magnetic resonance. Eur. Heart J. 2005, 26, 2721–2727. [Google Scholar] [CrossRef]
- Lee, C.; Kim, Y.M.; Lee, C.H.; Kwak, J.G.; Park, C.S.; Song, J.Y.; Shim, W.S.; Choi, E.Y.; Lee, S.Y.; Baek, J.S. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: Implications for optimal timing of pulmonary valve replacement. J. Am. Coll. Cardiol. 2012, 60, 1005–1014. [Google Scholar] [CrossRef]
- Shahanavaz, S.; Qureshi, A.M.; Levi, D.S.; Boudjemline, Y.; Peng, L.F.; Martin, M.H.; Bauser-Heaton, H.; Keeshan, B.; Asnes, J.D.; Jones, T.K.; et al. Transcatheter Pulmonary Valve Replacement With the Melody Valve in Small Diameter Expandable Right Ventricular Outflow Tract Conduits. JACC. Cardiovasc. Interv. 2018, 11, 554–564. [Google Scholar] [CrossRef]
- Hascoet, S.; Martins, J.D.; Baho, H.; Kadirova, S.; Pinto, F.; Paoli, F.; Bitar, F.; Haweleh, A.A.; Uebing, A.; Acar, P.; et al. Percutaneous pulmonary valve implantation in small conduits: A multicenter experience. Int. J. Cardiol. 2018, 254, 64–68. [Google Scholar] [CrossRef]
- Cabalka, A.K.; Hellenbrand, W.E.; Eicken, A.; Kreutzer, J.; Gray, R.G.; Bergersen, L.; Berger, F.; Armstrong, A.K.; Cheatham, J.P.; Zahn, E.M.; et al. Relationships Among Conduit Type, Pre-Stenting, and Outcomes in Patients Undergoing Transcatheter Pulmonary Valve Replacement in the Prospective North American and European Melody Valve Trials. JACC. Cardiovasc. Interv. 2017, 10, 1746–1759. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, D.B.; Cheatham, J.P.; Jones, T.K.; Lock, J.E.; Vincent, J.A.; Zahn, E.M.; Hellenbrand, W.E. Stent fracture, valve dysfunction, and right ventricular outflow tract reintervention after transcatheter pulmonary valve implantation: Patient-related and procedural risk factors in the US Melody Valve Trial. Circ. Cardiovasc. Interv. 2011, 4, 602–614. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.W.; Goldstein, B.H.; Bishnoi, R.N.; Bisselou, K.S.M.; McEnaney, K.; Minahan, M.; Ringel, R.E. Covered CP stent for treatment of right ventricular conduit injury during melody transcatheter pulmonary valve replacement: Results from the PARCS study. Circ. Cardiovasc. Interv. 2018, 11, e006598. [Google Scholar] [CrossRef] [PubMed]
- Cabalka, A.K.; Asnes, J.D.; Balzer, D.T.; Cheatham, J.P.; Gillespie, M.J.; Jones, T.K.; Justino, H.; Kim, D.W.; Lung, T.H.; Turner, D.R.; et al. Transcatheter pulmonary valve replacement using the melody valve for treatment of dysfunctional surgical bioprostheses: A multicenter study. J. Thorac. Cardiovasc. Surg. 2018, 155, 1712–1724 e1. [Google Scholar] [CrossRef]
- Shahanavaz, S.; Asnes, J.D.; Grohmann, J.; Qureshi, A.M.; Rome, J.J.; Tanase, D.; Crystal, M.A.; Latson, L.A.; Morray, B.H.; Hellenbrand, W.; et al. Intentional Fracture of Bioprosthetic Valve Frames in Patients Undergoing Valve-in-Valve Transcatheter Pulmonary Valve Replacement. Circ. Cardiovasc. Interv. 2018, 11, e006453. [Google Scholar] [CrossRef]
- Allen, K.B.; Chhatriwalla, A.K.; Cohen, D.J.; Saxon, J.T.; Aggarwal, S.; Hart, A.; Baron, S.; Davis, J.R.; Pak, A.F.; Dvir, D.; et al. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation. Ann. Thorac. Surg. 2017, 104, 1501–1508. [Google Scholar] [CrossRef]
