Effects of Visual Perturbation on Single-Leg Drop Jump Biomechanics in Patients Post-Anterior Cruciate Ligament Reconstruction
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Study Participants
2.3. Assessment Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACL | Anterior Cruciate Ligament |
| ACLR | Anterior Cruciate Ligament Reconstruction |
| ANOVA | Analysis of Variance |
| EEG | Electroencephalography |
| fMRI | Functional Magnetic Resonance Imaging |
| GC | Ground Contact |
| GRF | Ground Reaction Force |
| IC | Initial Contact |
| MDC | Minimal Detectable Change |
| RTS | Return to Sport |
| SD | Standard Deviation |
| SE | Standard Error |
| SLDJ | Single-Leg Drop Jump |
| VGRF | Vertical Ground Reaction Force |
References
- Chia, L.; De Oliveira Silva, D.; Whalan, M.; McKay, M.J.; Sullivan, J.; Fuller, C.W.; Pappas, E. Non-contact Anterior Cruciate Ligament Injury Epidemiology in Team-Ball Sports: A Systematic Review with Meta-analysis by Sex, Age, Sport, Participation Level, and Exposure Type. Sports Med. 2022, 52, 2447–2467. [Google Scholar] [CrossRef]
- Lai, C.C.H.; Ardern, C.L.; Feller, J.A.; Webster, K.E. Eighty-three per cent of elite athletes return to preinjury sport after anterior cruciate ligament reconstruction: A systematic review with meta-analysis of return to sport rates, graft rupture rates and performance outcomes. Br. J. Sports Med. 2018, 52, 128–138. [Google Scholar] [CrossRef]
- Girdwood, M.A.; Crossley, K.M.; Rio, E.K.; Patterson, B.E.; Haberfield, M.J.; Couch, J.L.; Mentiplay, B.F.; Hedger, M.; Culvenor, A.G. Hop to It! A Systematic Review and Longitudinal Meta-analysis of Hop Performance After ACL Reconstruction. Sports Med. 2024, 55, 101–113. [Google Scholar] [CrossRef]
- Warnecke, B.F.; Richter, C.; King, E.; Paternoster, F.K. Residual Performance and Biomechanical Asymmetries During Jumping Tasks in Female Athletes at 9 Months After Anterior Cruciate Ligament Reconstruction. Orthop. J. Sports Med. 2024, 12, 1–11. [Google Scholar] [CrossRef]
- King, E.; Richter, C.; Daniels, K.A.J.; Franklyn-Miller, A.; Falvey, E.; Myer, G.D.; Jackson, M.; Moran, R.; Strike, S. Biomechanical but Not Strength or Performance Measures Differentiate Male Athletes Who Experience ACL Reinjury on Return to Level 1 Sports. Am. J. Sports Med. 2021, 49, 918–927. [Google Scholar] [CrossRef] [PubMed]
- Labban, W.; Manaseer, T.; Golberg, E.; Sommerfeldt, M.; Nathanail, S.; Dennett, L.; Westover, L.; Beaupre, L. Jumping into recovery: A systematic review and meta-analysis of discriminatory and responsive force plate parameters in individuals following anterior cruciate ligament reconstruction during countermovement and drop jumps. J. Exp. Orthop. 2024, 11, e12018. [Google Scholar] [CrossRef]
- Kotsifaki, R.; Sideris, V.; King, E.; Bahr, R.; Whiteley, R. Performance and symmetry measures during vertical jump testing at return to sport after ACL reconstruction. Br. J. Sports Med. 2023, 57, 1304–1310. [Google Scholar] [CrossRef]
- Kotsifaki, A.; Van Rossom, S.; Whiteley, R.; Korakakis, V.; Bahr, R.; Sideris, V.; Jonkers, I. Single leg vertical jump performance identifies knee function deficits at return to sport after ACL reconstruction in male athletes. Br. J. Sports Med. 2022, 56, 490–498. [Google Scholar] [CrossRef]
