The Particularities of Arterial Hypertension in Female Sex: From Pathophysiology to Therapeutic Management
Abstract
:1. Introduction
2. Epidemiology of Hypertension in Women
3. Pathophysiology of Hypertension in Women
3.1. The Role of Sex Hormones
3.2. Hormonal-Related Conditions Associated with Hypertension: From Physiology to Clinical Disease
3.2.1. Menarche
3.2.2. Menstrual Disorders
3.2.3. Pregnancy
3.2.4. Menopause
3.2.5. PCOS
3.2.6. Endometriosis
3.2.7. Fibroids
The Role of the Immune System
The Role of Cardiometabolic and Other Risk Factors
4. Clinical Implications
4.1. BP Levels Associated with Cardiovascular Risk in Women
4.2. Hypertension-Related Cardiovascular Prognosis in Women
5. Therapeutic Considerations
5.1. Limitations in the Treatment Approach According to Sex
5.2. Specific Factors Related to Antihypertensive Treatment
5.3. The Role of Hormone Replacement Therapy
5.4. Antihypertensive Treatment and BP Control in Women
6. Conclusions
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACEIs | angiotensin-converting enzyme inhibitors |
AngII | angiotensin II |
ACE | angiotensin-converting enzyme |
BMI | body mass index |
BP | blood pressure |
CCBs | calcium channel blockers |
CVD | cardiovascular disease |
DM | diabetes mellitus |
HFpEF | heart failure with preserved ejection fraction |
HRT | hormone replacement therapy |
LV | left ventricular |
NO | nitric oxide |
PCOS | polycystic ovary syndrome |
PP | pulse pressure |
PWV | pulse wave velocity |
RAAS | renin angiotensin aldosterone system |
SBP | systolic blood pressure |
TLR | toll-like receptor |
References
- Yusuf, S.; Joseph, P.; Rangarajan, S.; Islam, S.; Mente, A.; Hystad, P.; Brauer, M.; Kutty, V.R.; Gupta, R.; Wielgosz, A.; et al. Modifiable Risk Factors, Cardiovascular Disease and Mortality in 155,722 Individuals from 21 High-, Middle-, and Low-Income Countries. Lancet 2020, 395, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Gerdts, E.; Sudano, I.; Brouwers, S.; Borghi, C.; Bruno, R.M.; Ceconi, C.; Cornelissen, V.; Diévart, F.; Ferrini, M.; Kahan, T.; et al. Sex Differences in Arterial Hypertension. Eur. Heart J. 2022, 43, 4777–4788. [Google Scholar] [CrossRef] [PubMed]
- Connelly, P.J.; Currie, G.; Delles, C. Sex Differences in the Prevalence, Outcomes and Management of Hypertension. Curr. Hypertens. Rep. 2022, 24, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Chapman, N.; Ching, S.M.; Konradi, A.O.; Nuyt, A.M.; Khan, T.; Twumasi-Ankrah, B.; Cho, E.J.; Schutte, A.E.; Touyz, R.M.; Steckelings, U.M.; et al. Arterial Hypertension in Women: State of the Art and Knowledge Gaps. Hypertension 2023, 80, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, I.; Atkins, E.; Schutte, A.E.; Gnanenthiran, S.R. The Pathophysiology, Prognosis and Treatment of Hypertension in Females from Pregnancy to Post-Menopause: A Review. Curr. Heart Fail. Rep. 2024, 21, 322–336. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Niiranen, T.J.; Rader, F.; Henglin, M.; Kim, A.; Ebinger, J.E.; Claggett, B.; Merz, C.N.B.; Cheng, S. Sex Differences in Blood Pressure Associations with Cardiovascular Outcomes. Circulation 2021, 143, 761–763. [Google Scholar] [CrossRef] [PubMed]
- Millett, E.R.C.; Peters, S.A.E.; Woodward, M. Sex Differences in Risk Factors for Myocardial Infarction: Cohort Study of UK Biobank Participants. BMJ 2018, 363, k4247. [Google Scholar] [CrossRef]
- Walli-Attaei, M.; Joseph, P.; Johansson, I.; Sliwa, K.; Lonn, E.; Maggioni, A.P.; Mielniczuk, L.; Ross, H.; Karaye, K.; Hage, C.; et al. Characteristics, Management, and Outcomes in Women and Men with Congestive Heart Failure in 40 Countries at Different Economic Levels: An Analysis from the Global Congestive Heart Failure (G-CHF) Registry. Lancet Glob. Health 2024, 12, e396–e405. [Google Scholar] [CrossRef]
- Kalibala, J.; Pechère-Bertschi, A.; Desmeules, J. Gender Differences in Cardiovascular Pharmacotherapy—The Example of Hypertension: A Mini Review. Front. Pharmacol. 2020, 11, 564. [Google Scholar] [CrossRef]
- Rydberg, D.M.; Mejyr, S.; Loikas, D.; Schenck-Gustafsson, K.; von Euler, M.; Malmström, R.E. Sex Differences in Spontaneous Reports on Adverse Drug Events for Common Antihypertensive Drugs. Eur. J. Clin. Pharmacol. 2018, 74, 1165–1173. [Google Scholar] [CrossRef]
