Spectrum of Osteoporosis Etiologies with Associated Vertebral Compression Fractures in Children: Analysis of 11 Cases
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients Included in the Study
2.2. Clinical Examination
2.3. Biochemical Parameters
2.4. Imaging Techniques
3. Results
Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crabtree, N.J.; Arabi, A.; Bachrach, L.K.; Fewtrell, M.; El-Hajj Fuleihan, G.; Kecskemethy, H.H.; Jaworski, M.; Gordon, C.M. Dual-Energy X-Ray Absorptiometry Interpretation and Reporting in Children and Adolescents: The Revised 2013 ISCD Pediatric Official Positions. J. Clin. Densitom. 2014, 17, 225–242. [Google Scholar] [CrossRef]
- Bianchi, M.L.; Leonard, M.B.; Bechtold, S.; Högler, W.; Mughal, M.Z.; Schönau, E.; Sylvester, F.A.; Vogiatzi, M.; Van Den Heuvel-Eibrink, M.M.; Ward, L. Bone Health in Children and Adolescents With Chronic Diseases That May Affect the Skeleton: The 2013 ISCD Pediatric Official Positions. J. Clin. Densitom. 2014, 17, 281–294. [Google Scholar] [CrossRef]
- Hansen, K.E.; Kleker, B.; Safdar, N.; Bartels, C.M. A systematic review and meta-analysis of glucocorticoid-induced osteoporosis in children. Semin. Arthritis Rheum. 2014, 44, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Sakka, S.D.; Cheung, M.S. Management of primary and secondary osteoporosis in children. Ther. Adv. Musculoskelet. Dis. 2020, 12, 1759720X20969262. [Google Scholar] [CrossRef]
- Saadah, O.I.; Annese, V.; Mosli, M.H. Prevalence and Predictors of Reduced Bone Density in Child and Adolescent Patients With Crohn’s Disease. J. Clin. Densitom. Off. J. Int. Soc. Clin. Densitom. 2021, 24, 252–258. [Google Scholar] [CrossRef]
- Birnkrant, D.J.; Bushby, K.; Bann, C.M.; Alman, B.A.; Apkon, S.D.; Blackwell, A.; Case, L.E.; Cripe, L.; Hadjiyannakis, S.; Olson, A.K.; et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: Respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018, 17, 347–361. [Google Scholar] [CrossRef]
- Kyriakou, A.; Shepherd, S.; Mason, A.; Ahmed, S.F. Prevalence of Vertebral Fractures in Children with Suspected Osteoporosis. J. Pediatr. 2016, 179, 219–225. [Google Scholar] [CrossRef]
- Ma, J.; Siminoski, K.; Jaremko, J.L.; Koujok, K.; Matzinger, M.A.; Shenouda, N.; Wilson, N.; Cheng, M.; Alos, N.; Atkinson, S.; et al. Vertebral Body Reshaping after Fractures: An Important Index of Recovery in Glucocorticoid-Treated Children. J. Clin. Endocrinol. Metab. 2024, 109, e1225–e1237. [Google Scholar] [CrossRef] [PubMed]
- Simm, P.J.; Johannesen, J.; Briody, J.; McQuade, M.; Hsu, B.; Bridge, C.; Little, D.G.; Cowell, C.T.; Munns, C.F. Zoledronic acid improves bone mineral density, reduces bone turnover and improves skeletal architecture over 2years of treatment in children with secondary osteoporosis. Bone 2011, 49, 939–943. [Google Scholar] [CrossRef]
- Ward, L.M. A practical guide to the diagnosis and management of osteoporosis in childhood and adolescence. Front. Endocrinol. 2024, 14, 1266986. [Google Scholar] [CrossRef] [PubMed]
- Von Scheven, E.; Corbin, K.J.; Stefano, S.; Cimaz, R. Glucocorticoid-Associated Osteoporosis in Chronic Inflammatory Diseases: Epidemiology, Mechanisms, Diagnosis, and Treatment. Curr. Osteoporos. Rep. 2014, 12, 289–299. [Google Scholar] [CrossRef]