- Zarro, M.J.; Stitzlein, M.G.; Lee, J.S.; Rowland, R.W.; Gray, V.L.; Taylor, J.B.; Meredith, S.J.; Packer, J.D.; Nelson, C.M. Single-Leg Vertical Hop Test Detects Greater Limb Asymmetries Than Horizontal Hop Tests After Anterior Cruciate Ligament Reconstruction in NCAA Division 1 Collegiate Athletes. Int. J. Sports Phys. Ther. 2021, 16, 1405–1414. [Google Scholar] [CrossRef] [PubMed]
- Grooms, D.; Appelbaum, C.G.; Onate, J. Neuroplasticity Following Anterior Cruciate Ligament Injury: A Framework for Visual-Motor Training Approaches in Rehabilitation. J. Orthop. Sports Phys. Ther. 2015, 45, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Martínez, J.; Gutiérrez-Capote, A.; Alarcón-López, F.; Leicht, A.; Cárdenas-Vélez, D. Relationship between Cognitive Demands and BiomechanicalIndicators Associated with Anterior Cruciate Ligament Injury: A Systematic Review. Sports Med. 2024, 55, 145–165. [Google Scholar] [CrossRef]
- Gokeler, A.; Neuhaus, D.; Benjaminse, A.; Grooms, D.R.; Baumeister, J. Principles of Motor Learning to Support Neuroplasticity After ACL Injury: Implications for Optimizing Performance and Reducing Risk of Second ACL Injury. Sports Med. 2019, 49, 853–865. [Google Scholar] [CrossRef]
- Monfort, S.M.; Pradarelli, J.J.; Grooms, D.R.; Hutchison, K.A.; Onate, J.A.; Chaudhari, A.M.W. Visual-Spatial Memory Deficits Are Related to Increased Knee Valgus Angle During a Sport-Specific Sidestep Cut. Am. J. Sports Med. 2019, 47, 1488–1495. [Google Scholar] [CrossRef]
- Wohl, T.R.; Criss, C.R.; Haggerty, A.L.; Rush, J.L.; Simon, J.E.; Grooms, D.R. The Impact of Visual Perturbation Neuromuscular Training on Landing Mechanics and Neural Activity: A Pilot Study. Int. J. Sports Phys. Ther. 2024, 19, 1333–1347. [Google Scholar]
- Culiver, A.; Grooms, D.; Edwards, N.; Schmitt, L.; Oñate, J. A Preliminary Investigation into the Neural Correlates of Knee Loading during a Change of Direction Task in Individuals after Anterior Cruciate Ligament Reconstruction. Int. J. Sports Phys. Ther. 2023, 18, 70–80. [Google Scholar] [CrossRef]
- Grooms, D.R.; Chaudhari, A.; Page, S.J.; Nichols-Larsen, D.S.; Onate, J.A. Visual-motor control of drop landing after anterior cruciate ligament reconstruction. J. Athl. Train. 2018, 53, 486–496. [Google Scholar] [CrossRef]
- Tegner, Y.; Lysholm, J. Rating systems in the evaluation of knee ligament injuries. Clin. Orthop. Relat. Res. 1985, 198, 43–49. [Google Scholar] [CrossRef]
- King, E.; Richter, C.; Franklyn-Miller, A.; Daniels, K.; Wadey, R.; Moran, R.; Strike, S. Whole-body biomechanical differences between limbs exist 9 months after ACL reconstruction across jump/landing tasks. Scand. J. Med. Sci. 2018, 28, 2567–2578. [Google Scholar]
- Appelbaum, L.G.; Cain, M.S.; Schroeder, J.E.; Darling, E.F.; Mitroff, S.R. Stroboscopic visual training improves information encoding in short-term memory. Atten. Percept. Psychophys. 2012, 74, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Jan, S.V.S. Color Atlas of Skeletal Landmark Definitions: Guidelines for Reproducible Manual and Virtual Palpations; Churchill Livingstone/Elsevier: Edinburgh, UK, 2007. [Google Scholar]
- Girden, E.R. ANOVA; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 1992. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 7th ed.; Pearson: London, UK, 2018. [Google Scholar]
