Sex-Specific Characteristics of Perivascular Fat in Aortic Aneurysms
Abstract
:1. Introduction
2. Gender-Specific Differences in Aortic Aneurysms
2.1. Hormonal and Biomechanical Factors
2.2. Gender Bias in Treatment and Surgical Outcomes
3. Perivascular Adipose Tissue
3.1. Anatomy and Structural Composition
3.2. Normal and Pathological PVAT Functioning
4. PVAT and Aortic Aneurysm
5. Sex-Specific Differences in PVAT
5.1. PVAT Morphological Differences
5.2. Sex-Specific Impact on PVAT Vascular Tone Regulation
5.3. Impact of Sex Hormones on PVAT
6. Quantification of PVAT Inflammation
7. Conclusions and Further Direction
8. Methods and Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wanhainen, A.; Van Herzeele, I.; Bastos Goncalves, F.; Bellmunt Montoya, S.; Berard, X.; Boyle, J.R.; D’Oria, M.; Prendes, C.F.; Karkos, C.D.; Kazimierczak, A.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Abdominal Aorto-Iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 192–331. [Google Scholar] [CrossRef]
- Voigt, K.R.; Gökalp, A.L.; Papageorgiou, G.; Bogers, A.J.J.C.; Takkenberg, J.J.M.; Mokhles, M.M.; Bekkers, J.A. Male-Female Differences in Ascending Aortic Aneurysm Surgery: 25-Year Single Center Results. Semin. Thorac. Cardiovasc. Surg. 2023, 35, 300–308. [Google Scholar] [CrossRef]
- di Gioia, C.R.T.; Ascione, A.; Carletti, R.; Giordano, C. Thoracic Aorta: Anatomy and Pathology. Diagnostics 2023, 13, 2166. [Google Scholar] [CrossRef]
- Gao, J.N.; Cao, H.H.; Hu, G.F.; Wu, Y.F.; Xu, Y.K.; Cui, H.T.; Lu, H.S.; Zheng, L.M. The mechanism and therapy of aortic aneurysms. Signal Transduct. Target. Ther. 2023, 8, 55. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhan, Y.; Cai, C.Y.; Yu, D.Y.; Wei, Q.J.; Quan, L.P.; Huang, D.; Liu, Y.; Li, Z.L.; Liu, L.; et al. Common molecular mechanism and immune infiltration patterns of thoracic and abdominal aortic aneurysms. Front. Immunol. 2022, 13, 1030976. [Google Scholar] [CrossRef] [PubMed]
- Pinard, A.; Jones, G.T.; Milewicz, D.M. Genetics of Thoracic and Abdominal Aortic Diseases. Circ. Res. 2019, 124, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Pham, M.H.C.; Sigvardsen, P.E.; Fuchs, A.; Kühl, J.T.; Sillesen, H.; Afzal, S.; Nordestgaard, B.G.; Kober, L.V.; Kofoed, K.F. Aortic aneurysms in a general population cohort: Prevalence and risk factors in men and women. Eur. Heart. J. Cardiovasc. Imgaging 2024, 25, 1235–1243. [Google Scholar] [CrossRef]
- Quintana, R.A.; Taylor, W.R. Cellular Mechanisms of Aortic Aneurysm Formation. Circ. Res. 2019, 124, 607–618. [Google Scholar] [CrossRef]
- Guo, D.C.; Papke, C.L.; He, R.M.; Milewicz, D.M. Pathogenesis of thoracic and abdominal aortic aneurysms. Ann. N. Y. Acad. Sci. 2006, 1085, 339–352. [Google Scholar] [CrossRef]
- Zhang, L.; Issa Bhaloo, S.; Chen, T.; Zhou, B.; Xu, Q. Role of Resident Stem Cells in Vessel Formation and Arteriosclerosis. Circ. Res. 2018, 122, 1608–1624. [Google Scholar] [CrossRef]
- Crosier, R.; Laporte, M.A.L.; Unni, R.R.; Coutinho, T. Female-Specific Considerations in Aortic Health and Disease. CJC Open 2024, 6, 391–406. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Lu, Y.; Wei, J.; Wu, J.; Yang, J.; Cai, Z. Abdominal Aortic Aneurysm: Roles of Inflammatory Cells. Front. Immunol. 2020, 11, 609161. [Google Scholar] [CrossRef] [PubMed]
- He, R.M.; Guo, D.C.; Estrera, A.L.; Safi, H.J.; Huynh, T.T.; Yin, Z.N.; Cao, S.N.; Lin, J.; Kurian, T.; Buja, L.M.; et al. Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J. Thorac. Cardiovasc. Sur. 2006, 131, 671–678.E2. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Zhang, G.; Liu, H.; Shi, J.; Qiu, H.; Liu, Y.; Han, F.; Hou, N. Relationships Between Perivascular Adipose Tissue and Abdominal Aortic Aneurysms. Front. Endocrinol. 2021, 12, 704845. [Google Scholar] [CrossRef]