- Jin, H.-Y.; Lim, J.-S.; Lee, Y.; Choi, Y.; Oh, S.-H.; Kim, K.-M.; Yoo, H.-W.; Choi, J.-H. Growth, puberty, and bone health in children and adolescents with inflammatory bowel disease. BMC Pediatr. 2021, 21, 35. [Google Scholar] [CrossRef]
- Samson, F.; Cagnard, B.; Leray, E.; Guggenbuhl, P.; Bridoux-Henno, L.; Dabadie, A. Longitudinal study of bone mineral density in children after a diagnosis of Crohn’s disease. Gastroentérologie Clin. Biol. 2010, 34, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Rauch, F.; Plotkin, H.; Zeitlin, L.; Glorieux, F.H. Bone Mass, Size, and Density in Children and Adolescents With Osteogenesis Imperfecta: Effect of Intravenous Pamidronate Therapy. J. Bone Miner. Res. 2003, 18, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Pekkinen, M.; Grigelioniene, G.; Akin, L.; Shah, K.; Karaer, K.; Kurtoğlu, S.; Ekbote, A.; Aycan, Z.; Sağsak, E.; Danda, S.; et al. Novel mutations in the LRP5 gene in patients with Osteoporosis-pseudoglioma syndrome. Am. J. Med. Genet. A 2017, 173, 3132–3135. [Google Scholar] [CrossRef]
- Pekkinen, M.; Terhal, P.A.; Botto, L.D.; Henning, P.; Mäkitie, R.E.; Roschger, P.; Jain, A.; Kol, M.; Kjellberg, M.A.; Paschalis, E.P.; et al. Osteoporosis and skeletal dysplasia caused by pathogenic variants in SGMS2. JCI Insight 2019, 4, e126180. [Google Scholar] [CrossRef]
- Charoenngam, N.; Nasr, A.; Shirvani, A.; Holick, M.F. Hereditary Metabolic Bone Diseases: A Review of Pathogenesis, Diagnosis and Management. Genes 2022, 13, 1880. [Google Scholar] [CrossRef] [PubMed]
- Michałus, I.; Gawlik, A.; Wieczorek-Szukała, K.; Lewiński, A. The Clinical Picture of Patients Suffering from Hypophosphatasia—A Rare Metabolic Disease of Many Faces. Diagnostics 2022, 12, 865. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Rusińska, A.; Płudowski, P.; Walczak, M.; Borszewska-Kornacka, M.K.; Bossowski, A.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dobrzańska, A.; Franek, E.; Helwich, E.; et al. Vitamin D Supplementation Guidelines for General Population and Groups at Risk of Vitamin D Deficiency in Poland—Recommendations of the Polish Society of Pediatric Endocrinology and Diabetes and the Expert Panel With Participation of National Specialist Consultants and Representatives of Scientific Societies—2018 Update. Front. Endocrinol. 2018, 9, 246. [Google Scholar] [CrossRef]
- Alqahtani, F.F.; Offiah, A.C. Diagnosis of osteoporotic vertebral fractures in children. Pediatr. Radiol. 2019, 49, 283–296. [Google Scholar] [CrossRef]
- Zemel, B.S.; Kalkwarf, H.J.; Gilsanz, V.; Lappe, J.M.; Oberfield, S.; Shepherd, J.A.; Frederick, M.M.; Huang, X.; Lu, M.; Mahboubi, S.; et al. Revised Reference Curves for Bone Mineral Content and Areal Bone Mineral Density According to Age and Sex for Black and Non-Black Children: Results of the Bone Mineral Density in Childhood Study. J. Clin. Endocrinol. Metab. 2011, 96, 3160–3169. [Google Scholar] [CrossRef]
- Palczewska, I.; Niedzwiedzka, Z. Somatic development indices in children and youth of Warsaw. Med. Wieku Rozwoj 2001, 5, 18–118. [Google Scholar]
- Simm, P.J.; Biggin, A.; Zacharin, M.R.; Rodda, C.P.; Tham, E.; Siafarikas, A.; Jefferies, C.; Hofman, P.L.; Jensen, D.E.; Woodhead, H.; et al. Consensus guidelines on the use of bisphosphonate therapy in children and adolescents. J. Paediatr. Child. Health 2018, 54, 223–233. [Google Scholar] [CrossRef]