- Blanca, M.J.; Arnau, J.; García-castro, F.J.; Alarcón, R.; Bono, R. Psicothema Non-Normal Data in Repeated Measures ANOVA: Impact on Type I Error and Power y Potencia. Psicothema 2023, 35, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Blanca, M.J.; Alarcón, R.; Arnau, J.; Bono, R.; Bendayan, R. Non-normal data: Is ANOVA still a valid option? Psicothema 2017, 29, 552–557. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Sawilowsky, S.S. Very large and huge effect sizes. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Cody, C.R.; Onate, J.A.; Grooms, D.R. Neural activity for hip-knee control in those with anterior cruciate ligament reconstruction: A task-based functional connectivity analysis. Neurosci. Lett. 2020, 730, 134985. [Google Scholar]
- Wu, Y.; Wang, J.; Zhang, Y.; Zheng, D.; Zhang, J.; Rong, M.; Wu, H.; Wang, Y.; Zhou, K.; Jiang, T. The neuroanatomical basis for posterior superior parietal lobule control lateralization of visuospatial attention. Front. Neuroanat. 2016, 10, 32. [Google Scholar] [CrossRef]
- Guo, Z.; Li, A.; Yu, L. “Neural Efficiency” of Athletes’ Brain during Visuo-Spatial Task: An fMRI Study on Table Tennis Players. Front. Behav. Neurosci. 2017, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Grooms, D.R.; Page, S.J.; Nichols-Larsen, D.S.; Chaudhari, A.M.; White, S.E.; Onate, J.A. Neuroplasticity associated with anterior cruciate ligament reconstruction. J. Orthop. Sports Phys. Ther. 2017, 47, 180–189. [Google Scholar] [CrossRef]
- Macaluso, E.; Frith, C.D.; Driver, J. Modulation of human visual cortex by crossmodal spatial attention. Science 2000, 289, 1206–1208. [Google Scholar] [CrossRef]
- Schnittjer, A.J.; Kim, H.W.; Lepley, A.S.; Onate, J.A.; Criss, C.R.; Simon, J.E.; Grooms, D.R. Organization of sensorimotor activity in anterior cruciate ligament reconstructed individuals: An fMRI conjunction analysis. Front. Hum. Neurosci. 2023, 17, 1263292. [Google Scholar] [CrossRef]
- Chaput, M.; Onate, J.A.; Simon, J.E.; Criss, C.R.; Jamison, S.; McNally, M.; Grooms, D.R. Visual cognition associated with knee proprioception, time to stability, and sensory integration neural activity after ACL reconstruction. J. Orthop. Res. 2022, 40, 95–104. [Google Scholar] [CrossRef]
- Wenderoth, N.; Debaere, F.; Sunaert, S.; Swinnen, S.P. The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. Eur. J. Neurosci. 2005, 22, 235–246. [Google Scholar] [CrossRef]
- Baumeister, J.; Reinecke, K.; Schubert, M.; Weiß, M. Altered electrocortical brain activity after ACL reconstruction during force control. J. Orthop. Res. 2011, 29, 1383–1389. [Google Scholar] [CrossRef]
- Criss, C.R.; Melton, M.S.; Ulloa, S.A.; Simon, J.E.; Clark, B.C.; France, C.R.; Grooms, D.R. Rupture, reconstruction, and rehabilitation: A multi-disciplinary review of mechanisms for central nervous system adaptations following anterior cruciate ligament injury. Knee 2021, 30, 78–89. [Google Scholar] [CrossRef]
- Piskin, D.; Benjaminse, A.; Dimitrakis, P.; Gokeler, A. Neurocognitive and Neurophysiological Functions Related to ACL Injury: A Framework for Neurocognitive Approaches in Rehabilitation and Return-to-Sports Tests. Sports Health 2021, 14, 549–555. [Google Scholar] [CrossRef]