- Lodi, E.; Carollo, A.; Martinotti, V.; Modena, M.G. Hypertension and Pharmacological Therapy in Women. High Blood Press. Cardiovasc. Prev. 2018, 25, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Keyhani, S.; Scobie, J.V.; Hebert, P.L.; McLaughlin, M.A. Gender Disparities in Blood Pressure Control and Cardiovascular Care in a National Sample of Ambulatory Care Visits. Hypertension 2008, 51, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, L.M.; Simpkin, A.J.; Tilling, K.; Anderson, E.L.; Hughes, A.D.; Lawlor, D.A.; Fraser, A.; Howe, L.D. Sex-Specific Trajectories of Measures of Cardiovascular Health during Childhood and Adolescence: A Prospective Cohort Study. Atherosclerosis 2018, 278, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Kim, A.; Ebinger, J.E.; Niiranen, T.J.; Claggett, B.L.; Bairey Merz, C.N.; Cheng, S. Sex Differences in Blood Pressure Trajectories over the Life Course. JAMA Cardiol. 2020, 5, 255–262. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the Management of Arterial Hypertension The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension. J. Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task F. Hypertension 2018, 71, 1269–1324. [Google Scholar] [CrossRef] [PubMed]
- Sabbatini, A.R.; Kararigas, G. Estrogen-Related Mechanisms in Sex Differences of Hypertension and Target Organ Damage. Biol. Sex Differ. 2020, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Novella, S.; Pérez-Cremades, D.; Mompeón, A.; Hermenegildo, C. Mechanisms Underlying the Influence of Oestrogen on Cardiovascular Physiology in Women. J. Physiol. 2019, 597, 4873–4886. [Google Scholar] [CrossRef] [PubMed]
- Dubey, R.K.; Oparil, S.; Imthurn, B.; Jackson, E.K. Sex Hormones and Hypertension. Cardiovasc. Res. 2002, 53, 688–708. [Google Scholar] [CrossRef]
- Dubey, R.K.; Gillespie, D.G.; Mi, Z.; Rosselli, M.; Keller, P.J.; Jackson, E.K. Estradiol Inhibits Smooth Muscle Cell Growth in Part by Activating the CAMP-Adenosine Pathway. Hypertension 2000, 35 Pt 2, 262–266. [Google Scholar] [CrossRef]
- Xing, D.; Nozell, S.; Chen, Y.-F.; Hage, F.; Oparil, S. Estrogen and Mechanisms of Vascular Protection. Arter. Thromb Vasc Biol. 2009, 29, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Saleh, T.M.; Connell, B.J. Role of Oestrogen in the Central Regulation of Autonomic Function. Clin. Exp. Pharmacol. Physiol. 2007, 34, 827–832. [Google Scholar] [CrossRef]
- Dart, A.M.; Du, X.J.; Kingwell, B.A. Gender, Sex Hormones and Autonomic Nervous Control of the Cardiovascular System. Cardiovasc. Res. 2002, 53, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Komukai, K.; Mochizuki, S.; Yoshimura, M. Gender and the Renin-Angiotensin-Aldosterone System. Fundam. Clin. Pharmacol. 2010, 24, 687–698. [Google Scholar] [CrossRef]
- O’Donnell, E.; Floras, J.S.; Harvey, P.J. Estrogen Status and the Renin Angiotensin Aldosterone System. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Charkoudian, N.; Hart, E.C.J.; Barnes, J.N.; Joyner, M.J. Autonomic Control of Body Temperature and Blood Pressure: Influences of Female Sex Hormones. Clin. Auton. Res. 2017, 27, 149–155. [Google Scholar] [CrossRef]
- Pechere-Bertschi, A.; Burnier, M. Gonadal Steroids, Salt-Sensitivity and Renal Function. Curr. Opin. Nephrol. Hypertens. 2007, 16, 16–21. [Google Scholar] [CrossRef]
- Thomas, W.; Harvey, B.J. Estrogen-Induced Signalling and the Renal Contribution to Salt and Water Homeostasis. Steroids 2023, 199, 109299. [Google Scholar] [CrossRef] [PubMed]
- Schulman, I.H.; Aranda, P.; Raij, L.; Veronesi, M.; Aranda, F.J.; Martin, R. Surgical Menopause Increases Salt Sensitivity of Blood Pressure. Hypertension 2006, 47, 1168–1174. [Google Scholar] [CrossRef]
- Kim, J.-M.; Kim, T.-H.; Lee, H.-H.; Lee, S.H.; Wang, T. Postmenopausal Hypertension and Sodium Sensitivity. J. Menopausal Med. 2014, 20, 1–6. [Google Scholar] [CrossRef]
- Barbagallo, M.; Dominguez, L.J.; Licata, G.; Shan, J.; Bing, L.; Karpinski, E.; Pang, P.K.T.; Resnick, L.M. Vascular Effects of Progesterone. Hypertension 2001, 37, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-Y.; Kim, J.-Y.; Kim, J.-H.; Choi, D.-S.; Kim, D.-K.; Koh, K.K.; Yoon, B.-K. Effects of Hormone Therapy on Ambulatory Blood Pressure in Postmenopausal Korean Women. Climacteric 2011, 14, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.J.; Ceravolo, G.S.; Echem, C.; Hashimoto, C.M.; Costa, B.P.; Santos-Eichler, R.A.; Oliveira, M.A.; Jiménez-Altayó, F.; Akamine, E.H.; Dantas, A.P.; et al. Detrimental Effects of Testosterone Addition to Estrogen Therapy Involve Cytochrome P-450-Induced 20-HETE Synthesis in Aorta of Ovariectomized Spontaneously Hypertensive Rat (SHR), a Model of Postmenopausal Hypertension. Front. Physiol. 2018, 9, 490. [Google Scholar] [CrossRef]
- Singh, H.; Schwartzman, M.L. Renal Vascular Cytochrome P450-Derived Eicosanoids in Androgen-Induced Hypertension. Pharmacol. Rep. 2008, 60, 29–37. [Google Scholar] [PubMed]
- Wu, C.; Cheng, J.; Zhang, F.F.; Gotlinger, K.H.; Kelkar, M.; Zhang, Y.; Jat, J.L.; Falck, J.R.; Schwartzman, M.L. Androgen-Dependent Hypertension Is Mediated by 20-HETE-Induced Vascular Dysfunction: Role of κB Kinase. Hypertension 2011, 57, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E. Polycystic Ovarian Syndrome: Pathophysiology, Molecular Aspects and Clinical Implications. Expert Rev. Mol. Med. 2008, 10, e3. [Google Scholar] [CrossRef]
