Phenotypes of Exacerbations in Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Definitions
- Chest illness that causes loss of time from work or forces the patient to stay indoors or in bed, in association with symptoms presented during an exacerbation—increased sputum volume, sputum color, dyspnea, temperature [14].
- Increases in dyspnea, cough, and sputum production with increased purulence in sputum [15].
- “A sustained worsening of the patient’s condition, from the stable state and beyond normal day-to-day variations, necessitating a change in regular medication in a patient with underlying COPD” [16].
- Exacerbation is associated with refractory dyspnoea (>4 on a 0–10 scale), worse cough and sputum, manifestations of systemic involvement, such as tachypnoea (>24 breaths/min), fever, elevated white cell count (>9000 cells/dL), and CRP (>10 mg/dL), without evidence of infiltrates in the chest radiograph [17].
- “AECOPD are defined clinically as episodes of increasing respiratory symptoms, particularly dyspnea, cough and sputum production, and increased sputum purulence” [18].
3. Clinical Manifestation, Diagnostic and Prognostic Biomarkers
3.1. Clinical Manifestation
- Type 1 exacerbations—patients experience increased dyspnea, sputum volume, and sputum purulence;
- Type 2 exacerbations—patients invoke any two of the previously specified symptoms;
- Type 3 exacerbations—involves one of those symptoms in association with at least one of the following findings: worsening cough, worsening wheeze, fever without other cause, symptoms of an upper respiratory tract infection (sore throat, nasal discharge) within the past 5 days, or increase in respiratory rate or heart rate by 20% as compared with baseline [15].
3.2. Diagnostic and Prognostic Biomarkers
- Increased serum levels of CRP and/or positive procalcitonin are associated with the bacterial etiology of exacerbations;
- IL-6, fibrinogen, and CXCL10 in serum are associated with the identification of viruses as determining factors of AECOPD;
- The presence of neutrophils and IL-1b in induced sputum correlates with bacterial exacerbations;
- The presence of eosinophilic inflammation in the respiratory tract is associated with the viral nature of AECOPD.
4. COPD Exacerbation Phenotypes
4.1. Non-Exacerbator Phenotype vs. Emphysema or Chronic Bronchitis Frequent Exacerbator Phenotype
- Emphysema frequent exacerbator phenotype
- Chronic bronchitis frequent exacerbator phenotype
4.2. Comorbidity Phenotypes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AECOPD | Acute exacerbations of chronic obstructive pulmonary disease |
BODE | Body-mass index, Obstruction, Dyspnea and Exercise |
CAT | COPD Assessment Test |
COPD | Chronic obstructive pulmonary disease |
GOLD | Global initiative for chronic obstructive lung disease |
VAS | Visual analog dyspnea scale |
RR | Respiratory rate |
HR | Heart rate |
SaO2 | Oxygen saturation |
ABG | Arterial blood gases |
PaO2 | Arterial pressure of oxygen |
SABD | Short acting bronchodilators |
CS | Corticosteroids |
CRP | C-reactive protein |
PCT | Procalcitonin |
CXCL10 | C-X-C motif chemokine 10 |
FeNO | Fractional exhaled nitric oxide |
ACO | Asthma—COPD phenotype |
BD | Bronchodilator |
ICS | Inhaled corticosteroid |
PDE | Phosphodiesterase |
References
- Wedzicha, J.; Mackay, A.; Singh, R. COPD exacerbations: Impact and prevention. Breathe 2013, 9, 434–440. [Google Scholar] [CrossRef]
- Stern, D.A.; Morgan, W.J.; Wright, A.L.; Guerra, S.; Martinez, F.D. Poor airway function in early infancy and lung function by age 22 years: A non-selective longitudinal cohort study. Lancet 2007, 370, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Eisner, M.D.; Anthonisen, N.; Coultas, D.; Kuenzli, N.; Perez-Padilla, R.; Postma, D.; Romieu, I.; Silverman, E.K.; Balmes, J.R. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010, 182, 693–718. [Google Scholar] [CrossRef] [PubMed]
- Salvi, S.S.; Barnes, P.J. Chronic obstructive pulmonary disease in non-smokers. Lancet 2009, 374, 733–743. [Google Scholar] [CrossRef]
- Langefeld, K.; Agusti, A.G.; Vogelmeier, C. 2025 GOLD Report—Global Initiative for Chronic Obstructive Lung Disease—GOLD 2025. Available online: https://goldcopd.org/2025-gold-report/ (accessed on 1 March 2025).
- Adeloye, D.; Chua, S.; Lee, C.; Basquill, C.; Papana, A.; Theodoratou, E.; Nair, H.; Gasevic, D.; Sridhar, D.; Campbell, H.; et al. Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J. Glob. Health 2015, 5, 020415. [Google Scholar] [CrossRef]
- World Health Organization. Projections of Mortality and Causes of Death, 2016 and 2060. Available online: https://colinmathers.com/2022/05/10/projections-of-global-deaths-from-2016-to-2060/ (accessed on 1 March 2025).