- Benson, L.N.; Gillespie, M.J.; Bergersen, L.; Cheatham, S.L.; Hor, K.N.; Horlick, E.M.; Weng, S.; McHenry, B.T.; Osten, M.D.; Powell, A.J.; et al. Three-Year Outcomes From the Harmony Native Outflow Tract Early Feasibility Study. Circ. Cardiovasc. Interv. 2020, 13, e008320. [Google Scholar] [CrossRef]
- Shahanavaz, S.; Zahn, E.M.; Levi, D.S.; Aboulhousn, J.A.; Hascoet, S.; Qureshi, A.M.; Porras, D.; Morgan, G.J.; Bauser Heaton, H.; Martin, M.H.; et al. Transcatheter Pulmonary Valve Replacement With the Sapien Prosthesis. J. Am. Coll. Cardiol. 2020, 76, 2847–2858. [Google Scholar] [CrossRef]
- Rinaldi, E.; Sadeghi, S.; Rajpal, S.; Boe, B.A.; Daniels, C.; Cheatham, J.; Sinha, S.; Levi, D.S.; Aboulhosn, J. Utility of CT Angiography for the Prediction of Coronary Artery Compression in Patients Undergoing Transcatheter Pulmonary Valve Replacement. World J. Pediatr. Congenit. Heart Surg. 2020, 11, 295–303. [Google Scholar] [CrossRef]
- Tezza, M.; Witsenburg, M.; Nieman, K.; van de Woestijne, P.C.; Budde, R.P.J. Cardiac CT to assess the risk of coronary compression in patients evaluated for percutaneous pulmonary valve implantation. Eur. J. Radiol. 2019, 110, 88–96. [Google Scholar] [CrossRef]
- Morray, B.H.; McElhinney, D.B.; Cheatham, J.P.; Zahn, E.M.; Berman, D.P.; Sullivan, P.M.; Lock, J.E.; Jones, T.K. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation a multicenter experience. Circ. Cardiovasc. Interv. 2013, 6, 535–542. [Google Scholar] [CrossRef]
- Fraisse, A.; Assaidi, A.; Mauri, L.; Malekzadeh-Milani, S.; Thambo, J.-B.; Bonnet, D.; Iserin, L.; Mancini, J.; Boudjemline, Y. Coronary artery compression during intention to treat right ventricle outflow with percutaneous pulmonary valve implantation: Incidence, diagnosis, and outcome. Catheter. Cardiovasc. Interv. 2014, 83, E260–E268. [Google Scholar] [CrossRef] [PubMed]
- Mauri, L.; Frigiola, A.; Butera, G. Emergency surgery for extrinsic coronary compression after percutaneous pulmonary valve implantation. Cardiol. Young 2013, 23, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, V.; Bessière, F.; Gardey, K.; Bakloul, M.; Belli, E.; Bonnet, D.; Chaussade, A.S.; Cohen, S.; Delasnerie, H.; Dib, N.; et al. Systematic Electrophysiological Study Prior to Pulmonary Valve Replacement in Tetralogy of Fallot: A Prospective Multicenter Study. Circ. Arrhythmia Electrophysiol. 2023, 16, e011745. [Google Scholar] [CrossRef] [PubMed]
- Shahanavaz, S.; Balzer, D.; Babaliaros, V.; Kim, D.; Dimas, V.; Veeram Reddy, S.R.; Leipsic, J.; Blanke, P.; Shirali, G.; Parthiban, A.; et al. Alterra Adaptive Prestent and SAPIEN 3 THV for Congenital Pulmonic Valve Dysfunction: An Early Feasibility Study. JACC. Cardiovasc. Interv. 2020, 13, 2510–2524. [Google Scholar] [CrossRef]
- Gillespie, M.J.; McElhinney, D.B.; Jones, T.K.; Levi, D.S.; Asnes, J.; Gray, R.G.; Cabalka, A.K.; Fujimoto, K.; Qureshi, A.M.; Justino, H.; et al. One-Year Outcomes in a Pooled Cohort of Harmony Transcatheter Pulmonary Valve Clinical Trial Participants. JACC. Cardiovasc. Interv. 2023, 15, 1917–1928. [Google Scholar] [CrossRef]
- Taylor, A.; Yang, J.; Dubin, A.; Chubb, M.H.; Motonaga, K.; Goodyer, W.; Giacone, H.; Peng, L.; Romfh, A.; McElhinney, D.; et al. Ventricular arrhythmias following transcatheter pulmonary valve replacement with the harmony TPV25 device. Catheter. Cardiovasc. Interv. 2022, 100, 766–773. [Google Scholar] [CrossRef]