- DiVall, S.A.; Radovick, S. Pubertal Development and Menarche. Ann. N. Y. Acad. Sci. 2008, 1135, 19–28. [Google Scholar] [CrossRef]
- Dreyfus, J.; Jacobs Jr, D.; Mueller, N.; Schreiner, P.; Moran, A.; Carnethon, M.; Demerath, E. Age at Menarche and Cardiometabolic Risk in Adulthood: The Coronary Artery Risk Development in Young Adults Study Jill. J. Pediatr 2015, 167, 344–352. [Google Scholar] [CrossRef]
- Lee, J.J.; Cook-Wiens, G.; Johnson, B.D.; Braunstein, G.D.; Berga, S.L.; Stanczyk, F.Z.; Pepine, C.J.; Bairey Merz, C.N.; Shufelt, C.L. Age at Menarche and Risk of Cardiovascular Disease Outcomes: Findings from the National Heart Lung and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation. J. Am. Heart Assoc. 2019, 8, 12. [Google Scholar] [CrossRef]
- Day, F.R.; Elks, C.E.; Murray, A.; Ong, K.K.; Perry, J.R.B. Puberty Timing Associated with Diabetes, Cardiovascular Disease and Also Diverse Health Outcomes in Men and Women: The UK Biobank Study. Sci. Rep. 2015, 5, 11208. [Google Scholar] [CrossRef]
- Guo, L.; Peng, C.; Xu, H.; Wilson, A.; Li, P.H.; Wang, H.; Liu, H.; Shen, L.; Chen, X.; Qi, X.; et al. Age at Menarche and Prevention of Hypertension through Lifestyle in Young Chinese Adult Women: Result from Project ELEFANT. BMC Women’sHealth 2018, 18, 182. [Google Scholar] [CrossRef] [PubMed]
- Canoy, D.; Beral, V.; Balkwill, A.; Wright, F.L.; Kroll, M.E.; Reeves, G.K.; Green, J.; Cairns, B.J.; Abbiss, H.; Abbott, S.; et al. Age at Menarche and Risks of Coronary Heart and Other Vascular Diseases in a Large UK Cohort. Circulation 2015, 131, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Okoth, K.; Smith, W.P.; Thomas, G.N.; Nirantharakumar, K.; Adderley, N.J. The Association between Menstrual Cycle Characteristics and Cardiometabolic Outcomes in Later Life: A Retrospective Matched Cohort Study of 704,743 Women from the UK. BMC Med. 2023, 21, 104. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, R.; Livne, D.; Nevo, O.; Dayan, L.; Milloul, V.; Lavi, S.; Jacob, G. Hormonal and Volume Dysregulation in Women with Premenstrual Syndrome. Hypertension 2008, 51, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Stamatelopoulos, K.S.; Georgiopoulos, G.; Papaioannou, T.; Lambrinoudaki, I.; Kouzoupis, A.; Vlachopoulos, C.; Georgiou, S.P.; Manios, E.; Alevizaki, M.; Papamichael, C.M.; et al. Can Premenstrual Syndrome Affect Arterial Stiffness or Blood Pressure? Atherosclerosis 2012, 224, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Bertone-Johnson, E.R.; Whitcomb, B.W.; Rich-Edwards, J.W.; Hankinson, S.E.; Manson, J.A.E. Premenstrual Syndrome and Subsequent Risk of Hypertension in a Prospective Study. Am. J. Epidemiol. 2015, 182, 1000–1009. [Google Scholar] [CrossRef]
- Kazma, J.; Van den Anker, J.; Allegaert, K.; Dallmann, A.; Ahmadzia, H. Anatomical and Physiological Alterations of Pregnancy. J. Pharmacokinet. Pharmacodyn. 2020, 47, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, U.; Knorr, S.; Fuglsang, J.; Ovesen, P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J. Diabetes Res. 2019, 2019, 5320156. [Google Scholar] [CrossRef]
- Marín, R.; Gorostidi, M.; Portal, C.G.; Sánchez, M.; Sánchez, E.; Alvarez, J. Long-Term Prognosis of Hypertension in Pregnancy. Hypertens. Pregnancy 2000, 19, 199–209. [Google Scholar] [CrossRef]
- Garovic, V.D.; Bailey, K.R.; Boerwinkle, E.; Hunt, S.C.; Weder, A.B.; Curb, D.; Mosley, T.H.; Wiste, H.J.; Turner, S.T. Hypertension in Pregnancy as a Risk Factor for Cardiovascular Disease Later in Life. J. Hypertens. 2010, 28, 826–833. [Google Scholar] [CrossRef]
- Lykke, J.A.; Langhoff-Roos, J.; Sibai, B.M.; Funai, E.F.; Triche, E.W.; Paidas, M.J. Hypertensive Pregnancy Disorders and Subsequent Cardiovascular Morbidity and Type 2 Diabetes Mellitus in the Mother. Hypertension 2009, 53, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Tooher, J.; Thornton, C.; Makris, A.; Ogle, R.; Korda, A.; Hennessy, A. All Hypertensive Disorders of Pregnancy Increase the Risk of Future Cardiovascular Disease. Hypertension 2017, 70, 798–803. [Google Scholar] [CrossRef]
- Stuart, J.; Tanz, L.; Missmer, S.; Rimm, E.; Spiegelmen, D.; James-Todd, T.; Rich-Edwards, J. Hypertensive Disorders of Pregnancy and Maternal Cardiovascular Disease Risk Factor Development: An Observational. Ann. Intern. Med. 2018, 169, 224–232. [Google Scholar] [CrossRef]
- Behrens, I.; Basit, S.; Melbye, M.; Lykke, J.A.; Wohlfahrt, J.; Bundgaard, H.; Thilaganathan, B.; Boyd, H.A. Risk of Post-Pregnancy Hypertension in Women with a History of Hypertensive Disorders of Pregnancy: Nationwide Cohort Study. BMJ 2017, 358, j3078. [Google Scholar] [CrossRef] [PubMed]