- Celli, B.; Fabbri, L.; Criner, G.; Martinez, F.J.; Mannino, D.; Vogelmeier, C.; de Oca, M.M.; Papi, A.; Sin, D.D.; Han, M.L.K.; et al. Definition and Nomenclature of Chronic Obstructive Pulmonary Disease Time for Its Revision. Am. J. Respir. Crit. Care Med. 2022, 206, 1317–1325. [Google Scholar] [CrossRef]
- Viniol, C.; Vogelmeier, C.F. Exacerbations of COPD. Eur. Respir. Rev. 2018, 27, 170103. [Google Scholar] [CrossRef]
- Suissa, S.; Dell’Aniello, S.; Ernst, P. Long-term natural history of chronic obstructive pulmonary disease: Severe exacerbations and mortality. Thorax 2012, 67, 957–963. [Google Scholar] [CrossRef]
- MacLeod, M.; Papi, A.; Contoli, M.; Beghé, B.; Celli, B.R.; Wedzicha, J.A.; Fabbri, L.M. Chronic obstructive pulmonary disease exacerbation fundamentals: Diagnosis, treatment, prevention and disease impact. Respirology 2021, 26, 532–551. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Agusti, A.; Bafadhel, M.; Christenson, S.A.; Bon, J.; Donaldson, G.C.; Sin, D.D.; Wedzicha, J.A.; Martinez, F.J. Phenotypes, Etiotypes, and Endotypes of Exacerbations of Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2023, 208, 1026–1041. [Google Scholar] [CrossRef]
- Mathioudakis, A.G.; Janssens, W.; Sivapalan, P.; Singanayagam, A.; Dransfield, M.T.; Jensen, J.U.S.; Vestbo, J. Acute exacerbations of chronic obstructive pulmonary disease: In search of diagnostic biomarkers and treatable traits. Thorax 2020, 75, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.L.; Burrows, B.; Fletcher, C.M. Serial studies of 100 patients with chronic airway obstruction in London and Chicago. Thorax 1967, 22, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Anthonisen, N.R.; Manfreda, J.; Warren, C.P.W.; Hershfield, E.S.; Harding, G.K.M.; Nelson, N.A. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann. Intern. Med. 1987, 106, 196–204. [Google Scholar] [CrossRef]
- Rodriguez-Roisin, R. Toward a consensus definition for COPD exacerbations. Chest 2000, 117 (Suppl. S2), 398S–401S. [Google Scholar] [CrossRef]
- Celli, B.R.; Barnes, P.J. Exacerbations of chronic obstructive pulmonary disease. Eur. Respir. J. 2007, 29, 1224–1238. [Google Scholar] [CrossRef]
- Wedzicha, J.A.; Miravitlles, M.; Hurst, J.R.; Calverley, P.M.A.; Albert, R.K.; Anzueto, A.; Criner, G.J.; Papi, A.; Rabe, K.F.; Rigau, D.; et al. Management of COPD exacerbations: A European Respiratory Society/American Thoracic Society guideline. Eur. Respir. J. 2017, 50, 1600791. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.R.; Fabbri, L.M.; Aaron, S.D.; Agusti, A.; Brook, R.; Criner, G.J.; Franssen, F.M.E.; Humbert, M.; Hurst, J.R.; O’Donnell, D.; et al. An Updated Definition and Severity Classification of Chronic Obstructive Pulmonary Disease Exacerbations: The Rome Proposal. Am. J. Respir. Crit. Care Med. 2021, 204, 1251–1258. [Google Scholar] [CrossRef]
- Althobiani, M.A.; Shah, A.J.; Khan, B.; Hurst, J.R. Clinicians’ and Researchers’ Perspectives on a New Chronic Obstructive Pulmonary Disease Exacerbation Definition: Rome Wasn’t Built in a Day. Am. J. Respir. Crit. Care Med. 2023, 207, 1095–1097. [Google Scholar] [CrossRef] [PubMed]
- Reumkens, C.; Endres, A.; Simons, S.O.; Savelkoul, P.H.M.; Sprooten, R.T.M.; Franssen, F.M.E. Application of the Rome severity classification of COPD exacerbations in a real-world cohort of hospitalised patients. ERJ Open Res. 2023, 9, 00569-2022. [Google Scholar] [CrossRef]
- Bakeer, M.; Funk, G.-C.; Valipour, A. Chronic obstructive pulmonary disease phenotypes: Imprint on pharmacological and non-pharmacological therapy. Ann. Transl. Med. 2020, 8, 1472. [Google Scholar] [CrossRef]
- Hurst, J.R. Exacerbation phenotyping in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2011, 184, 625–626. [Google Scholar] [CrossRef] [PubMed]
