Intraoperative Nerve Monitoring in Thyroid Surgery: A Comprehensive Review of Technical Principles, Anesthetic Considerations, and Clinical Applications
Abstract
:1. Introduction
2. Importance and Necessities of Intraoperative Nerve Monitoring
3. Methodology of IONM
4. Problems That May Occur During IONM
5. Anesthesiologic Considerations for Successful IONM
5.1. Neuromuscular Blocking Agents
5.2. Placement of Endotracheal Tube
5.3. Avoidance of Signal-Interfering Substances
6. Optimal Methods for Successful IONM
7. Limitations and Practical Issues in Clinical IONM
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EMG | electromyography |
IONM | intraoperative nerve monitoring |
RLN | recurrent laryngeal nerve. |
LOS | loss of signal |
References
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; La Vecchia, C.; Vaccarella, S. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Vaccarella, S.; Lortet-Tieulent, J.; Colombet, M.; Davies, L.; A Stiller, C.; Schüz, J.; Togawa, K.; Bray, F.; Franceschi, S.; Maso, L.D.; et al. Global patterns and trends in incidence and mortality of thyroid cancer in children and adolescents: A population-based study. Lancet Diabetes Endocrinol. 2021, 9, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Won, Y.-J.; Lee, J.J.; Jung, K.-W.; Kim, H.-J.; Kong, H.-J.; Im, J.-S.; Seo, H.G. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2019. Cancer Res. Treat. 2022, 54, 330–344. [Google Scholar] [CrossRef]
- Hassanipour, S.; Zare, R.; Shahedi, A.; Delam, H. Survival rate of thyroid cancer in the Asian countries: A systematic review and meta-analysis study. Endocrine 2023, 82, 237–249. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Lukinović, J.; Bilić, M. Overview of Thyroid Surgery Complications. Acta Clin. Croat. 2020, 59 (Suppl. S1), 81–86. [Google Scholar] [CrossRef]
- Christou, N.; Mathonnet, M. Complications after total thyroidectomy. J. Visc. Surg. 2013, 150, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Tian, W.; Jiang, K.; Chiang, F.; Wang, P.; Huang, T.; Zhu, J.; Qin, J.; Liu, X. Clinical guidelines on intraoperative neuromonitoring during thyroid and parathyroid surgery. Ann. Transl. Med. 2015, 3, 213. [Google Scholar]
- Dralle, H.; Sekulla, C.; Haerting, J.; Timmermann, W.; Neumann, H.J.; Kruse, E.; Grond, S.; Mühlig, H.P.; Richter, C.; Voß, J.; et al. Risk factors of paralysis and functional outcome after recurrent laryngeal nerve monitoring in thyroid surgery. Surgery 2004, 136, 1310–1322. [Google Scholar] [CrossRef]
- Gunn, A.; Oyekunle, T.; Stang, M.; Kazaure, H.; Scheri, R. Recurrent Laryngeal Nerve Injury After Thyroid Surgery: An Analysis of 11,370 Patients. J. Surg. Res. 2020, 255, 42–49. [Google Scholar] [CrossRef]
- Sanapala, A.; Nagaraju, M.; Rao, L.; Nalluri, K. Management of bilateral recurrent laryngeal nerve paresis after thyroidectomy. Anesth. Essays Res. 2015, 9, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.K.; Lairmore, T.C.; Hendricks, J.C.; Roberts, J.W. Elucidating mechanisms of recurrent laryngeal nerve injury during thyroidectomy and parathyroidectomy. J. Am. Coll. Surg. 2008, 206, 123–130. [Google Scholar] [CrossRef]
- Barczyński, M.; Konturek, A.; Cichoń, S. Randomized clinical trial of visualization versus neuromonitoring of recurrent laryngeal nerves during thyroidectomy. J. Br. Surg. 2009, 96, 240–246. [Google Scholar] [CrossRef]