- Egeland, G.M.; Skurtveit, S.; Staff, A.C.; Eide, G.E.; Daltveit, A.K.; Klungsøyr, K.; Trogstad, L.; Magnus, P.M.; Brantsæter, A.L.; Haugen, M. Pregnancy-Related Risk Factors Are Associated with a Significant Burden of Treated Hypertension within 10 Years of Delivery: Findings from a Population-Based Norwegian Cohort. J. Am. Heart Assoc. 2018, 7, e008318. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, L.; Casas, J.P.; Hingorani, A.D.; Williams, D.J. Pre-Eclampsia and Risk of Cardiovascular Disease and Cancer in Later Life: Systematic Review and Meta-Analysis. Br. Med. J. 2007, 335, 974–977. [Google Scholar] [CrossRef]
- Männistö, T.; Mendola, P.; Vääräsmäki, M.; Järvelin, M.-R.; Hartikainen, A.-L.; Pouta, A.; Suvanto, E. Elevated Blood Pressure in Pregnancy and Subsequent Chronic Disease Risk. Circulation 2013, 127, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.C.; Best, K.E.; Pearce, M.S.; Waugh, J.; Robson, S.C.; Bell, R. Cardiovascular Disease Risk in Women with Pre-Eclampsia: Systematic Review and Meta-Analysis. Eur. J. Epidemiol. 2013, 28, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Aykas, F.; Solak, Y.; Erden, A.; Bulut, K.; Dogan, S.; Sarli, B.; Acmaz, G.; Afsar, B.; Siriopol, D.; Covic, A.; et al. Persistence of Cardiovascular Risk Factors in Women with Previous Preeclampsia: A Long-Term Follow-up Study. J. Investig. Med. 2015, 63, 641–645. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Bruno, A.; Pusca, I.; Luigi Nicolosi, G.; Bianchi, S.; Lombardo, M. The Effect of Previous History of Pre-Eclampsia on Subclinical Carotid Atherosclerosis up to 20 Years Postpartum: A Systematic Review and Meta-Analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024, 303, 250–258. [Google Scholar] [CrossRef]
- Barton, M.; Meyer, M.R. Postmenopausal Hypertension: Mechanisms and Therapy. Hypertension 2009, 54, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Coylewright, M.; Reckelhoff, J.F.; Ouyang, P. Menopause and Hypertension: An Age-Old Debate. Hypertension 2008, 51, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.; Wofford, M.; Reckelhoff, J.F. Hypertension in Postmenopausal Women. Curr. Hypertens. Rep. 2012, 14, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Narkiewicz, K.; Phillips, B.G.; Kato, M.; Hering, D.; Bieniaszewski, L.; Somers, V.K. Gender-Selective Interaction Between Aging, Blood Pressure, and Sympathetic Nerve Activity. Hypertension 2005, 45, 522–525. [Google Scholar] [CrossRef]
- Baker, S.E.; Limberg, J.K.; Ranadive, S.M.; Joyner, M.J. Neurovascular Control of Blood Pressure Is Influenced by Aging, Sex, and Sex Hormones. Am. J. Physiol. Integr. Comp. Physiol. 2016, 311, R1271–R1275. [Google Scholar] [CrossRef]
- Brahmbhatt, Y.; Gupta, M.; Hamrahian, S. Hypertension in Premenopausal and Postmenopausal Women. Curr. Hypertens. Rep. 2019, 21, 74. [Google Scholar] [CrossRef]
- Zanchetti, A.; Facchetti, R.; Cesana, G.C.; Modena, M.G.; Pirrelli, A.; Sega, R. Menopause-Related Blood Pressure Increase and Its Relationship to Age and Body Mass Index: The SIMONA Epidemiological Study. J. Hypertens. 2005, 23, 2269–2276. [Google Scholar] [CrossRef]
- Casiglia, E.; D’Este, D.; Ginocchio, G.; Colangeli, G.; Onesto, C.; Tramontin, P.; Ambrisio, G.B.; Pessina, A.C. Lack of Influence on Menopause on BP and Cardiovascular Risk Profile: A 16-Year Longitudinal Study Concerning a Cohort of 568 Women. J. Hypertens. 1996, 14, 729–736. [Google Scholar] [CrossRef] [PubMed]
- de Kat, A.C.; Dam, V.; Onland-Moret, N.C.; Eijkemans, M.J.C.; Broekmans, F.J.M.; van der Schouw, Y.T. Unraveling the Associations of Age and Menopause with Cardiovascular Risk Factors in a Large Population-Based Study. BMC Med. 2017, 15, 2. [Google Scholar] [CrossRef]
- Casiglia, E.; Tikhonoff, V.; Caffi, S.; Bascelli, A.; Schiavon, L.; Guidotti, F.; Saugo, M.; Giacomazzo, M.; Martini, B.; Mazza, A.; et al. Menopause Does Not Affect Blood Pressure and Risk Profile, and Menopausal Women Do Not Become Similar to Men. J. Hypertens. 2008, 26, 1983–1992. [Google Scholar] [CrossRef]
- Staessen, J.A.; Ginocchio, G.; Thijs, L.; Fagard, R. Conventional and Ambulatory Blood Pressure and Menopause in a Prospective Population Study. J. Hum. Hypertens. 1997, 11, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Opoku, A.A.; Abushama, M.; Konje, J.C. Obesity and Menopause. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 88, 102348. [Google Scholar] [CrossRef] [PubMed]
- Tikhonoff, V.; Casiglia, E.; Gasparotti, F.; Spinella, P. The Uncertain Effect of Menopause on Blood Pressure. J. Hum. Hypertens. 2019, 33, 421–428. [Google Scholar] [CrossRef]
- Timio, M.; Verdecchia, P.; Venanzi, S.; Gentili, S.; Ronconi, M.; Francucci, B.; Montanari, M.; Bichisao, E. Age and Blood Pressure Changes. A 20-Year Follow-up Study in Nuns in a Secluded Order. Hypertension 1988, 12, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F. Polycystic Ovary Syndrome: Definition, Aetiology, Diagnosis and Treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef]