- Bafadhel, M.; McKenna, S.; Terry, S.; Mistry, V.; Reid, C.; Haldar, P.; McCormick, M.; Haldar, K.; Kebadze, T.; Duvoix, A.; et al. Acute exacerbations of chronic obstructive pulmonary disease: Identification of biologic clusters and their biomarkers. Am. J. Respir. Crit. Care Med. 2011, 184, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Zhou, Z.; Zhao, Y.; Chen, P. The recent advances of phenotypes in acute exacerbations of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Pisi, R.; Aiello, M.; Calzetta, L.; Frizzelli, A.; Tzani, P.; Bertorelli, G.; Chetta, A. The COPD assessment test and the modified Medical Research Council scale are not equivalent when related to the maximal exercise capacity in COPD patients. Pulmonology 2023, 29, 194–199. [Google Scholar] [CrossRef]
- de Freitas, A.P.V.M.; Belo, L.F.; Martinez, L.; Hernandes, N.A.; Pitta, F. Use of the Borg dyspnea scale to identify dynamic hyperinflation during the 6-minute walking test in individuals with moderate-severe COPD: A pilot study. Pulmonology 2023, 29, 335–337. [Google Scholar] [CrossRef]
- Kamath, S.; Kumar, A.; Panda, S.; Samanta, R. Correlation of BODE index with quality of life in stable Chronic Obstructive Pulmonary Disease (COPD) patients—A prospective study. J. Fam. Med. Prim. Care 2020, 9, 5606. [Google Scholar] [CrossRef]
- Stockley, R.A.; O’Brien, C.; Pye, A.; Hill, S.L. Relationship of sputum color to nature and outpatient management of acute exacerbations of COPD. Chest 2000, 117, 1638–1645. [Google Scholar] [CrossRef]
- Aaron, S.D.; Donaldson, G.C.; Whitmore, G.A.; Hurst, J.R.; Ramsay, T.; Wedzicha, J.A. Time course and pattern of COPD exacerbation onset. Thorax 2012, 67, 238–243. [Google Scholar] [CrossRef]
- Scioscia, G.; Blanco, I.; Arismendi, E.; Burgos, F.; Gistau, C.; Foschino Barbaro, M.P.; Celli, B.; O’Donnell, D.E.; Agustí, A. Different dyspnoea perception in COPD patients with frequent and infrequent exacerbations. Thorax 2017, 72, 117–121. [Google Scholar] [CrossRef]
- Sato, M.; Chubachi, S.; Sasaki, M.; Haraguchi, M.; Kameyama, N.; Tsutsumi, A.; Takahashi, S.; Nakamura, H.; Asano, K.; Betsuyaku, T. Impact of mild exacerbation on COPD symptoms in a Japanese cohort. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1269–1278. [Google Scholar] [CrossRef]
- Duffy, S.P.; Criner, G.J. Chronic Obstructive Pulmonary Disease: Evaluation and Management. Med. Clin. North Am. 2019, 103, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Vogelmeier, C.F.; Román-Rodríguez, M.; Singh, D.; Han, M.L.K.; Rodríguez-Roisin, R.; Ferguson, G.T. Goals of COPD treatment: Focus on symptoms and exacerbations. Respir. Med. 2020, 166, 105938. [Google Scholar] [CrossRef]
- White, A.J.; Gompertz, S.; Stockley, R.A. Chronic obstructive pulmonary disease • 6: The aetiology of exacerbations of chronic obstructive pulmonary disease. Thorax 2003, 58, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Papi, A.; Bellettato, C.M.; Braccioni, F.; Romagnoli, M.; Casolari, P.; Caramori, G.; Fabbri, L.M.; Johnston, S.L. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am. J. Respir. Crit. Care Med. 2006, 173, 1114–1121. [Google Scholar] [CrossRef]
- Patel, A.R.C.; Hurst, J.R.; Wedzicha, J.A. The potential value of biomarkers in diagnosis and staging of COPD and exacerbations. Semin. Respir. Crit. Care Med. 2010, 31, 267–275. [Google Scholar] [CrossRef]
- Lacoma, A.; Prat, C.; Andreo, F.; Domínguez, J. Biomarkers in the management of COPD. Eur. Respir. Rev. 2009, 18, 96–104. [Google Scholar] [CrossRef]
- Karadeniz, G.; Polat, G.; Senol, G.; Buyuksirin, M. C-reactive protein measurements as a marker of the severity of chronic obstructive pulmonary disease exacerbations. Inflammation 2013, 36, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Stolz, D.; Christ-Crain, M.; Morgenthaler, N.G.; Leuppi, J.; Miedinger, D.; Bingisser, R.; Müller, C.; Struck, J.; Müller, B.; Tamm, M. Copeptin, C-reactive protein, and procalcitonin as prognostic biomarkers in acute exacerbation of COPD. Chest 2007, 131, 1058–1067. [Google Scholar] [CrossRef]
- Nuñez, A.; Marras, V.; Harlander, M.; Mekov, E.; Esquinas, C.; Turel, M.; Lestan, D.; Petkov, R.; Yanev, N.; Pirina, P.; et al. Association between routine blood biomarkers and clinical phenotypes and exacerbations in chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 681–690. [Google Scholar] [CrossRef]