- Thomusch, O.; Sekulla, C.; Walls, G.; Machens, A.; Dralle, H. Intraoperative neuromonitoring of surgery for benign goiter. Am. J. Surg. 2002, 183, 673–678. [Google Scholar] [CrossRef]
- Dionigi, G.; Barczynski, M.; Chiang, F.Y.; Dralle, H.; Duran-Poveda, M.; Iacobone, M.; Lombardi, C.P.; Materazzi, G.; Mihai, R.; Randolph, G.W.; et al. Why monitor the recurrent laryngeal nerve in thyroid surgery? J. Endocrinol. Investig. 2010, 33, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Kazi, R.; Katna, R.; Dwivedi, R.C. Minimal access thyroid surgery—A new dawn? R. Coll. Surg. Engl. 2010, 92, 361–362. [Google Scholar] [CrossRef]
- Dionigi, G.; Boni, L.; Rovera, F.; Bacuzzi, A.; Dionigi, R. Neuromonitoring and video-assisted thyroidectomy: A prospective, randomized case-control evaluation. Surg. Endosc. 2009, 23, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Randolph, G.W.; Dralle, H.; Abdullah, H.; Barczynski, M.; Bellantone, R.; Brauckhoff, M.; Carnaille, B.; Cherenko, S.; Chiang, F.-Y.; Dionigi, G.; et al. Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: International standards guideline statement. Laryngoscope 2011, 121 (Suppl. S1), S1–S16. [Google Scholar] [CrossRef]
- Sasaki, C.T.; Mitra, S. Recurrent laryngeal nerve monitoring by cricopharyngeus contraction. Laryngoscope 2001, 111 Pt 1, 738–739. [Google Scholar] [CrossRef]
- Rea, J.L.; Khan, A. Clinical evoked electromyography for recurrent laryngeal nerve preservation: Use of an endotracheal tube electrode and a postcricoid surface electrode. Laryngoscope 1998, 108, 1418–1420. [Google Scholar] [CrossRef]
- Brauckhoff, M.; Walls, G.; Brauckhoff, K.; Thanh, P.; Thomusch, O.; Dralle, H. Identification of the non-recurrent inferior laryngeal nerve using intraoperative neurostimulation. Langenbecks Arch. Surg. 2002, 386, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Dackiw, A.P.; Rotstein, L.E.; Clark, O.H. Computer-assisted evoked electromyography with stimulating surgical instruments for recurrent/external laryngeal nerve identification and preservation in thyroid and parathyroid operation. Surgery 2002, 132, 1100–1106; discussion 1107–1108. [Google Scholar] [CrossRef] [PubMed]
- Atlas, G.; Lee, M. The neural integrity monitor electromyogram tracheal tube: Anesthetic considerations. J. Anaesthesiol. Clin. Pharmacol. 2013, 29, 403–404. [Google Scholar] [CrossRef]
- Lu, I.; Chu, K.; Tsai, C.; Wu, C.; Kuo, W.; Chen, H.; Lee, K.; Chiang, F. Optimal depth of NIM EMG endotracheal tube for intraoperative neuromonitoring of the recurrent laryngeal nerve during thyroidectomy. World J. Surg. 2008, 32, 1935–1939. [Google Scholar] [CrossRef]
- You, J.Y.; Kim, H.Y. Intraoperative Neuromonitoring during Thyroid Surgery. Int. J. Thyroidol. 2021, 14, 1–5. [Google Scholar] [CrossRef]
- Chan, W.F.; Lo, C.Y. Pitfalls of intraoperative neuromonitoring for predicting postoperative recurrent laryngeal nerve function during thyroidectomy. World J. Surg. 2006, 30, 806–812. [Google Scholar] [CrossRef]
- Dhonneur, G.; Kirov, K.; Slavov, V.; Duvaldestin, P. Effects of an intubating dose of succinylcholine and rocuronium on the larynx and diaphragm: An electromyographic study in humans. J. Am. Soc. Anesthesiol. 1999, 90, 951–955. [Google Scholar] [CrossRef]