- Bentley-Lewis, R.; Seely, E.; Dunaif, A. Ovarian Hypertension: Polycystic Ovary Syndrome. Endocrinol. Metab. Clin. N. Am. 2011, 40, 433–449. [Google Scholar] [CrossRef] [PubMed]
- Osibogun, O.; Ogunmoroti, O.; Michos, E.D. Polycystic Ovary Syndrome and Cardiometabolic Risk: Opportunities for Cardiovascular Disease Prevention. Trends Cardiovasc. Med. 2020, 30, 399–404. [Google Scholar] [CrossRef]
- Wild, S.; Pierpoint, T.; Jacobs, H.; McKeigue, P. Long-Term Consequences of Polycystic Ovary Syndrome: Results of a 31 Year Follow-up Study. Hum. Fertil. 2000, 3, 101–105. [Google Scholar] [CrossRef]
- Wu, C.H.; Chiu, L.T.; Chang, Y.J.; Lee, C.I.; Lee, M.S.; Lee, T.H.; Wei, J.C.C. Hypertension Risk in Young Women with Polycystic Ovary Syndrome: A Nationwide Population-Based Cohort Study. Front. Med. 2020, 7, 574651. [Google Scholar] [CrossRef]
- Amiri, M.; Ramezani Tehrani, F.; Behboudi-Gandevani, S.; Bidhendi-Yarandi, R.; Carmina, E. Risk of Hypertension in Women with Polycystic Ovary Syndrome: A Systematic Review, Meta-Analysis and Meta-Regression. Reprod. Biol. Endocrinol. 2020, 18, 23. [Google Scholar] [CrossRef]
- Lo, J.C.; Feigenbaum, S.L.; Yang, J.; Pressman, A.R.; Selby, J.V.; Go, A.S. Epidemiology and Adverse Cardiovascular Risk Profile of Diagnosed Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2006, 91, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Elting, M.W.; Korsen, T.J.M.; Bezemer, P.D.; Schoemaker, J. Prevalence of Diabetes Mellitus, Hypertension and Cardiac Complaints in a Follow-up Study of a Dutch PCOS Population. Hum. Reprod. 2001, 16, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Joham, A.E.; Kakoly, N.S.; Teede, H.J.; Earnest, A. Incidence and Predictors of Hypertension in a Cohort of Australian Women with and without Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2021, 106, 1585–1593. [Google Scholar] [CrossRef]
- Harada, T.; Iwabe, T.; Terakawa, N. Role of Cytokines in Endometriosis. Fertil. Steril. 2001, 76, 1–10. [Google Scholar] [CrossRef]
- Mu, F.; Rich-Edwards, J.; Rimm, E.B.; Spiegelman, D.; Forman, J.P.; Missmer, S.A. Association Between Endometriosis and Hypercholesterolemia or Hypertension. Hypertension 2017, 70, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Farland, L.V.; Prescott, J.; Sasamoto, N.; Tobias, D.K.; Gaskins, A.J.; Stuart, J.J.; Carusi, D.A.; Chavarro, J.E.; Horne, A.W.; Rich-Edwards, J.W.; et al. Endometriosis and Risk of Adverse Pregnancy Outcomes. Obstet. Gynecol. 2019, 134, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.L.; Chen, L.R.; Tsao, H.M.; Chen, K.H. Risk of Gestational Hypertension-Preeclampsia in Women with Preceding Endometriosis: A Nationwide Population-Based Study. PLoS ONE 2017, 12, 0181261. [Google Scholar] [CrossRef]
- Sharifipour, F.; Mohaghegh, Z.; Javanbakht, Z.; Siahkal, S.F.; Azizi, F. The Relationship between Hypertensive Disorders in Pregnancy and Endometriosis: A Systematic Review and Meta-Analysis. Reprod. Health 2024, 21, 91. [Google Scholar] [CrossRef]
- Kirschen, G.; AlAshqar, A.; Miyashita-Ishiwata, M.; Reschke, L.; El Sabeh, M.; Borahay, M. Vascular Biology of Uterine Fibroids: Connecting Fibroids and Vascular Disorders. Reproduction 2017, 162, R1–R18. [Google Scholar] [CrossRef]
- Brewster, L.M.; Haan, Y.; van Montfrans, G.A. Cardiometabolic Risk and Cardiovascular Disease in Young Women with Uterine Fibroids. Cureus 2022, 14, e30740. [Google Scholar] [CrossRef]
- Haan, Y.C.; Diemer, F.S.; Van Der Woude, L.; Van Montfrans, G.A.; Oehlers, G.P.; Brewster, L.M. The Risk of Hypertension and Cardiovascular Disease in Women with Uterine Fibroids. J. Clin. Hypertens. 2018, 20, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, M.; Guo, P.; Xiao, J.; Huang, X.; Xu, L.; Xiong, N.; O’gara, M.C.; O’meara, M.; Tan, X. Uterine Fibroids Increase the Risk of Hypertensive Disorders of Pregnancy: A Prospective Cohort Study. J. Hypertens. 2021, 39, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; Hoch, N.E.; Brown, K.A.; McCann, L.A.; Rahman, A.; Dikalov, S.; Goronzy, J.; Weyand, C.; Harrison, D.G. Role of the T Cell in the Genesis of Angiotensin II-Induced Hypertension and Vascular Dysfunction. J. Exp. Med. 2007, 204, 2449–2460. [Google Scholar] [CrossRef] [PubMed]
- Gillis, E.E.; Sullivan, J.C. Sex Differences in Hypertension: Recent Advances. Hypertension 2016, 68, 1322–1327. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, L.A.; Sullivan, J.C. Sex Differences in Hypertension: Where We Have Been and Where We Are Going. Am. J. Hypertens. 2018, 31, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex Differences in Immune Responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Tipton, A.; Sullivan, J.C. Sex Differences in T Cells in Hypertension. Clin. Ther. 2014, 36, 1882–1900. [Google Scholar] [CrossRef]