- Corti, C.; Fally, M.; Fabricius-Bjerre, A.; Mortensen, K.; Jensen, B.N.; Andreassen, H.F.; Porsbjerg, C.; Knudsen, J.D.; Jensen, J.U. Point-of-care procalcitonin test to reduce antibiotic exposure in patients hospitalized with acute exacerbation of COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 1381–1389. [Google Scholar] [CrossRef]
- Rammaert, B.; Verdier, N.; Cavestri, B.; Nseir, S. Procalcitonin as a prognostic factor in severe acute exacerbation of chronic obstructive pulmonary disease. Respirology 2009, 14, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Bozinovski, S.; Hutchinson, A.; Thompson, M.; MacGregor, L.; Black, J.; Giannakis, E.; Karlsson, A.S.; Silvestrini, R.; Smallwood, D.; Vlahos, R.; et al. Serum amyloid A is a biomarker of acute exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2008, 177, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Seemungal, T.; Harper-Owen, R.; Bhowmik, A.; Moric, I.; Sanderson, G.; Message, S.; Maccallum, P.; Meade, T.W.; Jeffries, D.J.; Johnston, S.L.; et al. Respiratory viruses, symptoms, and inflammatory markers in acute exacerbations and stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001, 164, 1618–1623. [Google Scholar] [CrossRef]
- Fermont, J.M.; Masconi, K.L.; Jensen, M.T.; Ferrari, R.; Di Lorenzo, V.A.P.; Marott, J.M.; Schuetz, P.; Watz, H.; Waschki, B.; Müllerova, H.; et al. Biomarkers and clinical outcomes in COPD: A systematic review and meta-analysis. Thorax 2019, 74, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Sapey, E.; Bafadhel, M.; Bolton, C.E.; Wilkinson, T.; Hurst, J.R.; Quint, J.K. Building toolkits for COPD exacerbations: Lessons from the past and present. Thorax 2019, 74, 898–905. [Google Scholar] [CrossRef]
- Brightling, C.E.; Barker, B.L. Phenotyping chronic obstructive pulmonary disease (COPD) exacerbations: Realising personalised medicine. Clin. Med. J. R. Coll. Physicians Lond. 2012, 12, s52–s56. [Google Scholar] [CrossRef]
- Peng, C.; Tian, C.; Zhang, Y.; Yang, X.; Feng, Y.; Fan, H. C-reactive protein levels predict bacterial exacerbation in patients with chronic obstructive pulmonary disease. Am. J. Med. Sci. 2013, 345, 190–194. [Google Scholar] [CrossRef]
- Gallego, M.; Pomares, X.; Capilla, S.; Marcos, M.A.; Suárez, D.; Monsó, E.; Montón, C. C-reactive protein in outpatients with acute exacerbation of COPD: Its relationship with microbial etiology and severity. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2633–2640. [Google Scholar] [CrossRef]
- Jones, T.P.W.; Brown, J.; Hurst, J.R.; Vancheeswaran, R.; Brill, S. COPD exacerbation phenotypes in a real-world five year hospitalisation cohort. Respir. Med. 2020, 167, 105979. [Google Scholar] [CrossRef]
- Noell, G.; Cosío, B.G.; Faner, R.; Monsó, E.; Peces-Barba, G.; de Diego, A.; Esteban, C.; Gea, J.; Rodriguez-Roisin, R.; Garcia-Nuñez, M.; et al. Multi-level differential network analysis of COPD exacerbations. Eur. Respir. J. 2017, 50, A1422. [Google Scholar] [CrossRef]
- Nseir, S.; Cavestri, B.; Di Pompeo, C.; Diarra, M.; Brisson, H.; Lemyze, M.; Roussel-Delvallez, M.; Durocher, A. Factors predicting bacterial involvement in severe acute exacerbations of chronic obstructive pulmonary disease. Respiration 2008, 76, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Pang, Q. Meta-analysis and systematic review of procalcitonin-guided treatment in acute exacerbation of chronic obstructive pulmonary disease. Clin. Respir. J. 2018, 12, 10–15. [Google Scholar] [CrossRef]
- Stolz, D.; Christ-Grain, M.; Bingisser, R.; Leuppi, J.; Miedinger, D.; Müller, C.; Huber, P.; Müller, B.; Tamm, M. Antibiotic treatment of exacerbations of COPD: A randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest 2007, 131, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.M.A.; Schoorl, M.; Snijders, D.; Knol, D.L.; Lutter, R.; Jansen, H.M.; Boersma, W.G. Procalcitonin vs C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest 2010, 138, 1108–1115. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, J.; He, X.; Hao, Y.; Wang, K.; Gibson, P.G. Sputum Inflammatory Cell-Based Classification of Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. PLoS ONE 2013, 8, 57678. [Google Scholar] [CrossRef]