- Kim, H.W.; Shi, H.; Winkler, M.A.; Lee, R.; Weintraub, N.L. Perivascular Adipose Tissue and Vascular Perturbation/Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2569–2576. [Google Scholar] [CrossRef]
- Azul, L.; Leandro, A.; Boroumand, P.; Klip, A.; Seica, R.; Sena, C.M. Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radic. Biol. Med. 2020, 146, 264–274. [Google Scholar] [CrossRef]
- Antoniades, C.; Tousoulis, D.; Vavlukis, M.; Fleming, I.; Duncker, D.J.; Eringa, E.; Manfrini, O.; Antonopoulos, A.S.; Oikonomou, E.; Padro, T.; et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur. Heart J. 2023, 44, 3827–3844. [Google Scholar] [CrossRef]
- Katz, D.J.; Stanley, J.C.; Zelenock, G.B. Gender differences in abdominal aortic aneurysm prevalence, treatment, and outcome. J. Vasc. Surg. 1997, 25, 561–568. [Google Scholar] [CrossRef]
- Jiang, H.X.; Xu, H.J.; Xu, Z.Y. Sex-related differences in outcome of thoracic aortic surgery. J. Cardiothorac. Surg. 2024, 19, 226. [Google Scholar] [CrossRef]
- Epple, J.; Böckler, D.; Grundmann, R.T. Sex Differences in Long-Term Survival and Cancer Incidence After Ruptured Abdominal Aortic Aneurysm Repair. J. Clin. Med. 2024, 13, 6934. [Google Scholar] [CrossRef]
- Hultgren, R.; Larsson, E.; Wahlgren, C.M.; Swedenborg, J. Female and elderly abdominal aortic aneurysm patients more commonly have concurrent thoracic aortic aneurysm. Ann. Vasc. Surg. 2012, 26, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Beller, C.J.; Farag, M.; Wannaku, S.; Seppelt, P.; Arif, R.; Ruhparwar, A.; Karck, M.; Weymann, A.; Kallenbach, K. Gender-specific differences in outcome of ascending aortic aneurysm surgery. PLoS ONE 2015, 10, e0124461. [Google Scholar] [CrossRef] [PubMed]
- Talvitie, M.; Stenman, M.; Roy, J.; Leander, K.; Hultgren, R. Sex Differences in Rupture Risk and Mortality in Untreated Patients with Intact Abdominal Aortic Aneurysms. J. Am. Heart Assoc. 2021, 10, e019592. [Google Scholar] [CrossRef]
- Lo, R.C.; Bensley, R.P.; Hamdan, A.D.; Wyers, M.; Adams, J.E.; Schermerhorn, M.L.; Vascular Study Group of New England. Gender differences in abdominal aortic aneurysm presentation, repair, and mortality in the Vascular Study Group of New England. J. Vasc. Surg. 2013, 57, 1261–1268.E5. [Google Scholar] [CrossRef]
- Malayala, S.V.; Raza, A.; Vanaparthy, R. Gender-Based Differences in Abdominal Aortic Aneurysm Rupture: A Retrospective Study. J. Clin. Med. Res. 2020, 12, 794–802. [Google Scholar] [CrossRef]
- Notenboom, M.L.; de Keijzer, A.R.; Veen, K.M.; Gökalp, A.; Bogers, A.J.J.C.; Heijmen, R.H.; van Kimmenade, R.R.J.; Geuzebroek, G.S.C.; Mokhles, M.M.; Bekkers, J.A.; et al. Sex-related differences in the clinical course of aortic root and ascending aortic aneurysms: The DisSEXion Study. Eur. Heart J. 2024, 46, 551–564. [Google Scholar] [CrossRef]
- Ailawadi, G.; Eliason, J.L.; Roelofs, K.J.; Sinha, I.; Hannawa, K.K.; Kaldjian, E.P.; Lu, G.Y.; Henke, P.K.; Stanley, J.C.; Weiss, S.J.; et al. Gender differences in experimental aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 2116–2122. [Google Scholar] [CrossRef] [PubMed]
- Ohlsson, C.; Langenskiold, M.; Smidfelt, K.; Poutanen, M.; Ryberg, H.; Norlen, A.K.; Nordanstig, J.; Bergstrom, G.; Tivesten, A. Low Progesterone and Low Estradiol Levels Associate with Abdominal Aortic Aneurysms in Men. J. Clin. Endocrinol. Metab. 2022, 107, e1413–e1425. [Google Scholar] [CrossRef]
- Villard, C.; Roy, J.; Bogdanovic, M.; Eriksson, P.; Hultgren, R. Sex hormones in men with abdominal aortic aneurysm. J. Vasc. Surg. 2021, 74, 2023–2029. [Google Scholar] [CrossRef]