- Comeau, K.D.; Shokoples, B.G.; Schiffrin, E.L. Sex Differences in the Immune System in Relation to Hypertension and Vascular Disease. Can. J. Cardiol. 2022, 38, 1828–1843. [Google Scholar] [CrossRef]
- Belanger, K.M.; Mohamed, R.; Webb, R.C.; Sullivan, J.C. Sex Differences in TLR4 Expression in SHR Do Not Contribute to Sex Differences in Blood Pressure or the Renal T Cell Profile. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2022, 322, R319–R325. [Google Scholar] [CrossRef]
- Echem, C.; da Costa, T.J.; Oliveira, V.; Giglio Colli, L.; Landgraf, M.A.; Rodrigues, S.F.; Franco, M.d.C.P.; Landgraf, R.G.; Santos-Eichler, R.A.; Bomfim, G.F.; et al. Mitochondrial DNA: A New Driver for Sex Differences in Spontaneous Hypertension. Pharmacol. Res. 2019, 144, 142–150. [Google Scholar] [CrossRef]
- Carr, M.C. The Emergence of the Metabolic Syndrome with Menopause. J. Clin. Endocrinol. Metab. 2003, 88, 2404–2411. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, A.; Rossi, R.; Modena, M.G. Hypertension Alone or Related to the Metabolic Syndrome in Postmenopausal Women. Expert Rev. Cardiovasc. Ther. 2010, 8, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.L.; Tso, A.W.K.; Lam, K.S.L.; Cheung, B.M.Y. Gender Difference in Blood Pressure Control and Cardiovascular Risk Factors in Americans with Diagnosed Hypertension. Hypertension 2008, 51, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Wenger, N.K.; Arnold, A.; Bairey Merz, C.N.; Cooper-DeHoff, R.M.; Ferdinand, K.C.; Fleg, J.L.; Gulati, M.; Isiadinso, I.; Itchhaporia, D.; Light-McGroary, K.A.; et al. Hypertension Across a Woman’s Life Cycle. J. Am. Coll. Cardiol. 2018, 71, 1797–1813. [Google Scholar] [CrossRef] [PubMed]
- Kringeland, E.; Tell, G.S.; Midtbø, H.; Igland, J.; Haugsgjerd, T.R.; Gerdts, E. Stage 1 Hypertension, Sex, and Acute Coronary Syndromes during Midlife: The Hordaland Health Study. Eur. J. Prev. Cardiol. 2022, 29, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Madsen, T.E.; Howard, G.; Kleindorfer, D.O.; Furie, K.L.; Oparil, S.; Manson, J.E.; Liu, S.; Howard, V.J. Sex Differences in Hypertension and Stroke Risk in the REGARDS Study: A Longitudinal Cohort Study. Hypertension 2019, 74, 749–755. [Google Scholar] [CrossRef]
- Anstey, K.J.; Peters, R.; Mortby, M.E.; Kiely, K.M.; Eramudugolla, R.; Cherbuin, N.; Huque, M.H.; Dixon, R.A. Association of Sex Differences in Dementia Risk Factors with Sex Differences in Memory Decline in a Population-Based Cohort Spanning 20–76 Years. Sci. Rep. 2021, 11, 7710. [Google Scholar] [CrossRef]
- Gilsanz, P.; Mayeda, E.R.; Glymour, M.M.; Quesenberry, C.P.; Mungas, D.M.; DeCarli, C.; Dean, A.; Whitmer, R.A. Female Sex, Early-Onset Hypertension, and Risk of Dementia. Neurology 2017, 89, 1886–1893. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V. Sex and Gender Differences in Heart Failure. Int. J. Heart Fail. 2020, 2, 157–181. [Google Scholar] [CrossRef]
- Khan, S.S.; Beach, L.B.; Yancy, C.W. Sex-Based Differences in Heart Failure: JACC Focus Seminar 7/7. J. Am. Coll. Cardiol. 2022, 79, 1530–1541. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Larson, M.G.; Leip, E.P.; Beiser, A.; D’Agostino, R.B.; Kannel, W.B.; Murabito, J.M.; Vasan, R.S.; Benjamin, E.J.; Levy, D. Lifetime Risk for Developing Congestive Heart Failure: The Framingham Heart Study. Circulation 2002, 106, 3068–3072. [Google Scholar] [CrossRef] [PubMed]
- Cesaroni, G.; Mureddu, G.F.; Agabiti, N.; Mayer, F.; Stafoggia, M.; Forastiere, F.; Latini, R.; Masson, S.; Davoli, M.; Boccanelli, A.; et al. Sex Differences in Factors Associated with Heart Failure and Diastolic Left Ventricular Dysfunction: A Cross-Sectional Population-Based Study. BMC Public Health 2021, 21, 415. [Google Scholar] [CrossRef] [PubMed]
- Seeland, U.; Nemcsik, J.; Lønnebakken, M.T.; Kublickiene, K.; Schluchter, H.; Park, C.; Pucci, G.; Mozos, I.; Bruno, R.M. Sex and Gender Aspects in Vascular Ageing—Focus on Epidemiology, Pathophysiology, and Outcomes. Heart Lung Circ. 2021, 30, 1637–1646. [Google Scholar] [CrossRef]
- Laporte, M.A.L.; Coutinho, T. Vascular Aging in Women. Can. J. Cardiol. 2024, 40, 1493–1495. [Google Scholar] [CrossRef]
- Sonaglioni, A.; Baravelli, M.; Lombardo, M.; Sommese, C.; Anzà, C.; Kirk, J.A.; Padeletti, L. Ventricular-Arterial Coupling in Centenarians without Cardiovascular Diseases. Aging Clin. Exp. Res. 2018, 30, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Redfield, M.M.; Jacobsen, S.J.; Borlaug, B.A.; Rodeheffer, R.J.; Kass, D.A. Age- and Gender-Related Ventricular-Vascular Stiffening: A Community-Based Study. Circulation 2005, 112, 2254–2262. [Google Scholar] [CrossRef] [PubMed]
- Rapsomaniki, E.; Timmis, A.; George, J.; Pujades-Rodriguez, M.; Shah, A.D.; Denaxas, S.; White, I.R.; Caulfield, M.J.; Deanfield, J.E.; Smeeth, L.; et al. Blood Pressure and Incidence of Twelve Cardiovascular Diseases: Lifetime Risks, Healthy Life-Years Lost, and Age-Specific Associations in 1·25 Million People. Lancet 2014, 383, 1899–1911. [Google Scholar] [CrossRef]