- Cheatham, S.L.; Holzer, R.J.; Chisolm, J.L.; Cheatham, J.P. The medtronic melody® transcatheter pulmonary valve implanted at 24-mm diameter—It works. Catheter. Cardiovasc. Interv. 2013, 82, 816–823. [Google Scholar] [CrossRef]
- Garay, F.; Webb, J.; Hijazi, Z.M. Percutaneous replacement of pulmonary valve using the Edwards-Cribier percutaneous heart valve: First report in a human patient. Catheter. Cardiovasc. Interv. 2006, 67, 659–662. [Google Scholar] [CrossRef]
- Binder, R.K.; Rodés-Cabau, J.; Wood, D.A.; Mok, M.; Leipsic, J.; De Larochellière, R.; Toggweiler, S.; Dumont, E.; Freeman, M.; Willson, A.B.; et al. Transcatheter Aortic Valve Replacement With the SAPIEN 3: A New Balloon-Expandable Transcatheter Heart Valve. JACC Cardiovasc. Interv. 2013, 6, 293–300. [Google Scholar] [CrossRef]
- Kenny, D.; Morgan, G.J.; Murphy, M.; AlAlwi, K.; Giugno, L.; Zablah, J.; Carminati, M.; Walsh, K. Use of 65 cm large caliber Dryseal sheaths to facilitate delivery of the Edwards SAPIEN valve to dysfunctional right ventricular outflow tracts. Catheter. Cardiovasc. Interv. 2019, 94, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Tan, W.; Sadeghi, S.; Lin, J.; Salem, M.; Levi, D.; Aboulhosn, J. Utility of the long DrySeal sheath in facilitating transcatheter pulmonary valve implantation with the Edwards Sapien 3 valve. Catheter. Cardiovasc. Interv. 2020, 96, E646–E652. [Google Scholar] [CrossRef]
- Seth, A.; Kumar, V.; Singh, V.P.; Kumar, D.; Varma, P.; Rastogi, V. Myval: A Novel Transcatheter Heart Valve for the Treatment of Severe Aortic Stenosis. Interv. Cardiol. 2023, 18, e12. [Google Scholar] [CrossRef] [PubMed]
- Sivaprakasam, M.C.; Reddy, J.R.V.; Gunasekaran, S.; Sivakumar, K.; Pavithran, S.; Rohitraj, G.R.; Jayranganath, M.; Francis, E. Early multicenter experience of a new balloon expandable MyVal transcatheter heart valve in dysfunctional stenosed right ventricular outflow tract conduits. Ann. Pediatr. Cardiol. 2021, 14, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.K.; McElhinney, D.B.; Vincent, J.A.; Hellenbrand, W.E.; Cheatham, J.P.; Berman, D.P.; Zahn, E.M.; Khan, D.M.; Rhodes, J.F., Jr.; Weng, S.; et al. Long-Term Outcomes After Melody Transcatheter Pulmonary Valve Replacement in the US Investigational Device Exemption Trial. Circ. Cardiovasc. Interv. 2022, 15, e010852. [Google Scholar] [CrossRef]
- Kenny, D.; Rhodes, J.F.; Fleming, G.A.; Kar, S.; Zahn, E.M.; Vincent, J.; Shirali, G.S.; Gorelick, J.; Fogel, M.A.; Fahey, J.T.; et al. 3-Year Outcomes of the Edwards SAPIEN Transcatheter Heart Valve for Conduit Failure in the Pulmonary Position From the COMPASSION Multicenter Clinical Trial. JACC Cardiovasc. Interv. 2018, 11, 1920–1929. [Google Scholar] [CrossRef]
- Lim, D.S.; Kim, D.; Aboulhosn, J.; Levi, D.; Fleming, G.; Hainstock, M.; Sommer, R.; Torres, A.J.; Zhao, Y.; Shirali, G.; et al. Congenital Pulmonic Valve Dysfunction Treated With SAPIEN 3 Transcatheter Heart Valve (from the COMPASSION S3 Trial). Am. J. Cardiol. 2023, 190, 102–109. [Google Scholar] [CrossRef]
- McElhinney, D.B.; Zhang, Y.; Levi, D.S.; Georgiev, S.; Biernacka, E.K.; Goldstein, B.H.; Shahanavaz, S.; Qureshi, A.M.; Cabalka, A.K.; Bauser-Heaton, H.; et al. Reintervention and Survival After Transcatheter Pulmonary Valve Replacement. J. Am. Coll. Cardiol. 2022, 79, 18–32. [Google Scholar] [CrossRef]