- Makrygiannis, G.; Courtois, A.; Drion, P.; Defraigne, J.O.; Kuivaniemi, H.; Sakalihasan, N. Sex Differences in Abdominal Aortic Aneurysm: The Role of Sex Hormones. Ann. Vasc. Surg. 2014, 28, 1946–1958. [Google Scholar] [CrossRef]
- Henriques, T.A.; Huang, J.; D’Souza, S.S.; Daugherty, A.; Cassis, L.A. Orchidectomy, but not ovariectomy, regulates angiotensin II-induced vascular diseases in apolipoprotein E-deficient mice. Endocrinology 2004, 145, 3866–3872. [Google Scholar] [CrossRef] [PubMed]
- Alsiraj, Y.; Thatcher, S.E.; Charnigo, R.; Chen, K.; Blalock, E.; Daugherty, A.; Cassis, L.A. Female Mice with an XY Sex Chromosome Complement Develop Severe Angiotensin II-Induced Abdominal Aortic Aneurysms. Circulation 2017, 135, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.F.; Liu, S.; Wang, Z.R.; Jiang, K.; McClintock, T.; Stromberg, A.J.; Tezanos, A.V.; Lee, E.S.; Curci, J.A.; Gong, M.C.; et al. Androgen aggravates aortic aneurysms via suppression of PD-1 in mice. J. Clin. Investig. 2024, 134, 169085. [Google Scholar] [CrossRef] [PubMed]
- Yeap, B.B.; Hyde, Z.; Norman, P.E.; Chubb, S.A.P.; Golledge, J. Associations of Total Testosterone, Sex Hormone-Binding Globulin, Calculated Free Testosterone, and Luteinizing Hormone with Prevalence of Abdominal Aortic Aneurysm in Older Men. J. Clin. Endocrinol. Metab. 2010, 95, 1123–1130. [Google Scholar] [CrossRef]
- Araujo, A.B.; Dixon, J.M.; Suarez, E.A.; Murad, M.H.; Guey, L.T.; Wittert, G.A. Endogenous Testosterone and Mortality in Men: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2011, 96, 3007–3019. [Google Scholar] [CrossRef]
- Lo, R.C.; Schermerhorn, M.L. Abdominal aortic aneurysms in women. J. Vasc. Surg. 2016, 63, 839–844. [Google Scholar] [CrossRef]
- Chou, E.L.; Pettinger, M.; Haring, B.; Allison, M.A.; Mell, M.W.; Hlatky, M.A.; Wactawski-Wende, J.; Wild, R.A.; Shadyab, A.H.; Wallace, R.B.; et al. Association of Premature Menopause with Risk of Abdominal Aortic Aneurysm in the Women’s Health Initiative. Ann. Surg. 2022, 276, e1008–e1016. [Google Scholar] [CrossRef]
- Villard, C.; Wagsater, D.; Swedenborg, J.; Eriksson, P.; Hultgren, R. Biomarkers for abdominal aortic aneurysms from a sex perspective. Gend. Med. 2012, 9, 259–266.e252. [Google Scholar] [CrossRef]
- Herold, J.; Kalucka, J. Angiogenesis in Adipose Tissue: The Interplay Between Adipose and Endothelial Cells. Front. Physiol. 2020, 11, 624903. [Google Scholar] [CrossRef]
- Hillock-Watling, C.; Gotlieb, A.I. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall. Cardiovasc. Pathol. 2022, 61, 107459. [Google Scholar] [CrossRef] [PubMed]
- Valentini, A.; Cardillo, C.; Della Morte, D.; Tesauro, M. The Role of Perivascular Adipose Tissue in the Pathogenesis of Endothelial Dysfunction in Cardiovascular Diseases and Type 2 Diabetes Mellitus. Biomedicines 2023, 11, 3006. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, S.; Stumer, J.; Pfeifer, A. PVAT and Its Relation to Brown, Beige, and White Adipose Tissue in Development and Function. Front. Physiol. 2018, 9, 70. [Google Scholar] [CrossRef]
- Queiroz, M.; Sena, C.M. Perivascular adipose tissue: A central player in the triad of diabetes, obesity, and cardiovascular health. Cardiovasc. Diabetol. 2024, 23, 455. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Alfonso, M.S.; Somoza, B.; Tsvetkov, D.; Kuczmanski, A.; Dashwood, M.; Gil-Ortega, M. Role of Perivascular Adipose Tissue in Health and Disease. Compr. Physiol. 2017, 8, 23–59. [Google Scholar] [CrossRef]
- Kim, H.W.; de Chantemèle, E.J.B.; Weintraub, N.L. Perivascular Adipocytes in Vascular Disease. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2220–2227. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 2019, 16, 83–99. [Google Scholar] [CrossRef]