- Lundstrøm, L.H.; Møller, A.M.; Rosenstock, C.; Astrup, G.; Gätke, M.R.; Wetterslev, J. Avoidance of neuromuscular blocking agents may increase the risk of difficult tracheal intubation: A cohort study of 103,812 consecutive adult patients recorded in the Danish Anaesthesia Database. Br. J. Anaesth. 2009, 103, 283–290. [Google Scholar] [CrossRef]
- Bowman, W. Neuromuscular block. Br. J. Pharmacol. 2006, 147, S277–S286. [Google Scholar] [CrossRef]
- Hunter, J.M. Rocuronium: The newest aminosteroid neuromuscular blocking drug. Br. J. Anaesth. 1996, 76, 481–483. [Google Scholar] [CrossRef]
- Gramstad, L.; Lilleaasen, P. Dose-response relation for atracurium, Org NC45 and pancuronium. BJA Br. J. Anaesth. 1982, 54, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Mirakhur, R.K. Dose-response and time-course of action of rocuronium bromide. Eur. J. Anaesthesiol. Suppl. 1995, 11, 23–25. [Google Scholar]
- Shahnawaz, M.M.; Shahjahan, B.; Sarwar, S.S. Evaluation of intubating conditions after rocuronium bromide in adults induced with propofol or thiopentone sodium. J. Anaesthesiol. Clin. Pharmacol. 2011, 27, 215–219. [Google Scholar] [CrossRef]
- Meistelman, C.; Plaud, B.; Donati, F. Rocuronium (ORG 9426) neuromuscular blockade at the adductor muscles of the larynx and adductor pollicis in humans. Can. J. Anaesth. 1992, 39, 665–669. [Google Scholar] [CrossRef] [PubMed]
- McCoy, E.P.; Mirakhur, R.K.; Maddineni, V.R.; Wierda, J.M.; Proost, J.H. Pharmacokinetics of rocuronium after bolus and continuous infusion during halothane anaesthesia. Br. J. Anaesth. 1996, 76, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Wulf, H.; Ledowski, T.; Linstedt, U.; Proppe, D.; Sitzlack, D. Neuromuscular blocking effects of rocuronium during desflurane, isoflurane, and sevoflurane anaesthesia. Can. J. Anaesth. 1998, 45, 526–532. [Google Scholar] [CrossRef]
- Shanks, C.A.; Fragen, R.J.; Ling, D. Continuous intravenous infusion of rocuronium (ORG 9426) in patients receiving balanced, enflurane, or isoflurane anesthesia. Anesthesiology 1993, 78, 649–651. [Google Scholar] [CrossRef]
- Oris, B.; Crul, J.F.; Vandermeersch, E.; Van Aken, H.; Van Egmond, J.; Sabbe, M.B. Muscle paralysis by rocuronium during halothane, enflurane, isoflurane, and total intravenous anesthesia. Anesth. Analg. 1993, 77, 570–573. [Google Scholar] [CrossRef]
- Kumar, N.; Mirakhur, R.K.; Symington, M.J.; McCarthy, G.J. Potency and time course of action of rocuronium during desflurane and isoflurane anaesthesia. Br. J. Anaesth. 1996, 77, 488–491. [Google Scholar] [CrossRef]
- Xue, F.S.; Liao, X.; Tong, S.Y.; Liu, J.H.; An, G.; Luo, L.K. Dose-response and time-course of the effect of rocuronium bromide during sevoflurane anaesthesia. Anaesthesia 1998, 53, 25–30. [Google Scholar] [CrossRef]
- Li, X.; Zhang, B.; Yu, L.; Yang, J.; Tan, H. Influence of Sevoflurane-Based Anesthesia versus Total Intravenous Anesthesia on Intraoperative Neuromonitoring during Thyroidectomy. Otolaryngol. Head Neck Surg. 2020, 162, 853–859. [Google Scholar] [CrossRef]
- de Moraes, N.; Lanchote, V.; Filgueira, G.; Lopes, B.; Lepera, J.; Lauretti, G. Impact of advanced age on the Pharmacokinetics and Pharmacodynamics of Rocuronium in patients undergoing elective surgery. Clin. Ther. 2015, 37, e11. [Google Scholar] [CrossRef]