- Lee, H.; Yano, Y.; Cho, S.M.J.; Park, J.H.; Park, S.; Lloyd-Jones, D.M.; Kim, H.C. Cardiovascular Risk of Isolated Systolic or Diastolic Hypertension in Young Adults. Circulation 2020, 141, 1778–1786. [Google Scholar] [CrossRef]
- Boggia, J.; Thijs, L.; Hansen, T.W.; Li, Y.; Kikuya, M.; Björklund-Bodegård, K.; Richart, T.; Ohkubo, T.; Jeppesen, J.; Torp-Pedersen, C.; et al. Ambulatory Blood Pressure Monitoring in 9357 Subjects from 11 Populations Highlights Missed Opportunities for Cardiovascular Prevention in Women. Hypertension 2011, 57, 397–405. [Google Scholar] [CrossRef]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; et al. 2024 ESC Guidelines for the Management of Elevated Blood Pressure and Hypertension. Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef]
- Bierer, B.E.; Meloney, L.G.; Ahmed, H.R.; White, S.A. Advancing the Inclusion of Underrepresented Women in Clinical Research. Cell Rep. Med. 2022, 3, 100553. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.D.; Supiano, M.A.; Applegate, W.B.; Berlowitz, D.R.; Campbell, R.C.; Chertow, G.M.; Fine, L.J.; Haley, W.E.; Hawfield, A.T.; Ix, J.H.; et al. Intensive vs Standard Blood Pressure Control and Cardiovascular Disease Outcomes in Adults Aged ≥75 Years: A Randomized Clinical Trial. JAMA 2016, 315, 2673–2682. [Google Scholar] [CrossRef] [PubMed]
- Foy, C.G.; Lovato, L.C.; Vitolins, M.Z.; Bates, J.T.; Campbell, R.; Cushman, W.C.; Glasser, S.P.; Gillespie, A.; Kostis, W.J.; Krousel-Wood, M.; et al. Gender, Blood Pressure, and Cardiovascular and Renal Outcomes in Adults with Hypertension from the Systolic Blood Pressure Intervention Trial. J. Hypertens. 2018, 36, 904–915. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Jimenez, R.; Viquez-Beita, K.; Daluwatte, C.; Zusterzeel, R. Sex Differences of Patients with Systemic Hypertension (From the Analysis of the Systolic Blood Pressure Intervention Trial [SPRINT]). Am. J. Cardiol. 2018, 122, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Soldin, O.P.; Mattison, D.R. Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef]
- Freire, A.C.; Basit, A.W.; Choudhary, R.; Piong, C.W.; Merchant, H.A. Does Sex Matter? The Influence of Gender on Gastrointestinal Physiology and Drug Delivery. Int. J. Pharm. 2011, 415, 15–28. [Google Scholar] [CrossRef]
- Spoletini, I.; Vitale, C.; Malorni, W.; Rosano, G.M.C. Sex Differences in Drug Effects: Interaction with Sex Hormones in Adult Life. Handb. Exp. Pharmacol. 2012, 214, 91–105. [Google Scholar] [CrossRef]
- Zhao, M.; Woodward, M.; Vaartjes, I.; Millett, E.R.C.; Klipstein-Grobusch, K.; Hyun, K.; Carcel, C.; Peters, S.A.E. Sex Differences in Cardiovascular Medication Prescription in Primary Care: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2020, 9, e014742. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Bell, D.; Molokhia, M.; Srishanmuganathan, J.; Patel, M.; Car, J.; Majeed, A. Trends in Hospital Admissions for Adverse Drug Reactions in England: Analysis of National Hospital Episode Statistics 1998–2005. BMC Clin. Pharmacol. 2007, 7, 9. [Google Scholar] [CrossRef]
- Bratland, B.; Dahlöf, B.; Syvertsen, J.O.; Tretli, S. Female Preponderance for Lisinopril-Induced Cough in Hypertension. Am. J. Hypertens. 1994, 7, 1012–1015. [Google Scholar] [CrossRef]
- Kloner, R.A.; Sowers, J.R.; DiBona, G.F.; Gaffney, M.; Wein, M. Sex- and Age-Related Antihypertensive Effects of Amlodipine. Am. J. Cardiol. 1996, 77, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Egom, E.E.A.; Chirico, D.; Clark, A.L. A Review of Thiazide-Induced Hyponatraemia. Clin. Med. 2011, 11, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Cadeddu, C.; Franconi, F.; Cassisa, L.; Campesi, I.; Pepe, A.; Cugusi, L.; Maffei, S.; Gallina, S.; Sciomer, S.; Mercuro, G. Arterial Hypertension in the Female World: Pathophysiology and Therapy. J. Cardiovasc. Med. 2016, 17, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.; Roll, J.M.; Schraudner, T.; Murphy, S.; McPherson, S. Prevalence of Persistent Pain in the U.S. Adult Population: New Data from the 2010 National Health Interview Survey. J. Pain 2014, 15, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Dominick, K.L.; Ahern, F.M.; Gold, C.H.; Heller, D.A. Gender Differences in NSAID Use Among Older Adults with Osteoarthritis. Ann. Pharmacother. 2003, 37, 1566–1571. [Google Scholar] [CrossRef] [PubMed]
- Christ, M.; Seyffart, K.; Tillmann, H.-C.; Wehling, M. Hormone Replacement in Postmenopausal Women: Impact of Progestogens on Autonomic Tone and Blood Pressure Regulation. Menopause 2002, 9, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.-K.; Sung, J.; Song, Y.-M.; Kim, S.-M.; Son, K.-A.; Yoo, J.H.; Park, S.-J.; Kim, D.-K. Effects of Menopausal Hormone Therapy on Ambulatory Blood Pressure and Arterial Stiffness in Postmenopausal Korean Women with Grade 1 Hypertension: A Randomized, Placebo-Controlled Trial. Clin. Hypertens. 2021, 27, 18. [Google Scholar] [CrossRef] [PubMed]