- Guo, E.; Liu, D.; Zhu, Z.M. Phenotypic and functional disparities in perivascular adipose tissue. Front. Physiol. 2024, 15, 1499340. [Google Scholar] [CrossRef]
- Cai, M.; Zhao, D.; Han, X.; Han, S.; Zhang, W.; Zang, Z.; Gai, C.; Rong, R.; Gao, T. The role of perivascular adipose tissue-secreted adipocytokines in cardiovascular disease. Front. Immunol. 2023, 14, 1271051. [Google Scholar] [CrossRef]
- Moe, K.T.; Naylynn, T.M.; Yin, N.O.; Khairunnisa, K.; Allen, J.C.; Wong, M.C.; Chin-Dusting, J.; Wong, P. Tumor necrosis factor-alpha induces aortic intima-media thickening via perivascular adipose tissue inflammation. J. Vasc. Res. 2013, 50, 228–237. [Google Scholar] [CrossRef]
- Tyrrell, D.J.; Goldstein, D.R. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6. Nat. Rev. Cardiol. 2021, 18, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Chen, Z.; Xiao, Y.; Li, X.Z. Cross-talks between perivascular adipose tissue and neighbors: Multifaceted nature of nereids. Front. Pharmacol. 2024, 15, 1442086. [Google Scholar] [CrossRef] [PubMed]
- Gollasch, M. Vasodilator signals from perivascular adipose tissue. Br. J. Pharmacol. 2012, 165, 633–642. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Chen, Y.; Zhang, Y.; Zhen, X.; Tao, S.; Dou, J.; Li, P.; Jiang, G. Perivascular fat tissue and vascular aging: A sword and a shield. Pharmacol. Res. 2024, 203, 107140. [Google Scholar] [CrossRef]
- Stanek, A.; Brozyna-Tkaczyk, K.; Myslinski, W. The Role of Obesity-Induced Perivascular Adipose Tissue (PVAT) Dysfunction in Vascular Homeostasis. Nutrients 2021, 13, 3843. [Google Scholar] [CrossRef]
- Lin, D.; Chun, T.H.; Kang, L. Adipose extracellular matrix remodelling in obesity and insulin resistance. Biochem. Pharmacol. 2016, 119, 8–16. [Google Scholar] [CrossRef]
- Khan, T.; Muise, E.S.; Iyengar, P.; Wang, Z.V.; Chandalia, M.; Abate, N.; Zhang, B.B.; Bonaldo, P.; Chua, S.; Scherer, P.E. Metabolic dysregulation and adipose tissue fibrosis: Role of collagen VI. Mol. Cell. Biol. 2009, 29, 1575–1591. [Google Scholar] [CrossRef] [PubMed]
- Grodecki, K.; Geers, J.; Kwiecinski, J.; Lin, A.D.; Slipczuk, L.; Slomka, P.J.; Dweck, M.R.; Nerlekar, N.; Williams, M.C.; Berman, D.; et al. Phenotyping atherosclerotic plaque and perivascular adipose tissue: Signalling pathways and clinical biomarkers in atherosclerosis. Nat. Rev. Cardiol. 2025. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, H.; Garcia-Barrio, M.; Guo, Y.; Zhang, J.; Chen, Y.E.; Chang, L. RNA sequencing reveals perivascular adipose tissue plasticity in response to angiotensin II. Pharmacol. Res. 2022, 178, 106183. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Margaritis, M.; Coutinho, P.; Shirodaria, C.; Psarros, C.; Herdman, L.; Sanna, F.; De Silva, R.; Petrou, M.; Sayeed, R.; et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: The regulatory role of perivascular adipose tissue. Diabetes 2015, 64, 2207–2219. [Google Scholar] [CrossRef]
- Kotanidis, C.P.; Antoniades, C. Perivascular fat imaging by computed tomography (CT): A virtual guide. Br. J. Pharmacol. 2021, 178, 4270–4290. [Google Scholar] [CrossRef] [PubMed]
- Greenstein, A.S.; Khavandi, K.; Withers, S.B.; Sonoyama, K.; Clancy, O.; Jeziorska, M.; Laing, I.; Yates, A.P.; Pemberton, P.W.; Malik, R.A.; et al. Local inflammation and hypoxia abolish the protective anticontractile properties of perivascular fat in obese patients. Circulation 2009, 119, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Michel, J.B.; Lagrange, J.; Regnault, V.; Lacolley, P. Conductance Artery Wall Layers and Their Respective Roles in the Clearance Functions. Arterioscler. Thromb. Vasc. Biol. 2022, 42, E253–E272. [Google Scholar] [CrossRef]