- Singh, Y.N.; Marshall, I.; Harvey, A. Depression of transmitter release and postjunctional sensitivity during neuromuscular block produced by antibiotics. Br. J. Anaesth. 1979, 51, 1027–1033. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, S.I.; Chung, C.J.; Lee, J.H.; Lee, S.C.; Choi, S.R.; Oh, J.N.; Bae, J.Y. The synergistic effect of gentamicin and clindamycin on rocuronium-induced neuromuscular blockade. Korean J. Anesthesiol. 2013, 64, 143–151. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jin, H.C.; Lee, J.S.; Park, J.H.; Cho, S.H.; Kim, S.I. Lidocaine and Verapamil Enhances Neuromuscular Block Induced by Rocuronium. Korean J. Anesthesiol. 2000, 38, 1054–1061. [Google Scholar] [CrossRef]
- Durant, N.N.; Nguyen, N.; Katz, R.L. Potentiation of neuromuscular blockade by verapamil. Anesthesiology 1984, 60, 298–303. [Google Scholar] [CrossRef]
- Bindra, A.; Bindu, B.; Rath, G. Temperature management under general anesthesia: Compulsion or option. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 306–316. [Google Scholar] [CrossRef]
- Heier, T.; Caldwell, J.E.; Warltier, D.C. Impact of hypothermia on the response to neuromuscular blocking drugs. J. Am. Soc. Anesthesiol. 2006, 104, 1070–1080. [Google Scholar] [CrossRef]
- Kovac, A.L. Sugammadex: The first selective binding reversal agent for neuromuscular block. J. Clin. Anesth. 2009, 21, 444–453. [Google Scholar] [CrossRef]
- Duvaldestin, P.; Kuizenga, K.; Saldien, V.; Claudius, C.; Servin, F.; Klein, J.; Debaene, B.; Heeringa, M. A randomized, dose-response study of sugammadex given for the reversal of deep rocuronium- or vecuronium-induced neuromuscular blockade under sevoflurane anesthesia. Anesth. Analg. 2010, 110, 74–82. [Google Scholar] [CrossRef]
- Pavoni, V.; Gianesello, L.; Martinelli, C.; Horton, A.; Nella, A.; Gori, G.; Simonelli, M.; De Scisciolo, G. Recovery of laryngeal nerve function with sugammadex after rocuronium-induced profound neuromuscular block. J. Clin. Anesth. 2016, 33, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Gunes, M.E.; Dural, A.C.; Akarsu, C.; Guzey, D.; Sahbaz, N.A.; Tulubas, E.K.; Bulut, S.; Donmez, T. Effect of intraoperative neuromonitoring on efficacy and safety using sugammadex in thyroid surgery: Randomized clinical trial. Ann. Surg. Treat. Res. 2019, 97, 282–290. [Google Scholar] [CrossRef]
- Chai, Y.J.; Lee, J.; Won, D.; Lee, J.; Hwang, J.; Kim, T.K.; Chang, J.; Kim, H.; Yang, H.J.; Min, S. Comparison of Sugammadex Dose for Intraoperative Neuromonitoring in Thyroid Surgery: A Randomized Controlled Trial. Laryngoscope 2021, 131, 2154–2159. [Google Scholar] [CrossRef] [PubMed]
- Lu, I.-C.; Hsu, C.-D.; Chang, P.-Y.; Wu, S.-H.; Huang, T.-Y.; Lin, Y.-C.; Ko, H.-Y.; Dionigi, G.; Chai, Y.J.; Chiang, F.-Y.; et al. A Surgeon-Centered Neuromuscular Block Protocol Improving Intraoperative Neuromonitoring Outcome of Thyroid Surgery. Front. Endocrinol. 2022, 13, 817476. [Google Scholar] [CrossRef]
- Dionigi, G.; Bacuzzi, A.; Boni, L.; Rovera, F.; Dionigi, R. What is the learning curve for intraoperative neuromonitoring in thyroid surgery? Int. J. Surg. 2008, 6 (Suppl. S1), S7–S12. [Google Scholar] [CrossRef]
- Apfelbaum, J.L.; Hagberg, C.A.; Connis, R.T.; Abdelmalak, B.B.; Agarkar, M.; Dutton, R.P.; Fiadjoe, J.E.; Greif, R.; Klock, P.A.; Mercier, D.; et al. 2022 American Society of Anesthesiologists Practice Guidelines for Management of the Difficult Airway. Anesthesiology 2022, 136, 31–81. [Google Scholar] [CrossRef]