- Landin, L.A. Fracture patterns in children. Analysis of 8,682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950–1979. Acta Orthop. Scand. 1983, 202, 3–109. [Google Scholar] [CrossRef]
- Brudvik, C.; Hove, L.M. Childhood fractures in Bergen, Norway: Identifying high-risk groups and activities. J. Pediatr. Orthop. 2003, 23, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Dennison, E.M.; Leufkens, H.G.M.; Bishop, N.; van Staa, T.P. Epidemiology of childhood fractures in Britain: A study using the general practice research database. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2004, 19, 1976–1981. [Google Scholar] [CrossRef] [PubMed]
- Mäyränpää, M.K.; Viljakainen, H.T.; Toiviainen-Salo, S.; Kallio, P.E.; Mäkitie, O. Impaired bone health and asymptomatic vertebral compressions in fracture-prone children: A case-control study. J. Bone Miner. Res. 2012, 27, 1413–1424. [Google Scholar] [CrossRef]
- Ward, L.M. Glucocorticoid-Induced Osteoporosis: Why Kids Are Different. Front. Endocrinol. 2020, 11, 576. [Google Scholar] [CrossRef] [PubMed]
- Ferrigno, R.; Hasenmajer, V.; Caiulo, S.; Minnetti, M.; Mazzotta, P.; Storr, H.L.; Isidori, A.M.; Grossman, A.B.; De Martino, M.C.; Savage, M.O. Paediatric Cushing’s disease: Epidemiology, pathogenesis, clinical management and outcome. Rev. Endocr. Metab. Disord. 2021, 22, 817–835. [Google Scholar] [CrossRef]
- Vestergaard, P.; Lindholm, J.; Jorgensen, J.; Hagen, C.; Hoeck, H.; Laurberg, P.; Rejnmark, L.; Brixen, K.; Kristensen, L.; Feldt-Rasmussen, U.; et al. Increased risk of osteoporotic fractures in patients with Cushing’s syndrome. Eur. J. Endocrinol. 2002, 146, 51–56. [Google Scholar] [CrossRef]
- Shimazaki, S.; Sato, J. Idiopathic Juvenile Osteoporosis: A Case Report and Literature Review. Cureus 2024, 16, e68361. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas-Aguilera, J.G.; González-López, V.; Zarante-Bahamón, A.M.; Prieto-Rivera, J.C.; Baquero-Rodríguez, R.; Chacón-Acevedo, K.R.; Meza-Martínez, A.I.; Serrano-Gayubo, A.K.; Medina-Orjuela, A.; Cáceres-Mosquera, J.A.; et al. Diagnosis, treatment, and follow-up of patients with hypophosphatasia. Endocrine 2024, 87, 400–419. [Google Scholar] [CrossRef]
- Rassie, K.; Dray, M.; Michigami, T.; Cundy, T. Bisphosphonate Use and Fractures in Adults with Hypophosphatasia. JBMR Plus 2019, 3, e10223. [Google Scholar] [CrossRef]
- Moulin, P.; Vaysse, F.; Bieth, E.; Mornet, E.; Gennero, I.; Dalicieux-Laurencin, S.; Baunin, C.; Tauber, M.T.; De Gauzy, J.S.; Salles, J.P. Hypophosphatasia may lead to bone fragility: Don’t miss it. Eur. J. Pediatr. 2009, 168, 783–788. [Google Scholar] [CrossRef]
- Choida, V.; Bubbear, J.S. Update on the management of hypophosphatasia. Ther. Adv. Musculoskelet. Dis. 2019, 11, 1759720X19863997. [Google Scholar] [CrossRef]
- Villa-Suárez, J.M.; García-Fontana, C.; Andújar-Vera, F.; González-Salvatierra, S.; De Haro-Muñoz, T.; Contreras-Bolívar, V.; García-Fontana, B.; Muñoz-Torres, M. Hypophosphatasia: A Unique Disorder of Bone Mineralization. Int. J. Mol. Sci. 2021, 22, 4303. [Google Scholar] [CrossRef]