- Tinajero, M.G.; Gotlieb, A.I. Recent Developments in Vascular Adventitial Pathobiology. Am. J. Pathol. 2020, 190, 520–534. [Google Scholar] [CrossRef]
- Thanigaimani, S.; Golledge, J. Role of Adipokines and Perivascular Adipose Tissue in Abdominal Aortic Aneurysm: A Systematic Review and Meta-Analysis of Animal and Human Observational Studies. Front. Endocrinol. 2021, 12, 618434. [Google Scholar] [CrossRef] [PubMed]
- Catalan, V.; Gomez-Ambrosi, J.; Rodriguez, A.; Fruhbeck, G. Role of extracellular matrix remodelling in adipose tissue pathophysiology: Relevance in the development of obesity. Histol. Histopathol. 2012, 27, 1515–1528. [Google Scholar] [CrossRef]
- Mariman, E.C.; Wang, P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell. Mol. Life Sci. 2010, 67, 1277–1292. [Google Scholar] [CrossRef]
- Spencer, M.; Yao-Borengasser, A.; Unal, R.; Rasouli, N.; Gurley, C.M.; Zhu, B.; Peterson, C.A.; Kern, P.A. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E1016–E1027. [Google Scholar] [CrossRef]
- Piacentini, L.; Vavassori, C.; Werba, P.J.; Saccu, C.; Spirito, R.; Colombo, G.I. Deciphering Abdominal Aortic Diseases Through T-Cell Clonal Repertoire of Perivascular Adipose Tissue. J. Am. Heart Assoc. 2024, 13, 034096. [Google Scholar] [CrossRef]
- Kugo, H.; Zaima, N.; Tanaka, H.; Mouri, Y.; Yanagimoto, K.; Hayamizu, K.; Hashimoto, K.; Sasaki, T.; Sano, M.; Yata, T.; et al. Adipocyte in vascular wall can induce the rupture of abdominal aortic aneurysm. Sci. Rep. 2016, 6, 31268. [Google Scholar] [CrossRef]
- Tanaka, H.; Zaima, N.; Sasaki, T.; Yamamoto, N.; Inuzuka, K.; Sano, M.; Saito, T.; Hayasaka, T.; Goto-Inoue, N.; Sato, K.; et al. Imaging Mass Spectrometry Reveals a Unique Distribution of Triglycerides in the Abdominal Aortic Aneurysmal Wall. J. Vasc. Res. 2015, 52, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Rosen, C.J.; Horowitz, M.C. Nutrient regulation of bone marrow adipose tissue: Skeletal implications of weight loss. Nat. Rev. Endocrinol. 2023, 19, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Meekel, J.P.; Dias-Neto, M.; Bogunovic, N.; Conceicao, G.; Sousa-Mendes, C.; Stoll, G.R.; Leite-Moreira, A.; Huynh, J.; Micha, D.; Eringa, E.C.; et al. Inflammatory Gene Expression of Human Perivascular Adipose Tissue in Abdominal Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Golledge, J.; Cullen, B.; Rush, C.; Moran, C.S.; Secomb, E.; Wood, F.; Daugherty, A.; Campbell, J.H.; Norman, P.E. Peroxisome proliferator-activated receptor ligands reduce aortic dilatation in a mouse model of aortic aneurysm. Atherosclerosis 2010, 210, 51–56. [Google Scholar] [CrossRef]
- Wang, W.D.; Sun, R.; Chen, Y.X. PPARγ agonist rosiglitazone alters the temporal and spatial distribution of inflammation during abdominal aortic aneurysm formation. Mol. Med. Rep. 2018, 18, 3421–3428. [Google Scholar] [CrossRef]
- Cho, I.Y.; Han, K.; Lee, K.N.; Koo, H.Y.; Cho, Y.H.; Lee, J.H.; Park, Y.J.; Shin, D.W. Risk factors for abdominal aortic aneurysm in patients with diabetes. J. Vasc. Surg. 2025, 81, 128–136.E4. [Google Scholar] [CrossRef]
- Chang, L.; Villacorta, L.; Li, R.X.; Hamblin, M.; Xu, W.; Dou, C.Y.; Zhang, J.F.; Wu, J.R.; Zeng, R.; Chen, Y.E. Loss of Perivascular Adipose Tissue on Peroxisome Proliferator-Activated Receptor-γ Deletion in Smooth Muscle Cells Impairs Intravascular Thermoregulation and Enhances Atherosclerosis. Circulation 2012, 126, 1067–1078. [Google Scholar] [CrossRef]