- Bouaggad, A.; Nejmi, S.E.; Bouderka, M.A.; Abbassi, O. Prediction of difficult tracheal intubation in thyroid surgery. Anesth. Analg. 2004, 99, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.-X.; Ye, Y.; Zhu, Y.-H.; Li, J.; He, H.-Y.; Dong, L.; Zhu, Z.-Q. Intubation of non-difficult airways using video laryngoscope versus direct laryngoscope: A randomized, parallel-group study. BMC Anesthesiol. 2019, 19, 75. [Google Scholar] [CrossRef]
- Kriege, M.; Hilt, J.A.; Dette, F.; Wittenmeier, E.; Meuser, R.; Staubitz, J.I.; Musholt, T.J. Impact of direct laryngoscopy vs. videolaryngoscopy on signal quality of recurrent laryngeal nerve monitoring in thyroid surgery: A randomised parallel group trial. Anaesthesia 2023, 78, 55–63. [Google Scholar] [CrossRef]
- Conrardy, P.A.; Goodman, L.R.; Lainge, F.; Singer, M.M. Alteration of endotracheal tube position flexion and extension of the neck. Crit. Care Med. 1976, 4, 8–12. [Google Scholar] [CrossRef]
- Yap, S.J.; Morris, R.W.; Pybus, D.A. Alterations in endotracheal tube position during general anaesthesia. Anaesth. Intensive Care 1994, 22, 586–588. [Google Scholar] [CrossRef] [PubMed]
- Won, D.; Lee, J.-M.; Lee, J.; Chai, Y.J.; Hwang, J.-Y.; Kim, T.K.; Chang, J.-E.; Kim, H.; Kim, M.J.; Min, S.-W. Usefulness of video laryngoscopy in tracheal intubation at thyroid surgical position for intraoperative neuromonitoring. Sci. Rep. 2024, 14, 4980. [Google Scholar] [CrossRef]
- Schneider, R.; Sekulla, C.; Machens, A.; Lorenz, K.; Thanh, P.N.; Dralle, H. Dynamics of loss and recovery of the nerve monitoring signal during thyroidectomy predict early postoperative vocal fold function. Head Neck 2016, 38, E1144–E1151. [Google Scholar] [CrossRef]
- Shin, S.-C.; Lee, B.-J. A New Era of Intraoperative Neuromonitoring: Beyond the Electromyography Endotracheal Tube During Thyroid Surgery. Clin. Exp. Otorhinolaryngol. 2020, 13, 324–325. [Google Scholar] [CrossRef] [PubMed]
- Dralle, H.; Sekulla, C.; Lorenz, K.; Brauckhoff, M.; Machens, A. German IONM Study Group Intraoperative monitoring of the recurrent laryngeal nerve in thyroid surgery. World J. Surg. 2008, 32, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Oh, J.; Kim, S.W.; Jeong, Y.W.; Wu, C.; Chiang, F.; Lee, K.D. Intraoperative neuromonitoring of recurrent laryngeal nerve during thyroidectomy with adhesive skin electrodes. World J. Surg. 2020, 44, 148–154. [Google Scholar] [CrossRef]
- Chiang, F.; Lu, I.; Chang, P.; Dionigi, G.; Randolph, G.W.; Sun, H.; Lee, K.; Tae, K.; Ji, Y.B.; Kim, S.W.; et al. Comparison of EMG signals recorded by surface electrodes on endotracheal tube and thyroid cartilage during monitored thyroidectomy. Kaohsiung J. Med. Sci. 2017, 33, 503–509. [Google Scholar] [CrossRef]
- Schneider, R.; Randolph, G.W.; Sekulla, C.; Phelan, E.; Thanh, P.N.; Bucher, M.; Machens, A.; Dralle, H.; Lorenz, K. Continuous intraoperative vagus nerve stimulation for identification of imminent recurrent laryngeal nerve injury. Head Neck 2013, 35, 1591–1598. [Google Scholar] [CrossRef]
- Randolph, G.W.; Kamani, D.; Wu, C.-W.; Schneider, R. Surgical anatomy and monitoring of the recurrent laryngeal nerve. In Surgery of the Thyroid and Parathyroid Glands; Elsevier: Amsterdam, The Netherlands, 2021; pp. 326–359. [Google Scholar]
Procedures | Detailed Procedures | Note |