- Kawecka-Jaszcz, K.; Czarnecka, D.; Olszanecka, A.; Rajzer, M.; Jankowski, P. The Effect of Hormone Replacement Therapy on Arterial Blood Pressure and Vascular Compliance in Postmenopausal Women with Arterial Hypertension. J. Hum. Hypertens. 2002, 16, 509–516. [Google Scholar] [CrossRef]
- Scuteri, A.; Bos, A.J.G.; Brant, L.J.; Talbot, L.; Lakatta, E.G.; Fleg, J.L. Hormone Replacement Therapy and Longitudinal Changes in Blood Pressure in Postmenopausal Women. Ann. Intern. Med. 2001, 135, 229. [Google Scholar] [CrossRef]
- Swica, Y.; Warren, M.P.; Manson, J.E.; Aragaki, A.K.; Bassuk, S.S.; Shimbo, D.; Kaunitz, A.; Rossouw, J.; Stefanick, M.L.; Womack, C.R. Effects of Oral Conjugated Equine Estrogens with or without Medroxyprogesterone Acetate on Incident Hypertension in the Women’s Health Initiative Hormone Therapy Trials. Menopause 2018, 25, 753–761. [Google Scholar] [CrossRef]
- Chiu, C.L.; Lujic, S.; Thornton, C.; O’Loughlin, A.; Makris, A.; Hennessy, A.; Lind, J.M. Menopausal Hormone Therapy Is Associated with Having High Blood Pressure in Postmenopausal Women: Observational Cohort Study. PLoS ONE 2012, 7, e40260. [Google Scholar] [CrossRef] [PubMed]
- Oliver-Williams, C.; Glisic, M.; Shahzad, S.; Brown, E.; Baena, C.P.; Chadni, M.; Chowdhury, R.; Franco, O.H.; Muka, T. The Route of Administration, Timing, Duration and Dose of Postmenopausal Hormone Therapy and Cardiovascular Outcomes in Women: A Systematic Review. Hum. Reprod. Update 2019, 25, 257–271. [Google Scholar] [CrossRef]
- Ichikawa, J.; Sumino, H.; Ichikawa, S.; Ozaki, M. Different Effects of Transdermal and Oral Hormone Replacement Therapy on the Renin-Angiotensin System, Plasma Bradykinin Level, and Blood Pressure of Normotensive Postmenopausal Women. Am. J. Hypertens. 2006, 19, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Madika, A.-L.; MacDonald, C.J.; Fournier, A.; Mounier-Vehier, C.; Béraud, G.; Boutron-Ruault, M.-C. Menopausal Hormone Therapy and Risk of Incident Hypertension: Role of the Route of Estrogen Administration and Progestogens in the E3N Cohort. Menopause 2021, 28, 1204–1208. [Google Scholar] [CrossRef]
- Kalenga, C.Z.; Metcalfe, A.; Robert, M.; Nerenberg, K.A.; Macrae, J.M.; Ahmed, S.B. Association between the Route of Administration and Formulation of Estrogen Therapy and Hypertension Risk in Postmenopausal Women: A Prospective Population-Based Study. Hypertension 2023, 80, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Wild, R.A.; Larson, J.C.; Crandall, C.J.; Shadyab, A.H.; Allison, M.; Gass, M.; Shufelt, C.; Manson, J.E. Hormone Therapy Formulation, Dose, Route of Delivery, and Risk of Hypertension: Findings from the Women’s Health Initiative Observational Study (WHI-OS). Menopause 2021, 28, 1108–1116. [Google Scholar] [CrossRef]
- Bager, J.E.; Manhem, K.; Andersson, T.; Hjerpe, P.; Bengtsson-Boström, K.; Ljungman, C.; Mourtzinis, G. Hypertension: Sex-Related Differences in Drug Treatment, Prevalence and Blood Pressure Control in Primary Care. J. Hum. Hypertens. 2023, 37, 662–670. [Google Scholar] [CrossRef]
- Yeo, W.J.; Abraham, R.; Surapaneni, A.L.; Schlosser, P.; Ballew, S.; Ozkan, B.; Flaherty, C.M.; Yu, B.; Bonventre, J.V.; Parikh, C.; et al. Sex Differences in Hypertension and Its Management Throughout Life. Hypertension 2024, 81, 2263–2274. [Google Scholar] [CrossRef]
- Wassertheil-Smoller, S.; Anderson, G.; Psaty, B.M.; Black, H.R.; Manson, J.A.; Wong, N.; Francis, J.; Grimm, R.; Kotchen, T.; Langer, R.; et al. Hypertension and Its Treatment in Postmenopausal Women: Baseline Data from the Women’s Health Initiative. Hypertension 2000, 36, 780–789. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazaridis, A.; Malliora, A.; Gkaliagkousi, E. The Particularities of Arterial Hypertension in Female Sex: From Pathophysiology to Therapeutic Management. J. Clin. Med. 2025, 14, 3137. https://doi.org/10.3390/jcm14093137
Lazaridis A, Malliora A, Gkaliagkousi E. The Particularities of Arterial Hypertension in Female Sex: From Pathophysiology to Therapeutic Management. Journal of Clinical Medicine. 2025; 14(9):3137. https://doi.org/10.3390/jcm14093137
Chicago/Turabian StyleLazaridis, Antonios, Anastasia Malliora, and Eugenia Gkaliagkousi. 2025. "The Particularities of Arterial Hypertension in Female Sex: From Pathophysiology to Therapeutic Management" Journal of Clinical Medicine 14, no. 9: 3137. https://doi.org/10.3390/jcm14093137
APA StyleLazaridis, A., Malliora, A., & Gkaliagkousi, E. (2025). The Particularities of Arterial Hypertension in Female Sex: From Pathophysiology to Therapeutic Management. Journal of Clinical Medicine, 14(9), 3137. https://doi.org/10.3390/jcm14093137