- Van Dijk, F.S.; Sillence, D.O. Osteogenesis imperfecta: Clinical diagnosis, nomenclature and severity assessment. Am. J. Med. Genet. A 2014, 164, 1470–1481. [Google Scholar] [CrossRef] [PubMed]
- Formosa, M.M.; Christou, M.A.; Mäkitie, O. Bone fragility and osteoporosis in children and young adults. J. Endocrinol. Investig. 2023, 47, 285–298. [Google Scholar] [CrossRef]
- Ai, M.; Heeger, S.; Bartels, C.F.; Schelling, D.K. Clinical and Molecular Findings in Osteoporosis-Pseudoglioma Syndrome. Am. J. Hum. Genet. 2005, 77, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Fahiminiya, S.; Majewski, J.; Roughley, P.; Roschger, P.; Klaushofer, K.; Rauch, F. Whole-exome sequencing reveals a heterozygous LRP5 mutation in a 6-year-old boy with vertebral compression fractures and low trabecular bone density. Bone 2013, 57, 41–46. [Google Scholar] [CrossRef]
- Stürznickel, J.; Rolvien, T.; Delsmann, A.; Butscheidt, S.; Barvencik, F.; Mundlos, S.; Schinke, T.; Kornak, U.; Amling, M.; Oheim, R. Clinical Phenotype and Relevance of LRP5 and LRP6 Variants in Patients With Early-Onset Osteoporosis (EOOP). J. Bone Miner. Res. 2020, 36, 271–282. [Google Scholar] [CrossRef]
- Merkuryeva, E.; Markova, T.; Tyurin, A.; Valeeva, D.; Kenis, V.; Sumina, M.; Sorokin, I.; Shchagina, O.; Skoblov, M.; Nefedova, M.; et al. Clinical and Genetic Characteristics of Calvarial Doughnut Lesions with Bone Fragility in Three Families with a Reccurent SGMS2 Gene Variant. Int. J. Mol. Sci. 2023, 24, 8021. [Google Scholar] [CrossRef]
- Chedid, V.G.; Kane, S.V. Bone Health in Patients With Inflammatory Bowel Diseases. J. Clin. Densitom. 2020, 23, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Walther, F.; Fusch, C.; Radke, M.; Beckert, S.; Findeisen, A. Osteoporosis in Pediatric Patients Suffering From Chronic Inflammatory Bowel Disease With and Without Steroid Treatment. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 42–51. [Google Scholar] [CrossRef]
- Van Staa, T.P.; Leufkens, H.G.M.; Abenhaim, L.; Zhang, B.; Cooper, C. Oral corticosteroids and fracture risk: Relationship to daily and cumulative doses. Rheumatology 2000, 39, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Habtezion, A.; Silverberg, M.S.; Parkes, R.; Mikolainis, S.; Steinhart, A.H. Risk Factors for Low Bone Density in Crohn’s Disease. Inflamm. Bowel Dis. 2002, 8, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Mir, F.A.; Kane, S.V. Health Maintenance in Inflammatory Bowel Disease. Curr. Gastroenterol. Rep. 2018, 20, 23. [Google Scholar] [CrossRef]
- Lamb, E.J.; Wong, T.; Smith, D.J.; Simpson, D.E.; Coakley, A.J.; Moniz, C.; Muller, A.F. Metabolic bone disease is present at diagnosis in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2002, 16, 1895–1902. [Google Scholar] [CrossRef]
- Phung, K.; McAdam, L.; Ma, J.; McMillan, H.J.; Jackowski, S.; Scharke, M.; Matzinger, M.-A.; Shenouda, N.; Koujok, K.; Jaremko, J.L.; et al. Risk factors associated with prevalent vertebral fractures in Duchenne muscular dystrophy. Osteoporos. Int. 2023, 34, 147–160. [Google Scholar] [CrossRef]
- Ward, L.M.; Hadjiyannakis, S.; McMillan, H.J.; Noritz, G.; Weber, D.R. Bone Health and Osteoporosis Management of the Patient With Duchenne Muscular Dystrophy. Pediatrics 2018, 142, S34–S42. [Google Scholar] [CrossRef] [PubMed]