---|---|---|
Preoperative fiberoptic laryngoscopy | ||
Equipment setting | The ground electrodes under the skin at the shoulders or xiphoid | |
Check electrode impedance and differences in impedance values | Electrode impedance < 5 kΩ, with deviations < 1 kω | |
Check initial EMG | Initial fluctuations: about 10 μV | |
Set up event thresholds | Typically, 100 μV | |
The current intensity of stimulator probe should be routinely set at 1–3 mA | ||
The monitoring device should be placed far away from electro-surgical devices and connected with anti-jamming silence detectors | ||
Confirm the recording electrode positions during surgery | At the antemedial laryngeal line using stimulator probe | |
Four-step IONM | Step 1: V1 signal | Obvious bipolar EMG signal is obtained at the ipsilateral vagus nerve at the plexas thyreoidea inferior level or at the plexas thyroid superior level in case of the presence of non-recurrent laryngeal nerve. |
Step 2: R1 signal | Before the exposure of RLN, its EMG signal is located by applying the probe vertical and parallel to trachea | |
Step 3: R2 signal | Continuous monitoring is applied during the dissection of RLN in a real-time manner. After exposure, the most proximal end is detected for EMG signal | |
Step 4: V2 signal | After complete hemostasis, the EMG signal of the vagus nerve is detected before closing the incision | |
Signal analysis | Basic EMG parameters | The biphasic waveform should be differentiated from the monophasic artifacts |
No obvious decrease in R2 and V2 signals | The basic EMG parameters include amplitude, latency and duration; the RLN has intact function | |
Loss of R2 and V2 signals | If the RLN is injured, detect the “injury site” and the injury cause | |
Photo recording the exposed RLN during surgery | ||
Postoperative laryngoscopy |
Common Errors | Causes | Solutions |
---|---|---|
Too high electrode impedance | Technical defects in the electrode itself | Replace the electrodes |
Connection problem between electrode, interface-connector box, and monitor | Check the connections among equipment | |
Contact problems of the subcutaneous electrodes | Check whether the subcutaneous electrodes fall off | |
Single electrode impedance > 5 kΩ | The surface electrode of endotracheal tube displaced | Intubate using videolaryngoscope |
Impedance deviation > 1 kΩ | Insulating lubricant applied to the endotracheal tube | Avoid the application at the recording electrodes |
Zero electrode impedance | Contact of two subcutaneous electrodes | Adjust to maintain a gap of at least 1 cm between the two electrodes. |
Electrosurgical interference | The anti-jamming probe not connected | Circle the cable of the device, with the anti-jamming detector clipped on the twisted cable |
V1 signal is absent | The vagus nerve injury | Directly detect the carotid sheath at 3 mA to obtain the V1 signal |
Present of non-recurrent laryngeal nerve | Recheck at the plexus thyroid superior level | |
Improper anesthesia induction /muscle relaxant use | Wail until the muscle relaxant wears off or use an antagonist | |
The detection current is not high enough | Check the connections among equipment | |
Too low frequency of stimulus pulse | Stimulus pulse frequency: four times/s by default | |
Too high event threshold | Routinely 100 μV | |
Improper monitoring mode, channel, and volume | Recheck the setup | |