- Zahn, E.M.; Chang, J.C.; Armer, D.; Garg, R. First human implant of the Alterra Adaptive PrestentTM: A new self-expanding device designed to remodel the right ventricular outflow tract. Catheter. Cardiovasc. Interv. 2018, 91, 1125–1129. [Google Scholar] [CrossRef]
- Sivakumar, K.; Sagar, P.; Qureshi, S.; Promphan, W.; Sasidharan, B.; Awasthy, N.; Kappanayil, M.; Suresh, P.V.; Koneti, N.R. Outcomes of Venus P-valve for dysfunctional right ventricular outflow tracts from Indian Venus P-valve database. Ann. Pediatr. Cardiol. 2021, 14, 281–292. [Google Scholar] [CrossRef]
- Shang, X.; Dong, N.; Zhang, C.; Wang, Y. The Clinical Trial Outcomes of Med-Zenith PT-Valve in the Treatment of Patients With Severe Pulmonary Regurgitation. Front. Cardiovasc. Med. 2022, 9, 887886. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, G.B.; Kim, S.H.; Jang, S.I.; Choi, J.Y.; Kang, I.S.; Kim, Y.H. Mid-term outcomes of the Pulsta transcatheter pulmonary valve for the native right ventricular outflow tract. Catheter. Cardiovasc. Interv. 2021, 98, E724–E732. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, M.J.; Bergersen, L.; Benson, L.N.; Weng, S.; Cheatham, J.P. 5-Year Outcomes From the Harmony Native Outflow Tract Early Feasibility Study. JACC Cardiovasc. Interv. 2021, 14, 816–817. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.H.; McElhinney, D.B.; Gillespie, M.J.; Aboulhosn, J.A.; Levi, D.S.; Morray, B.H.; Cabalka, A.K.; Love, B.A.; Zampi, J.D.; Balzer, D.T.; et al. Early Outcomes From a Multicenter Transcatheter Self-Expanding Pulmonary Valve Replacement Registry. J. Am. Coll. Cardiol. 2024, 83, 1310–1321. [Google Scholar] [CrossRef]
- Dimas, V.V.; Babaliaros, V.; Kim, D.; Lim, D.S.; Morgan, G.; Jones, T.K.; Armstrong, A.K.; Berman, D.; Aboulhosn, J.; Mahadevan, V.S.; et al. Multicenter Pivotal Study of the Alterra Adaptive Prestent for the Treatment of Pulmonary Regurgitation. JACC Cardiovasc. Interv. 2024, 17, 2287–2297. [Google Scholar] [CrossRef]
- Qureshi, S.A.; Jones, M.I.; Pushparajah, K.; Wang, J.-K.; Kenny, D.; Walsh, K.; Boudjemline, Y.; Promphan, W.; Prachasilchai, P.; Thomson, J.; et al. Transcatheter Pulmonary Valve Implantation Using Self-Expandable Percutaneous Pulmonary Valve System: 3-Year CE Study Results. JACC Cardiovasc. Interv. 2025, 18, 1045–1056. [Google Scholar] [CrossRef]
- Armstrong, A.K.; Berger, F.; Jones, T.K.; Moore, J.W.; Benson, L.N.; Cheatham, J.P.; Turner, D.R.; Rhodes, J.F.; Vincent, J.A.; Zellers, T.; et al. Association between patient age at implant and outcomes after transcatheter pulmonary valve replacement in the multicenter Melody valve trials. Catheter. Cardiovasc. Interv. 2019, 94, 607–617. [Google Scholar] [CrossRef]
- Nordmeyer, J.; Ewert, P.; Gewillig, M.; AlJufan, M.; Carminati, M.; Kretschmar, O.; Uebing, A.; Dähnert, I.; Röhle, R.; Schneider, H.; et al. Acute and midterm outcomes of the post-approval MELODY Registry: A multicentre registry of transcatheter pulmonary valve implantation. Eur. Heart J. 2019, 40, 2255–2264. [Google Scholar] [CrossRef]