- Hurley-Novatny, A.; Chang, D.; Murakami, K.; Wang, L.; Li, H. Poor bone health in Duchenne muscular dystrophy: A multifactorial problem beyond corticosteroids and loss of ambulation. Front. Endocrinol. 2024, 15, 1398050. [Google Scholar] [CrossRef]
- Liaw, J.; Billich, N.; Carroll, K.; Adams, J.; Ryan, M.M.; Yiu, E.M.; Zacharin, M.; Simm, P.; Davidson, Z.E. Fracture risk and impact in boys with Duchenne muscular dystrophy: A retrospective cohort study. Muscle Nerve 2023, 67, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Reyes, M.L.; Hernández, M.I.; King, A.; Vinet, A.M.; Vogel, A.; Lagomarsino, E.; Mericq, M.V.; Méndez, C.; Gederlini, A.; Talesnik, E. Corticosteroid-induced osteoporosis in children: Outcome after two-year follow-up, risk factors, densitometric predictive cut-off values for vertebral fractures. Clin. Exp. Rheumatol. 2007, 25, 329–335. [Google Scholar] [PubMed]


| Patient No. | Sex | Age | Tanner Stage | Height [cm] | Height Standard Deviation Score [hSDS] | Short Stature | Weight [kg] | BMI and Mass Percentile Range | Preliminary Symptoms | Background Diagnosis |
|---|---|---|---|---|---|---|---|---|---|---|
| 1 | M | 9 | I | 121.0 | −2.78 | Yes | 33.5 | 22.9 (90–97) | Thoracic pain, growth retardation | Duchenne Muscular Dystrophy (steroid treatment) |
| 2 | M | 13 | II | 135.0 | −3.86 | Yes | 30.0 | 16.5 (10–25) | Back pain, growth retardation | Duchenne Muscular Dystrophy (steroid treatment) |
| 3 | F | 13 | IV | 147.0 | −2.33 | Yes | 37.0 | 17.0 (10–25) | Immobility, overall pain, growth retardation | Crohn’s disease (steroid treatment) |
| 4 | F | 5 | I | 109.0 | −0.33 | No | 21.8 | 18.4 (90–97) | Blue sclera | COL1A1 gene mutation |
| 5 | M | 11 | II | 150.3 | 0.35 | No | 48.5 | 21.5 (75–90) | Back pain | LRP5 gene mutation |
| 6 | M | 12 | II | 153.0 | −0.55 | No | 70.0 | 29.9 (>97) | Back pain | COL1A2 gene mutation |
| 7 | F | 6 | I | 114.0 | −1.26 | No | 18.9 | 14.5 (25–50) | Palpable head sclerotic protuberance | SGMS2 gene mutation |
| 8 | F | 9 | II | 128.5 | −1.36 | No | 20.0 | 12.1 (<3) | Palpable head sclerotic protuberance | SGMS2 gene mutation |
| 9 | M | 16 | IV | 162.4 | −2.43 | Yes | 48.4 | 18.4 (10–25) | Back pain, growth retardation | Cushing’s disease (pituitary adenoma) |
| 10 | F | 13 | III | 160.0 | 0.10 | No | 74.0 | 28.9 (>97) | Back pain | ALPL gene mutation |
| 11 | M | 10 | I | 136.5 | −1.28 | No | 23.8 | 12.8 (<3) | Back pain, facial dysmorphia | COL1A2 gene mutation |
| Patient No. | 25(OH)D [ng/mL] | Serum Calcium Levels [mmol/L] | Serum Phosphate Levels [mmol/L] | Alkaline Phopshate Activity [U/L] | Parathormone [pg/mL] | Osteocalcin [ng/mL] | Calcium/Creatinine Ratio in the First Urine Portion [mg/mg] N < 0.21 mg/mg |
|---|---|---|---|---|---|---|---|
| 1 | 38.9 | 2.48 (2.2–2.7) | 1.63 (1.28–1.98) | 41 (160–381) | 28.9 (15–65) | 17.8 (21–108) | 0.07 |
| 2 | 37.5 | 2.29 (2.29–2.66) | 1.34 (0.97–1.74) | 39 (116–483) | 16.4 (15–65) | 8.5 (19–159) | 0.12 |
| 3 | 38.2 | 2.40 (2.29–2.66) | 1.75 (0.97–1.81) | 119 (62–209) | 26.3 (15–65) | 74.8 (15–151) | 0.09 |
| 4 | 30.0 | 2.55 (2.19–2.51) | 1.76 (0.81–1.94) | 190 (156–386) | 27.2 (15–65) | 100.8 (16–152) | 0.09 |
| 5 | 51.5 | 2.46 (2.29–2.66) | 1.38 (0.97–1.74) | 292 (116–483) | 19.8 (15–65) | 113.4 (19–159) | 0.38 |