- Assländer, L.; Peterka, R.J. Sensory reweighting dynamics in human postural control. J. Neurophysiol. 2014, 111, 1852–1864. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, G.B. Neurocognitive reaction time predicts lower extremity sprains and strains. Int. J. Athl. Ther. Train. 2012, 17, 4–9. [Google Scholar] [CrossRef]
- Della Villa, F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; Virgile, A.; Della Villa, S. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br. J. Sports Med. 2024, 55, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Gokeler, A.; Tosarelli, F.; Buckthorpe, M.; Della Villa, F. Neurocognitive Errors and Noncontact Anterior Cruciate Ligament Injuries in Professional Male Soccer Players. J. Athl. Train. 2024, 59, 262–269. [Google Scholar] [CrossRef]
- Criss, C.; Lepley, A.; Simon, J.; Onate, J.; Clark, B.; Grooms, D. Neural Markers of Knee Disability in Patients with Anterior Cruciate Ligament Reconstruction: A Multicenter fMRI Study (108). Orthop. J. Sports Med. 2021, 9, 2325967121S00258. [Google Scholar] [CrossRef]
- Grooms, D.R.; Diekfuss, J.A.; Criss, C.R.; Anand, M.; Slutsky-Ganesh, A.B.; DiCesare, C.A.; Myer, G.D. Preliminary brain-behavioral neural correlates of anterior cruciate ligament injury risk landing biomechanics using a novel bilateral leg press neuroimaging paradigm. PLoS ONE 2022, 17, e0272578. [Google Scholar] [CrossRef]
- Bortone, I.; Moretti, L.; Bizzoca, D.; Caringella, N.; Delmedico, M.; Piazzolla, A.; Moretti, B. The importance of biomechanical assessment after Return to Play in athletes with ACL-Reconstruction. Gait Posture. 2021, 88, 240–246. [Google Scholar] [CrossRef] [PubMed]
- King, E.; Richter, C.; Jackson, M.; Franklyn-Miller, A.; Falvey, E.; Myer, G.D.; Strike, S.; Withers, D.; Moran, R. Factors Influencing Return to Play and Second Anterior Cruciate Ligament Injury Rates in Level 1 Athletes After Primary Anterior Cruciate Ligament Reconstruction: 2-Year Follow-up on 1432 Reconstructions at a Single Center. Am. J. Sports Med. 2020, 48, 812–824. [Google Scholar] [CrossRef] [PubMed]
- King, E.; Richter, C.; Daniels, K.A.J.; Franklyn-Miller, A.; Falvey, E.; Myer, G.D.; Jackson, M.; Moran, R.; Strike, S. Can Biomechanical Testing After Anterior Cruciate Ligament Reconstruction Identify Athletes at Risk for Subsequent ACL Injury to the Contralateral Uninjured Limb? Am. J. Sports Med. 2021, 49, 609–619. [Google Scholar] [CrossRef] [PubMed]

| Mean | Standard Deviation | Minimum | Maximum | |
|---|---|---|---|---|
| Age (years) | 25.6 | 6.3 | 16 | 39 |
| Height (cm) | 174 | 9.0 | 159 | 191 |
| Weight (kg) | 74.7 | 17.2 | 52 | 116 |
| Time post-surgery (days) | 187.6 | 15.5 | 162 | 223 |
| Tegner score pre-injury | 7.38 | 1.84 | 4 | 10 |
| SLDJ Variables | Visual Condition | Interaction Condition Visual *-Limb | ||||
|---|---|---|---|---|---|---|
| p Value | Fisher’s F | Effect Size (η2) | p Value | Fisher’s F | Effect Size (η2) | |
| Jump height | 0.442 | F (2, 46) = 0.24 | 0.004 | 0.614 | F (1, 46) = 0.43 | 0.002 |
| Ground contact time | 0.095 | F (2, 46) = 2.41 | 0.006 | 0.907 | F (1, 46) = 0.08 | 0.0002 |
| Flight time | 0.328 | F (2, 46) = 0.98 | 0.014 | 0.328 | F (1, 46) = 0.98 | 0.014 |
| Peak vertical ground reaction force | 0.173 | F (2, 46) = 1.90 | 0.018 | 0.220 | F(1, 46) = 1.56 | 0.014 |