- Antus, B.; Barta, I. Relationship between exhaled nitric oxide and the frequency of severe acute exacerbation of COPD: 3-year follow-up. Acta Physiol. Hung. 2013, 100, 469–477. [Google Scholar] [CrossRef]
- Donohue, J.F.; Herje, N.; Crater, G.; Rickard, K. Characterization of airway inflammation in patients with COPD using fractional exhaled nitric oxide levels: A pilot study. Int. J. Chronic Obstr. Pulm. Dis. 2014, 9, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Dummer, J.F.; Epton, M.J.; Cowan, J.O.; Cook, J.M.; Condliffe, R.; Landhuis, C.E.; Smith, A.D.; Taylor, D.R. Predicting corticosteroid response in chronic obstructive pulmonary disease using exhaled nitric oxide. Am. J. Respir. Crit. Care Med. 2009, 180, 846–852. [Google Scholar] [CrossRef]
- Antus, B.; Barta, I.; Horvath, I.; Csiszer, E. Relationship between exhaled nitric oxide and treatment response in COPD patients with exacerbations. Respirology 2010, 15, 472–477. [Google Scholar] [CrossRef]
- Bhowmik, A.; Seemungal, T.A.R.; Donaldson, G.C.; Wedzicha, J.A. Effects of exacerbations and seasonality on exhaled nitric oxide in COPD. Eur. Respir. J. 2005, 26, 1009–1015. [Google Scholar] [CrossRef]
- Delen, F.M.; Sippel, J.M.; Osborne, M.L.; Law, S.; Thukkani, N.; Holden, W.E. Increased exhaled nitric oxide in chronic bronchitis: Comparison with asthma and COPD. Chest 2000, 117, 695–701. [Google Scholar] [CrossRef]
- Dellacà, R.L.; Santus, P.; Aliverti, A.; Stevenson, N.; Centanni, S.; Macklem, P.T.; Pedotti, A.; Calverley, P.M.A. Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur. Respir. J. 2004, 23, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Alobaidi, N.Y.; Almeshari, M.; Stockley, J.A.; Sapey, E.; Edgar, R.G. A Systematic Review of the Use of Physiological Tests Assessing the Acute Response to Treatment During Exacerbations of COPD (with a Focus on Small Airway Function). COPD J. Chronic Obstr. Pulm. Dis. 2020, 17, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, J.S.; Al Rajeh, A.M.; Aldhahir, A.M.; Aldabayan, Y.S.; Hurst, J.R.; Mandal, S. The clinical utility of forced oscillation technique during hospitalisation in patients with exacerbation of COPD. ERJ Open Res. 2021, 7, 00448-2021. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.R.; Vestbo, J.; Anzueto, A.; Locantore, N.; Müllerova, H.; Tal-Singer, R.; Miller, B.; Lomas, D.A.; Agusti, A.; MacNee, W.; et al. Susceptibility to Exacerbation in Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2010, 363, 1128–1138. [Google Scholar] [CrossRef]
- Keene, J.D.; Jacobson, S.; Kechris, K.; Kinney, G.L.; Foreman, M.G.; Doerschuk, C.M.; Make, B.J.; Curtis, J.L.; Rennard, S.I.; Barr, R.G.; et al. Biomarkers predictive of exacerbations in the SPIROMICS and COPDGene cohorts. Am. J. Respir. Crit. Care Med. 2017, 195, 473–481. [Google Scholar] [CrossRef]
- Thomsen, M.; Ingebrigtsen, T.S.; Marott, J.L.; Dahl, M.; Lange, P.; Vestbo, J.; Nordestgaard, B.G. Inflammatory Biomarkers and Exacerbations in Chronic Obstructive Pulmonary Disease. JAMA 2013, 309, 2353–2361. [Google Scholar] [CrossRef]
- Golpe, R.; Suárez-Valor, M.; Martín-Robles, I.; Sanjuán-López, P.; Cano-Jiménez, E.; Castro-Añón, O.; Pérez de Llano, L. Mortality in COPD patients according to clinical phenotypes. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 1433–1439. [Google Scholar] [CrossRef]
- Cosio, B.G.; Soriano, J.B.; López-Campos, J.L.; Calle, M.; Soler, J.J.; De-Torres, J.P.; Marín, J.M.; Martínez, C.; De Lucas, P.; Mir, I.; et al. Distribution and outcomes of a phenotype-based approach to guide COPD management: Results from the CHAIN cohort. PLoS ONE 2016, 11, e0160770. [Google Scholar] [CrossRef]
- Koblizek, V.; Milenkovic, B.; Barczyk, A.; Tkacova, R.; Somfay, A.; Zykov, K.; Tudoric, N.; Kostov, K.; Zbozinkova, Z.; Svancara, J.; et al. Phenotypes of COPD patients with a smoking history in Central and Eastern Europe: The POPE Study. Eur. Respir. J. 2017, 49, 1601446. [Google Scholar] [CrossRef]