- Xiong, W.; Zhao, X.; Villacorta, L.; Rom, O.; Garcia-Barrio, M.T.; Guo, Y.; Fan, Y.; Zhu, T.; Zhang, J.; Zeng, R.; et al. Brown Adipocyte-Specific PPARgamma (Peroxisome Proliferator-Activated Receptor gamma) Deletion Impairs Perivascular Adipose Tissue Development and Enhances Atherosclerosis in Mice. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1738–1747. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Sanna, F.; Sabharwal, N.; Thomas, S.; Oikonomou, E.K.; Herdman, L.; Margaritis, M.; Shirodaria, C.; Kampoli, A.M.; Akoumianakis, I.; et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 2017, 9, eaal2658. [Google Scholar] [CrossRef]
- Piacentini, L.; Werba, J.P.; Bono, E.; Saccu, C.; Tremoli, E.; Spirito, R.; Colombo, G.I. Genome-Wide Expression Profiling Unveils Autoimmune Response Signatures in the Perivascular Adipose Tissue of Abdominal Aortic Aneurysm. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 237–249. [Google Scholar] [CrossRef]
- Xiong, W.F.; Zhao, Y.; Prall, A.; Greiner, T.C.; Baxter, B.T. Key roles of CD4T cells and IFN-γ in the development of abdominal aortic aneurysms in a murine model. J. Immunol. 2004, 172, 2607–2612. [Google Scholar] [CrossRef] [PubMed]
- Galle, C.; Schandené, L.; Stordeur, P.; Peignois, Y.; Ferreira, J.; Wautrecht, J.C.; Dereume, J.P.; Goldman, M. Predominance of type 1 CD4T cells in human abdominal aortic aneurysm. Clin. Exp. Immunol. 2005, 142, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Sagan, A.; Mikolajczyk, T.P.; Mrowiecki, W.; MacRitchie, N.; Daly, K.; Meldrum, A.; Migliarino, S.; Delles, C.; Urbanski, K.; Filip, G.; et al. T Cells Are Dominant Population in Human Abdominal Aortic Aneurysms and Their Infiltration in the Perivascular Tissue Correlates with Disease Severity. Front. Immunol. 2019, 10, 1979. [Google Scholar] [CrossRef] [PubMed]
- Blomkalns, A.L.; Gavrila, D.; Thomas, M.; Neltner, B.S.; Blanco, V.M.; Benjamin, S.B.; McCormick, M.L.; Stoll, L.L.; Denning, G.M.; Collins, S.P.; et al. CD14 Directs Adventitial Macrophage Precursor Recruitment: Role in Early Abdominal Aortic Aneurysm Formation. J. Am. Heart Assoc. 2013, 2, 000065. [Google Scholar] [CrossRef]
- Elmarasi, M.; Elmakaty, I.; Elsayed, B.; Elsayed, A.; Al Zein, J.; Boudaka, A.; Eid, A.H. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection. J. Cell. Physiol. 2024, 239, e31200. [Google Scholar] [CrossRef]
- Lu, H.C.; Du, W.; Ren, L.; Hamblin, M.H.; Becker, R.C.; Chen, Y.E.; Fan, Y.B. Vascular Smooth Muscle Cells in Aortic Aneurysm: From Genetics to Mechanisms. J. Am. Heart Assoc. 2021, 10, 023601. [Google Scholar] [CrossRef]
- Miao, C.Y.; Li, Z.Y. The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br. J. Pharmacol. 2012, 165, 643–658. [Google Scholar] [CrossRef]
- Chang, L.; Garcia-Barrio, M.T.; Chen, Y.E. Perivascular Adipose Tissue Regulates Vascular Function by Targeting Vascular Smooth Muscle Cells. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1094–1109. [Google Scholar] [CrossRef]
- Manka, D.; Chatterjee, T.K.; Stoll, L.L.; Basford, J.E.; Konaniah, E.S.; Srinivasan, R.; Bogdanov, V.Y.; Tang, Y.L.; Blomkalns, A.L.; Hui, D.Y.; et al. Transplanted Perivascular Adipose Tissue Accelerates Injury-Induced Neointimal Hyperplasia Role of Monocyte Chemoattractant Protein-1. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1723–1730. [Google Scholar] [CrossRef]