| Peak knee extensor moment | 0.881 | F (2, 46) = 0.13 | 0.0002 | 0.885 | F (1, 46) = 0.11 | 0.0002 |
| Peak knee power absorption | 0.155 | F (2, 46) = 1.91 | 0.005 | 0.539 | F (1, 46) = 0.60 | 0.002 |
| Peak knee power generation | 0.932 | F (2, 46) = 0.07 | 0.00008 | 0.080 | F (1, 46) = 2.61 | 0.003 |
| Peak knee flexion | 0.246 | F (2, 46) = 1.43 | 0.003 | 0.603 | F (1, 46) = 0.41 | 0.0008 |
| Landing knee flexion excursion | 0.160 | F (2, 46) = 1.94 | 0.005 | 0.899 | F (1, 46) = 0.07 | 0.0002 |
| Landing peak knee abduction moment | 0.370 | F (2, 46) = 0.98 | 0.00098 | 0.436 | F (1, 46) = 0.80 | 0.0008 |
| Landing knee adduction excursion | 0.004 ** | F (2, 46) = 6.55 | 0.019 | 0.031 * | F (1, 46) = 3.87 | 0.011 |
| Mean Difference | Standard Error | t | Cohen’s d | pBonf | ||
|---|---|---|---|---|---|---|
| Normal vision | Glasses 1 | 8.333 × 10−4 | 0.274 | 0.003 | 3.013 × 10−4 | 1.000 |
| Glasses 2 | 0.861 | 0.274 | 3.136 | 0.311 | 0.007 ** | |
| Glasses 1 | Glasses 2 | 0.860 | 0.274 | 3.133 | 0.311 | 0.007 ** |
| Mean Difference | Standard Error | t | Cohen’s d | pBonf | ||
|---|---|---|---|---|---|---|
| ACLR, normal vision | Healthy, normal vision | 2.317 | 0.798 | 2.902 | 0.838 | 0.076 |
| ACLR, glasses 1 | −0.044 | 0.388 | −0.114 | −0.016 | 1.000 | |
| Healthy, glasses 1 | 2.363 | 0.798 | 2.960 | 0.854 | 0.065 | |
| ACLR, glasses 2 | 1.499 | 0.388 | 3.861 | 0.542 | 0.003 ** | |
| Healthy, glasses 2 | 2.540 | 0.798 | 3.182 | 0.918 | 0.034 * | |
| Healthy, normal vision | ACLR, glasses 1 | −2.362 | 0.798 | −2.958 | −0.854 | 0.065 |
| Healthy, glasses 1 | 0.046 | 0.388 | 0.118 | 0.017 | 1.000 | |
| ACLR, glasses 2 | −0.819 | 0.798 | −1.025 | −0.296 | 1.000 | |
| Healthy, glasses 2 | 0.223 | 0.388 | 0.574 | 0.081 | 1.000 | |
| ACLR, glasses 1 | Healthy, glasses 1 | 2.408 | 0.798 | 3.015 | 0.870 | 0.055 |
| ACLR, glasses 2 | 1.543 | 0.388 | 3.975 | 0.558 | 0.002 ** | |
| Healthy, glasses 2 | 2.585 | 0.798 | 3.237 | 0.934 | 0.029 * | |
| Healthy, glasses 1 | ACLR, glasses 2 | −0.865 | 0.798 | −1.083 | −0.313 | 1.000 |
| Healthy, glasses 2 | 0.177 | 0.388 | 0.456 | 0.064 | 1.000 | |
| ACLR, glasses 2 | Healthy, glasses 2 | 1.042 | 0.798 | 1.305 | 0.377 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Laurent, X.; Dodelin, D.; Graveleau, N.; Bouguennec, N. Effects of Visual Perturbation on Single-Leg Drop Jump Biomechanics in Patients Post-Anterior Cruciate Ligament Reconstruction. J. Clin. Med. 2026, 15, 118. https://doi.org/10.3390/jcm15010118
Laurent X, Dodelin D, Graveleau N, Bouguennec N. Effects of Visual Perturbation on Single-Leg Drop Jump Biomechanics in Patients Post-Anterior Cruciate Ligament Reconstruction. Journal of Clinical Medicine. 2026; 15(1):118. https://doi.org/10.3390/jcm15010118
Chicago/Turabian StyleLaurent, Xavier, Damien Dodelin, Nicolas Graveleau, and Nicolas Bouguennec. 2026. "Effects of Visual Perturbation on Single-Leg Drop Jump Biomechanics in Patients Post-Anterior Cruciate Ligament Reconstruction" Journal of Clinical Medicine 15, no. 1: 118. https://doi.org/10.3390/jcm15010118
APA StyleLaurent, X., Dodelin, D., Graveleau, N., & Bouguennec, N. (2026). Effects of Visual Perturbation on Single-Leg Drop Jump Biomechanics in Patients Post-Anterior Cruciate Ligament Reconstruction. Journal of Clinical Medicine, 15(1), 118. https://doi.org/10.3390/jcm15010118