- Miravitlles, M.; Barrecheguren, M.; Romaín -Rodríguez, M. Frequency and characteristics of different clinical phenotypes of chronic obstructive pulmonary disease. Int. J. Tuberc. Lung Dis. 2015, 19, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Wedzicha, J.A.; Brill, S.E.; Allinson, J.P.; Donaldson, G.C. Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease. BMC Med. 2013, 11, 181. [Google Scholar] [CrossRef]
- Pavord, I.D.; Jones, P.W.; Burgel, P.R.; Rabe, K.F. Exacerbations of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 21–30. [Google Scholar] [CrossRef]
- Donaldson, G.C.; Seemungal, T.A.R.; Patel, I.S.; Bhowmik, A.; Wilkinon, T.M.A.; Hurst, J.R.; MacCallum, P.K.; Wedzicha, J.A. Airway and systemic inflammation and decline in lung function in patients with COPD. Chest 2005, 128, 1995–2004. [Google Scholar] [CrossRef]
- Bhowmik, A.; Seemungal, T.A.R.; Sapsford, R.J.; Wedzicha, J.A. Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax 2000, 55, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, S.P.; Hou, Y.F.; Jie, X.Y.; Wang, D.; Da, H.J.; Li, H.X.; He, J.; Zhao, H.Y.; Liu, J.H.; et al. A predictive model for frequent exacerbator phenotype of acute exacerbations of chronic obstructive pulmonary disease. J. Thorac. Dis. 2023, 15, 6502–6514. [Google Scholar] [CrossRef]
- Zhu, D.; Dai, H.; Zhu, H.; Fang, Y.; Zhou, H.; Yang, Z.; Chu, S.; Xi, Q. Identification of frequent acute exacerbations phenotype in COPD patients based on imaging and clinical characteristics. Respir. Med. 2023, 209, 107150. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Xu, H.R.; Zhang, Y.X.; Li, Y.X.; Yu, H.Y.; Jiang, L.D.; Wang, C.X.; Han, M. The characteristics of the frequent exacerbator with chronic bronchitis phenotype and non-exacerbator phenotype in patients with chronic obstructive pulmonary disease: A meta-analysis and system review. BMC Pulm. Med. 2020, 20, 103. [Google Scholar] [CrossRef]
- Wu, Y.K.; Su, W.L.; Yang, M.C.; Chen, S.Y.; Wu, C.W.; Lan, C.C. Characterization associated with the frequent severe exacerbator phenotype in copd patients. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 2475–2485. [Google Scholar] [CrossRef]
- Uslu, B.; Gülsen, A.; Yigitbas, B.A. Chronic Obstructive Pulmonary Disease with Frequent Exacerbator Phenotype: What is Different in these Patients? Tanaffos 2022, 21, 307–316. [Google Scholar]
- Miravitlles, M.; Soler-Cataluña, J.J.; Calle, M.; Molina, J.; Almagro, P.; Quintano, J.A.; Trigueros, J.A.; Piñera, P.; Simón, A.; Riesco, J.A.; et al. A new approach to grading and treating COPD based on clinical phenotypes: Summary of the Spanish COPD guidelines (GesEPOC). Prim. Care Respir. J. 2013, 22, 117–121. [Google Scholar] [CrossRef]
- Fortis, S.; Georgopoulos, D.; Tzanakis, N.; Sciurba, F.; Zabner, J.; Comellas, A.P. Chronic obstructive pulmonary disease (COPD) and COPD-like phenotypes. Front. Med. 2024, 11, 1375457. [Google Scholar] [CrossRef]
- Lazic, Z.; Stankovic, I.; Milenkovic, B.; Zvezdin, B.; Hromis, S.; Jankovic, S.; Cupurdija, V. Characteristics of copd phenotypes in serbia. Int. J. COPD 2021, 16, 643–654. [Google Scholar] [CrossRef]
- Rubio, M.C.; Casamor, R.; Miravitlles, M. Identification and distribution of COPD phenotypes in clinical practice according to spanish COPD guidelines: The FenePOC study On behalf of the FENEPOC study group. Int. J. Chronic Obstr. Pulm. Dis. 2017, 2017, 12–2373. [Google Scholar] [CrossRef]
- Martinez, F.J.; Rabe, K.F.; Sethi, S.; Pizzichini, E.; McIvor, A.; Anzueto, A.; Alagappan, V.K.T.; Siddiqui, S.; Rekeda, L.; Miller, C.J.; et al. Effect of Roflumilast and Inhaled Corticosteroid/Long-Acting β2-Agonist on Chronic Obstructive Pulmonary Disease Exacerbations (RE(2)SPOND). A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2016, 194, 559–567. [Google Scholar] [CrossRef]