| 6 | 43.0 | 2.51 (2.19–2.64) | 1.45 (0.97–1.94) | 325 (178–455) | 22.2 (15–65) | 70.3 (19–159) | 0.09 |
| 7 | 21.7 | 2.25 (2.22–2.51) | 1.48 (0.81–1.94) | 267 (116–515) | 25.9 (15–65) | 41.0 (16–152) | 0.07 |
| 8 | 50.0 | 2.35 (2.19–2.51) | 1.61 (0.81–1.94) | 234 (156–386) | 27.9 (15–65) | 75.4 (16–152) | 0.09 |
| 9 | 46.7 | 2.41 (2.22–2.66) | 1.30 (0.97–1.74) | 107 (58–237) | 22.9 (15–65) | 23.7 (12–114) | 0.33 |
| 10 | 26.7 | 2.26 (2.29–2.66) | 1.65 (0.97–1.81) | 60 (62–209) | 35.5 (15–65) | 58.0 (15–151) | 0.08 |
| 11 | 27.4 | 2.40 (2.22–2.51) | 1.76 (0.97–1.94) | 142 (120–488) | 15.1 (15–65) | 84.8 (19–159) | 0.30 |
| Patient No. | DXA Z-Score Spine with Height-Adjustment in Case of Short Stature | DXA Z-Score TBLH with Height-Adjustment in Case of Short Stature | Identified Vertebrae Fractures | Other Identified Fractures | Implemented Treatment |
|---|---|---|---|---|---|
| 1 | −1.70 HAZ = −0.72 | −3.70 HAZ = −2.16 | Th7, Th11, L1 | Forearm | bisphosphonate therapy + calcium, vitamin D |
| 2 | −3.90 HAZ = −1.46 | −8.00 HAZ = −5.65 | Th5-Th12, L1-L4 | - | bisphosphonate therapy + calcium, vitamin D |
| 3 | −3.20 HAZ = −2.25 | −4.20 HAZ = −3.20 | C7, Th5, Th7-Th12, L1, L3, L4 | Sternum | bisphosphonate therapy + calcium, vitamin D |
| 4 | −2.60 | −1.20 | L1 | Tibia | bisphosphonate therapy + calcium, vitamin D |
| 5 | −1.30 | −0.70 | Th12, L1 | Forearm (2013), (2017) | bisphosphonate therapy + calcium, vitamin D |
| 6 | −3.50 | −4.90 | Th12, L1 | Femur, shoulder | bisphosphonate therapy + calcium, vitamin D |
| 7 | −3.10 | −2.30 | Multilevel vertebral fractures (thoracic and lumbar vertebrae) | - | bisphosphonate therapy + calcium, vitamin D |
| 8 | −2.70 | −3.30 | Th5-Th9, L4, L5 | - | bisphosphonate therapy + calcium, vitamin D |
| 9 | −5.50 HAZ = −4.60 | −4.50 HAZ = −3.49 | Th9, Th11, L1 | - | endoscopic transsphenoidal surgery of pituitary adenoma; parental refusal for introducing bisphosphonate treatment; calcium + vitamin D |
| 10 | −1.80 | −1.00 | Th11-L3 | - | vitamin D |
| 11 | −4.30 | −3.50 | Th11-L5 | Humerus | bisphosphonate therapy + calcium, vitamin D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Aszkiełowicz, S.; Łupińska, A.; Michałus, I.; Zygmunt, A.; Stawerska, R. Spectrum of Osteoporosis Etiologies with Associated Vertebral Compression Fractures in Children: Analysis of 11 Cases. J. Clin. Med. 2026, 15, 123. https://doi.org/10.3390/jcm15010123
Aszkiełowicz S, Łupińska A, Michałus I, Zygmunt A, Stawerska R. Spectrum of Osteoporosis Etiologies with Associated Vertebral Compression Fractures in Children: Analysis of 11 Cases. Journal of Clinical Medicine. 2026; 15(1):123. https://doi.org/10.3390/jcm15010123
Chicago/Turabian StyleAszkiełowicz, Sara, Anna Łupińska, Izabela Michałus, Arkadiusz Zygmunt, and Renata Stawerska. 2026. "Spectrum of Osteoporosis Etiologies with Associated Vertebral Compression Fractures in Children: Analysis of 11 Cases" Journal of Clinical Medicine 15, no. 1: 123. https://doi.org/10.3390/jcm15010123
APA StyleAszkiełowicz, S., Łupińska, A., Michałus, I., Zygmunt, A., & Stawerska, R. (2026). Spectrum of Osteoporosis Etiologies with Associated Vertebral Compression Fractures in Children: Analysis of 11 Cases. Journal of Clinical Medicine, 15(1), 123. https://doi.org/10.3390/jcm15010123