- Chen, J.Y.; Zhu, X.L.; Liu, W.H.; Xie, Y.; Zhang, H.F.; Wang, X.Q.; Ying, R.; Chen, Z.T.; Wu, M.X.; Qiu, Q.; et al. C-reactive protein derived from perivascular adipose tissue accelerates injury-induced neointimal hyperplasia. J. Transl. Med. 2020, 18, 68. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.P.; Zhang, L.N.; Tian, G. Perivascular adipose tissue-derived leptin promotes vascular smooth muscle cell phenotypic switching via p38 mitogen-activated protein kinase in metabolic syndrome rats. Exp. Biol. Med. 2014, 239, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.C.; Henckel, M.M.; Chun, J.; Knaub, L.A.; Pott, G.B.; James, G.G.; Walker, L.A.; Reusch, J.E. Perivascular adipose tissue remodelling impairs vasoreactivity in thermoneutral-housed rats. Diabetologia 2022, 65 (Suppl. S1), S426. [Google Scholar]
- Huang, C.L.; Huang, Y.N.; Yao, L.; Li, J.P.; Zhang, Z.H.; Huang, Z.Q.; Chen, S.X.; Zhang, Y.L.; Wang, J.F.; Chen, Y.X.; et al. Thoracic perivascular adipose tissue inhibits VSMC apoptosis and aortic aneurysm formation in mice via the secretome of browning adipocytes. Acta Pharmacol. Sin. 2023, 44, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Dias-Neto, M.; Meekel, J.P.; van Schaik, T.G.; Hoozemans, J.; Sousa-Nunes, F.; Henriques-Coelho, T.; Lely, R.J.; Wisselink, W.; Blankensteijn, J.D.; Yeung, K.K. High Density of Periaortic Adipose Tissue in Abdominal Aortic Aneurysm. Eur. J. Vasc. Endovasc. Surg. 2018, 56, 663–671. [Google Scholar] [CrossRef]
- Britton, K.A.; Pedley, A.; Massaro, J.M.; Corsini, E.M.; Murabito, J.M.; Hoffmann, U.; Fox, C.S. Prevalence, Distribution, and Risk Factor Correlates of High Thoracic Periaortic Fat in the Framingham Heart Study. J. Am. Heart Assoc. 2012, 1, 004200. [Google Scholar] [CrossRef]
- Lv, R.; Hu, G.; Zhang, S.B.; Zhang, Z.; Chen, J.; Wang, K.F.; Wang, Z.W.; Jin, Z.Y. Assessing abdominal aortic aneurysm growth using radiomic features of perivascular adipose tissue after endovascular repair. Insights Imaging 2024, 15, 232. [Google Scholar] [CrossRef]
- Gao, J.P.; Zhang, H.P.; Xiong, J.; Jia, X.; Ma, X.H.; Guo, W. Association Between Aneurysm Wall Inflammation Detected by Imaging Perivascular Fat and Secondary Intervention Risk for Abdominal Aortic Aneurysm Patients After Endovascular Repair. J. Endovasc. Ther. 2023, 15266028231204807. [Google Scholar] [CrossRef]
- Rendon, C.J.; Sempere, L.; Lauver, A.; Watts, S.W.; Contreras, G.A. Anatomical location, sex, and age modulate adipocyte progenitor populations in perivascular adipose tissues. Front. Physiol. 2024, 15, 1411218. [Google Scholar] [CrossRef]
- Ivatt, L.; Miguelez, A.M.; Morgan, R.; Bailey, M.; Nixon, M. Perivascular adipose tissue: A driver of sex-specific differences in the vascular outcomes of obesity. Physiology 2023, 38, 5731617. [Google Scholar] [CrossRef]
- Lemieux, S.; Prudhomme, D.; Bouchard, C.; Tremblay, A.; Despres, J.P. Sex-Differences in the Relation of Visceral Adipose-Tissue Accumulation to Total-Body Fatness. Am. J. Clin. Nutr. 1993, 58, 463–467. [Google Scholar] [CrossRef]
- Lumish, H.S.; O’Reilly, M.; Reilly, M.P. Sex Differences in Genomic Drivers of Adipose Distribution and Related Cardiometabolic Disorders Opportunities for Precision Medicine. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 45–60. [Google Scholar] [CrossRef] [PubMed]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues—The biology of pear shape. Biol. Sex Differ. 2012, 3, 13. [Google Scholar] [CrossRef]
- Matthias, R.; Meyer, M.B. Role of Perivascular Adipose Tissue for Sex Differences in Coronary Artery Disease and Spontaneous Coronary Artery Dissection (SCAD). Endocr. Metab. Sci. 2021, 2, 100068. [Google Scholar] [CrossRef]
- Contreras, G.A.; Thelen, K.; Ayala-Lopez, N.; Watts, S.W. The distribution and adipogenic potential of perivascular adipose tissue adipocyte progenitors is dependent on sexual dimorphism and vessel location. Physiol. Rep. 2016, 4, e12993. [Google Scholar] [CrossRef]