- Bateman, E.D.; Rabe, K.F.; Calverley, P.M.A.; Goehring, U.M.; Brosee, M.; Bredenbröker, D.; Fabbri, L.M. Roflumilast with long-acting β 2-agonists for COPD: Influence of exacerbation history. Eur. Respir. J. 2011, 38, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, L.M.; Calverley, P.M.; Izquierdo-Alonso, J.L.; Bundschuh, D.S.; Brose, M.; Martinez, F.J.; Rabe, K.F. Roflumilast in moderate-to-severe chronic obstructive pulmonary disease treated with longacting bronchodilators: Two randomised clinical trials. Lancet 2009, 374, 695–703. [Google Scholar] [CrossRef]
- Uzun, S.; Djamin, R.S.; Kluytmans, J.A.J.W.; Mulder, P.G.H.; van’t Veer, N.E.; Ermens, A.A.M.; Pelle, A.J.; Hoogsteden, H.C.; Aerts, J.G.J.V.; Van der Eerden, M.M. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): A randomised, double-blind, placebo-controlled trial. Lancet. Respir. Med. 2014, 2, 361–368. [Google Scholar] [CrossRef]
- Miravitlles, M.; Anzueto, A. Antibiotic prophylaxis in COPD: Why, when, and for whom? Pulm. Pharmacol. Ther. 2015, 32, 119–123. [Google Scholar] [CrossRef]
- Ni, W.; Shao, X.; Cai, X.; Wei, C.; Cui, J.; Wang, R.; Liu, Y. Prophylactic use of macrolide antibiotics for the prevention of chronic obstructive pulmonary disease exacerbation: A meta-analysis. PLoS ONE 2015, 10, 121257. [Google Scholar] [CrossRef]
- Tse, H.N.; Raiteri, L.; Wong, K.Y.; Ng, L.Y.; Yee, K.S.; Tseng, C.Z.S. Benefits of high-dose N-acetylcysteine to exacerbation-prone patients with COPD. Chest 2014, 146, 611–623. [Google Scholar] [CrossRef]
- Zheng, J.P.; Wen, F.Q.; Bai, C.X.; Wan, H.Y.; Kang, J.; Chen, P.; Yao, W.Z.; Ma, L.J.; Li, X.; Raiteri, L.; et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): A randomised, double-blind placebo-controlled trial. Lancet Respir. Med. 2014, 2, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Poole, P.; Black, P.N. Mucolytic agents for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2006, CD001287. [Google Scholar] [CrossRef]
- Miravitlles, M.; Calle, M.; Soler-Cataluña, J.J. Clinical phenotypes of COPD: Identification, definition and implications for guidelines. Arch. Bronconeumol. 2012, 48, 86–98. [Google Scholar] [CrossRef]
- Huerta, A.; Crisafulli, E.; Menéndez, R.; Martínez, R.; Soler, N.; Guerrero, M.; Montull, B.; Torres, A. Pneumonic and nonpneumonic exacerbations of COPD: Inflammatory response and clinical characteristics. Chest 2013, 144, 1134–1142. [Google Scholar] [CrossRef]
- Roca, M.; Roca, I.-C.; Mihaescu, T. Lung cancer—A comorbidity in chronic obstructive pulmonary disease. Med. Surg. J. 2012, 116, 1055–1062. Available online: https://www.revmedchir.ro/index.php/revmedchir/article/view/989 (accessed on 25 January 2025).
- Macnee, W. Systemic inflammatory biomarkers and co-morbidities of chronic obstructive pulmonary disease. Ann. Med. 2013, 45, 291–300. [Google Scholar] [CrossRef]
- Laratta, C.R.; Van Eeden, S. Acute exacerbation of chronic obstructive pulmonary disease: Cardiovascular links. Biomed Res. Int. 2014, 2014, 528789. [Google Scholar] [CrossRef]
- Fabbri, L.M.; Luppi, F.; Beghé, B.; Rabe, K.F. Complex chronic comorbidities of COPD. Eur. Respir. J. 2008, 31, 204–212. [Google Scholar] [CrossRef]
- Dodd, J.W.; Charlton, R.A.; Van Den Broek, M.D.; Jones, P.W. Cognitive dysfunction in patients hospitalized with acute exacerbation of COPD. Chest 2013, 144, 119–127. [Google Scholar] [CrossRef]
- Mannino, D.M.; Thorn, D.; Swensen, A.; Holguin, F. Prevalence and outcomes of diabetes, hypertension and cardiovascular disease in COPD. Eur. Respir. J. 2008, 32, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Miravitlles, M.; Alvarez-Gutierrez, F.J.; Calle, M.; Casanova, C.; Cosio, B.G.; López-Viña, A.; De Llano, L.P.; Quirce, S.; Roman-Rodríguez, M.; Soler-Cataluña, J.J.; et al. Algorithm for identification of asthma-COPD overlap: Consensus between the Spanish COPD and asthma guidelines. Eur. Respir. J. 2017, 49, 1700068. [Google Scholar] [CrossRef] [PubMed]
- Miravitlles, M.; Soler-Cataluña, J.J.; Calle, M.; Molina, J.; Almagro, P.; Quintano, J.A.; Riesco, J.A.; Trigueros, J.A.; Piñera, P.; Simón, A.; et al. Spanish COPD Guidelines (GesEPOC): Pharmacological treatment of stable COPD. Spanish Society of Pulmonology and Thoracic Surgery. Arch. Bronconeumol. 2012, 48, 247–257. [Google Scholar] [CrossRef]