Too short duration of detection for nerve | Each detection should be maintained at least 1 s | |
Damaged probe, with insulation layer falling off | Avoid reuse, clear liquids at the detection area | |
The muscle for detecting neurological effects is detached from the recording electrode | The surface electrodes of endotracheal tube should be located at the laryngeal anteromedian line | |
EMG signal is present while no nerve is detected | Consecutive “sequence” EMG response cannot be explained | Light anesthesia, with spontaneous activity of laryngeal muscle; the recording nerve or muscle is tracted by other nerve or muscle |
The detection current is too large | Direct detect the nerve trunk (1 mA is recommended) Adjust according to the anatomic structures and EMG signals during the surgery | |
Artifacts occur in the non-neural traveling area | The surface electrode of endotracheal tube is placed too deeply | |
Under good V1 signal, there is the decrease in signal by >50% or LOS during the dissection of RLN | Anesthesia or muscle relaxation status changes | Avoid adding muscle relaxant |
Nerve transection injury | Check the nerve continuity | |
Nerve injury not visible in naked eye | Locate the injury site and analyze the causes: traction, heat, suction, and/or thread-cutting injury | |
Monitoring system failure | Recheck the electrode connections, the monitor, and interface-connector box | |
Recording electrode displacement due to changes in head position or body position | Recheck the laryngoscope and adjust the endotracheal tube |
Drug Class | Example | Effects on IONM | Recommendation |
---|---|---|---|
Neuromuscular blocking agents | Rocuronium, Vecuronium | Suppresses EMG and MEP | Avoid during monitoring or use reversal agent |
Inhalation Agents | Sevoflurane, Desflurane | Depresses evoked potentials | Use TIVA when MEP monitoring is critical |
Opioids | Remifentanil, Sufentanil, Fentanyl | No interference with EMG or MEP | Preferred agent in IONM protocols |
Benzodiazepines | Midazolam | Dose-dependent MEP suppression | Use cautiously; avoid bolus before stimulation |
Intravenous Anesthetics | Propofol | Relatively stable EMG; high dose suppresses MEP | Preferred for TIVA; titrate to avoid deep suppression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.-Y. Intraoperative Nerve Monitoring in Thyroid Surgery: A Comprehensive Review of Technical Principles, Anesthetic Considerations, and Clinical Applications. J. Clin. Med. 2025, 14, 3259. https://doi.org/10.3390/jcm14093259
Jung J-Y. Intraoperative Nerve Monitoring in Thyroid Surgery: A Comprehensive Review of Technical Principles, Anesthetic Considerations, and Clinical Applications. Journal of Clinical Medicine. 2025; 14(9):3259. https://doi.org/10.3390/jcm14093259
Chicago/Turabian StyleJung, Ji-Yoon. 2025. "Intraoperative Nerve Monitoring in Thyroid Surgery: A Comprehensive Review of Technical Principles, Anesthetic Considerations, and Clinical Applications" Journal of Clinical Medicine 14, no. 9: 3259. https://doi.org/10.3390/jcm14093259
APA StyleJung, J.-Y. (2025). Intraoperative Nerve Monitoring in Thyroid Surgery: A Comprehensive Review of Technical Principles, Anesthetic Considerations, and Clinical Applications. Journal of Clinical Medicine, 14(9), 3259. https://doi.org/10.3390/jcm14093259