- Bell, D.; Prabhu, S.; Betts, K.S.; Chen, Y.; Radford, D.; Whight, C.; Ward, C.; Jalali, H.; Venugopal, P.; Alphonso, N. Long-term performance of homografts versus stented bioprosthetic valves in the pulmonary position in patients aged 10–20 years†. Eur. J. Cardio-Thorac. Surg. 2018, 54, 946–952. [Google Scholar] [CrossRef]
- Nomoto, R.; Sleeper, L.A.; Borisuk, M.J.; Bergerson, L.; Pigula, F.A.; Emani, S.; Fynn-Thompson, F.; Mayer, J.E.; del Nido, P.J.; Baird, C.W. Outcome and performance of bioprosthetic pulmonary valve replacement in patients with congenital heart disease. J. Thorac. Cardiovasc. Surg. 2016, 152, 1333–1342.e3. [Google Scholar] [CrossRef]
- Cheatham, J.P.; Hellenbrand, W.E.; Zahn, E.M.; Jones, T.K.; Berman, D.P.; Vincent, J.A.; McElhinney, D.B. Clinical and Hemodynamic Outcomes up to 7 Years After Transcatheter Pulmonary Valve Replacement in the US Melody Valve Investigational Device Exemption Trial. Circulation 2015, 131, 1960–1970. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, S.; Ewert, P.; Tanase, D.; Hess, J.; Hager, A.; Cleuziou, J.; Meierhofer, C.; Eicken, A. A Low Residual Pressure Gradient Yields Excellent Long-Term Outcome After Percutaneous Pulmonary Valve Implantation. JACC Cardiovasc. Interv. 2019, 12, 1594–1603. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.P.; McElhinney, D.B.; Vincent, J.A.; Hellenbrand, W.E.; Zahn, E.M. Feasibility and short-term outcomes of percutaneous transcatheter pulmonary valve replacement in small (<30 kg) children with dysfunctional right ventricular outflow tract conduits. Circ. Cardiovasc. Interv. 2014, 7, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.H.; Shahanavaz, S.; Peng, L.F.; Asnes, J.D.; Riley, M.; Hellenbrand, W.E.; Balzer, D.T.; Gray, R.G.; McElhinney, D.B. Percutaneous transcatheter pulmonary valve replacement in children weighing less than 20 kg. Catheter. Cardiovasc. Interv. 2018, 91, 485–494. [Google Scholar] [CrossRef]
- Bensemlali, M.; Malekzadeh-Milani, S.; Mostefa-Kara, M.; Bonnet, D.; Boudjemline, Y. Percutaneous pulmonary Melody(®) valve implantation in small conduits. Arch. Cardiovasc. Dis. 2017, 110, 517–524. [Google Scholar] [CrossRef]
- Morray, B.H.; McElhinney, D.B.; Boudjemline, Y.; Gewillig, M.; Kim, D.W.; Grant, E.K.; Bocks, M.L.; Martin, M.H.; Armstrong, A.K.; Berman, D.; et al. Multicenter Experience Evaluating Transcatheter Pulmonary Valve Replacement in Bovine Jugular Vein (Contegra) Right Ventricle to Pulmonary Artery Conduits. Circ. Cardiovasc. Interv. 2017, 10, e004914. [Google Scholar] [CrossRef]
- McElhinney, D.B.; Zhang, Y.; Aboulhosn, J.A.; Morray, B.H.; Biernacka, E.K.; Qureshi, A.M.; Torres, A.J.; Shahanavaz, S.; Goldstein, B.H.; Cabalka, A.K.; et al. Multicenter Study of Endocarditis After Transcatheter Pulmonary Valve Replacement. J. Am. Coll. Cardiol. 2021, 78, 575–589. [Google Scholar] [CrossRef]
- McElhinney, D.B.; Zhang, Y.; Aboulhosn, J.A.; Morray, B.H.; Biernacka, E.K.; Qureshi, A.M.; Torres, A.J.; Shahanavaz, S.; Goldstein, B.H.; Cabalka, A.K.; et al. Incidence and predictors of Melody® valve endocarditis: A prospective study. Arch. Cardiovasc. Dis. 2015, 108, 97–106. [Google Scholar] [CrossRef]
- Shahanavaz, S.; Berger, F.; Jones, T.K.; Kreutzer, J.; Vincent, J.A.; Eicken, A.; Bergersen, L.; Rome, J.J.; Zahn, E.; Søndergaard, L.; et al. Outcomes After Transcatheter Reintervention for Dysfunction of a Previously Implanted Transcatheter Pulmonary Valve. JACC Cardiovasc. Interv. 2020, 13, 1529–1540. [Google Scholar] [CrossRef]