- Siva, R.; Green, R.H.; Brightling, C.E.; Shelley, M.; Hargadon, B.; McKenna, S.; Monteiro, W.; Berry, M.; Parker, D.; Wardlaw, A.J.; et al. Eosinophilic airway inflammation and exacerbations of COPD: A randomised controlled trial. Eur. Respir. J. 2007, 29, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Barrecheguren, M.; Esquinas, C.; Miravitlles, M. The asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): Opportunities and challenges. Curr. Opin. Pulm. Med. 2015, 21, 74–79. [Google Scholar] [CrossRef]
- Barnes, P.J. Therapeutic approaches to asthma-chronic obstructive pulmonary disease overlap syndromes. J. Allergy Clin. Immunol. 2015, 136, 531–545. [Google Scholar] [CrossRef]
- Yalcin, A.D.; Celik, B.; Yalcin, A.N. Omalizumab (anti-IgE) therapy in the asthma-COPD overlap syndrome (ACOS) and its effects on circulating cytokine levels. Immunopharmacol. Immunotoxicol. 2016, 38, 253–256. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Cole, J.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; et al. Dupilumab for COPD with Type 2 Inflammation Indicated by Eosinophil Counts. N. Engl. J. Med. 2023, 389, 205–214. [Google Scholar] [CrossRef]
- Criner, G.J.; Celli, B.R.; Singh, D.; Agusti, A.; Papi, A.; Jison, M.; Makulova, N.; Shih, V.H.; Brooks, L.; Barker, P.; et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: Analyses of GALATHEA and TERRANOVA studies. Lancet. Respir. Med. 2020, 8, 158–170. [Google Scholar] [CrossRef]
- Du, Q.; Jin, J.; Liu, X.; Sun, Y. Bronchiectasis as a Comorbidity of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, 0150532. [Google Scholar] [CrossRef]
- Ni, Y.; Shi, G.; Yu, Y.; Hao, J.; Chen, T.; Song, H. Clinical characteristics of patients with chronic obstructive pulmonary disease with comorbid bronchiectasis: A systemic review and meta-analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 1465–1475. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.; Sugumar, K.; Milan, S.J.; Hart, A.; Crockett, A.; Crossingham, I. Mucolytics for bronchiectasis. Cochrane Database Syst. Rev. 2014, 2014, CD001289. [Google Scholar] [CrossRef] [PubMed]
- Martińez-García, M.A.; Carrillo, D.D.L.R.; Soler-Catalunã, J.J.; Donat-Sanz, Y.; Serra, P.C.; Lerma, M.A.; Ballestiń, J.; Sańchez, I.V.; Ferrer, M.J.S.; Dalfo, A.R.; et al. Prognostic value of bronchiectasis in patients with moderate-to-severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013, 187, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.L.; Krahnke, J.S.; Kim, V. Clinical issues of mucus accumulation in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 139–150. [Google Scholar] [CrossRef]
- Florian, C.A.; Corina, P.C.; Adelina, M.; Vlad, C.; Cristian, O.; Emanuela, V. Respiratory Muscle Training and Its Impact on Balance and Gait in Patients with Severe COPD. Medicina 2024, 60, 257. [Google Scholar] [CrossRef]
- Arostegui, I.; Esteban, C.; García-Gutierrez, S.; Bare, M.; Fernández-de-Larrea, N.; Briones, E.; Quintana, J.M. Subtypes of patients experiencing exacerbations of COPD and associations with outcomes. PLoS ONE 2014, 9, 98580. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisip Avram, L.-C.; Poroșnicu, T.M.; Hogea, P.; Tudorache, E.; Hogea, E.; Oancea, C. Phenotypes of Exacerbations in Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2025, 14, 3132. https://doi.org/10.3390/jcm14093132
Nisip Avram L-C, Poroșnicu TM, Hogea P, Tudorache E, Hogea E, Oancea C. Phenotypes of Exacerbations in Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine. 2025; 14(9):3132. https://doi.org/10.3390/jcm14093132
Chicago/Turabian StyleNisip Avram, Lucia-Cristina, Tamara Mirela Poroșnicu, Patricia Hogea, Emanuela Tudorache, Elena Hogea, and Cristian Oancea. 2025. "Phenotypes of Exacerbations in Chronic Obstructive Pulmonary Disease" Journal of Clinical Medicine 14, no. 9: 3132. https://doi.org/10.3390/jcm14093132
APA StyleNisip Avram, L.-C., Poroșnicu, T. M., Hogea, P., Tudorache, E., Hogea, E., & Oancea, C. (2025). Phenotypes of Exacerbations in Chronic Obstructive Pulmonary Disease. Journal of Clinical Medicine, 14(9), 3132. https://doi.org/10.3390/jcm14093132