- Shahanavaz, S.; Berger, F.; Jones, T.K.; Kreutzer, J.; Vincent, J.A.; Eicken, A.; Bergersen, L.; Rome, J.J.; Zahn, E.; Søndergaard, L.; et al. Endocarditis After Transcatheter Pulmonary Valve Replacement. J. Am. Coll. Cardiol. 2018, 72, 2717–2728. [Google Scholar] [CrossRef]
- Sadeghi, S.; Wadia, S.; Lluri, G.; Tarabay, J.; Fernando, A.; Salem, M.; Sinha, S.; Levi, D.S.; Aboulhosn, J. Risk factors for infective endocarditis following transcatheter pulmonary valve replacement in patients with congenital heart disease. Catheter. Cardiovasc. Interv. 2019, 94, 625–635. [Google Scholar] [CrossRef]
- Haas, N.A.; Bach, S.; Vcasna, R.; Laser, K.T.; Sandica, E.; Blanz, U.; Jakob, A.; Dietl, M.; Fischer, M.; Kanaan, M.; et al. The risk of bacterial endocarditis after percutaneous and surgical biological pulmonary valve implantation. Int. J. Cardiol. 2018, 268, 55–60. [Google Scholar] [CrossRef]
- Makkar, R.R.; Fontana, G.; Jilaihawi, H.; Chakravarty, T.; Kofoed, K.F.; De Backer, O.; Asch, F.M.; Ruiz, C.E.; Olsen, N.T.; Trento, A.; et al. Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves. N. Engl. J. Med. 2015, 373, 2015–2024. [Google Scholar] [CrossRef]
- Pache, G.; Schoechlin, S.; Blanke, P.; Dorfs, S.; Jander, N.; Arepalli, C.D.; Gick, M.; Buettner, H.-J.; Leipsic, J.; Langer, M.; et al. Early hypo-attenuated leaflet thickening in balloon-expandable transcatheter aortic heart valves. Eur. Heart J. 2016, 37, 2263–2271. [Google Scholar] [CrossRef]
- Chakravarty, T.; Søndergaard, L.; Friedman, J.; De Backer, O.; Berman, D.; Kofoed, K.F.; Jilaihawi, H.; Shiota, T.; Abramowitz, Y.; Jørgensen, T.H.; et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: An observational study. Lancet 2017, 389, 2383–2392. [Google Scholar] [CrossRef]
- Hammadah, M.; Han, B.K.; de Oliveira Nunes, M.; Aboulhosn, J.A.; Zahn, E.M.; Babaliaros, V.; Daniels, M.J.; Cavalcante, J.L.; Lesser, J.R.; Garcia, S. Hypoattenuated leaflet thickening after transcatheter pulmonary valve replacement with the SAPIEN 3 valve. Cardiovasc. Imaging 2021, 14, 2047–2048. [Google Scholar] [CrossRef]
- Sefton, C.; Firth, A.; Curran, K.; Rajeswaran, J.; Das, T.; Bakhtadze, B.; Mehra, N.; Suntharos, P.; Bendaly, E.; Tretter, J.; et al. Outcomes of Hypoattenuating Leaflet Thickening Post-Transcatheter Pulmonary Valve Replacement. JACC Adv. 2025, 4, 101599. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Matoq, A.; Shahanavaz, S. Transcatheter Pulmonary Valve Outcomes and Mechanisms of Dysfunction. J. Clin. Med. 2026, 15, 213. https://doi.org/10.3390/jcm15010213
Matoq A, Shahanavaz S. Transcatheter Pulmonary Valve Outcomes and Mechanisms of Dysfunction. Journal of Clinical Medicine. 2026; 15(1):213. https://doi.org/10.3390/jcm15010213
Chicago/Turabian StyleMatoq, Amr, and Shabana Shahanavaz. 2026. "Transcatheter Pulmonary Valve Outcomes and Mechanisms of Dysfunction" Journal of Clinical Medicine 15, no. 1: 213. https://doi.org/10.3390/jcm15010213
APA StyleMatoq, A., & Shahanavaz, S. (2026). Transcatheter Pulmonary Valve Outcomes and Mechanisms of Dysfunction. Journal of Clinical Medicine, 15(1), 213. https://doi.org/10.3390/jcm15010213