- Li, X.; Ma, Z.; Zhu, Y.Z. Regional Heterogeneity of Perivascular Adipose Tissue: Morphology, Origin, and Secretome. Front. Pharmacol. 2021, 12, 697720. [Google Scholar] [CrossRef] [PubMed]
- Lehman, S.J.; Massaro, J.M.; Schlett, C.L.; O’Donnell, C.J.; Hoffmann, U.; Fox, C.S. Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: The Framingham Heart Study. Atherosclerosis 2010, 210, 656–661. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Chen, X.R.; Nasr, A.; Shields, K.; Barinas-Mitchell, E.; Janssen, I.; Everson-Rose, S.A.; Powell, L.; Matthews, K. Greater Periaortic Fat Volume at Midlife Is Associated with Slower Gait Speed Later in Life in Women: The SWAN Cardiovascular Fat Ancillary Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 1959–1964. [Google Scholar] [CrossRef]
- Czamara, K.; Majka, Z.; Fus, A.; Matjasik, K.; Pacia, M.Z.; Sternak, M.; Chlopicki, S.; Kaczor, A. Raman spectroscopy as a novel tool for fast characterization of the chemical composition of perivascular adipose tissue. Analyst 2018, 143, 5999–6005. [Google Scholar] [CrossRef]
- Police, S.B.; Thatcher, S.E.; Charnigo, R.; Daugherty, A.; Cassis, L.A. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1458–1464. [Google Scholar] [CrossRef]
- Fitzgibbons, T.P.; Kogan, S.; Aouadi, M.; Hendricks, G.M.; Straubhaar, J.; Czech, M.P. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1425–H1437. [Google Scholar] [CrossRef]
- Wang, X.; He, B.; Deng, Y.; Liu, J.; Zhang, Z.; Sun, W.; Gao, Y.; Liu, X.; Zhen, Y.; Ye, Z.; et al. Identification of a biomarker and immune infiltration in perivascular adipose tissue of abdominal aortic aneurysm. Front. Physiol. 2022, 13, 977910. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.K.; Jin, Y.N.; Watts, S.W.; Rockwell, C.E. Naive, Regulatory, Activated, and Memory Immune Cells Co-exist in PVATs That Are Comparable in Density to Non-PVAT Fats in Health. Front. Physiol. 2020, 11, 58. [Google Scholar] [CrossRef]
- Lesna, I.K.; Kralova, A.; Cejkova, S.; Fronek, J.; Petras, M.; Sekerkova, A.; Thieme, F.; Janousek, L.; Poledne, R. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J. Transl. Med. 2016, 14, 208. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, D.; Suzuki, K.; Yuki, H.; Niida, T.; Fujimoto, D.; Minami, Y.; Dey, D.; Lee, H.; McNulty, I.; Ako, J.; et al. Sex-Specific Association Between Perivascular Inflammation and Plaque Vulnerability. Circ. Cardiovasc. Imaging 2024, 17, 016178. [Google Scholar] [CrossRef] [PubMed]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef]
- Small, H.Y.; McNeilly, S.; Mary, S.; Sheikh, A.M.; Delles, C. Resistin Mediates Sex-Dependent Effects of Perivascular Adipose Tissue on Vascular Function in the Shrsp. Sci. Rep. 2019, 9, 6897. [Google Scholar] [CrossRef]
- Contreras, G.A.; Yang, Y.; Flood, E.D.; Garver, H.; Bhattacharya, S.; Fink, G.D.; Watts, S.W. Blood pressure changes PVAT function and transcriptome: Use of the mid-thoracic aorta coarcted rat. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H1313–H1324. [Google Scholar] [CrossRef]
- Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.; Newgard, C.B.; et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef]
- Watts, S.W.; Darios, E.S.; Contreras, G.A.; Garver, H.; Fink, G.D. Male and female high-fat diet-fed Dahl SS rats are largely protected from vascular dysfunctions: PVAT contributions reveal sex differences. Am. J. Physiol. Heart Circ. Physiol. 2021, 321, H15–H28. [Google Scholar] [CrossRef]
- Kagota, S.; Futokoro, R.; Maruyama-Fumoto, K.; McGuire, J.J.; Shinozuka, K. Perivascular Adipose Tissue Compensation for Endothelial Dysfunction in the Superior Mesenteric Artery of Female SHRSP.Z-Leprfa/IzmDmcr Rats. J. Vasc. Res. 2022, 59, 209–220. [Google Scholar] [CrossRef]
- Lazaro, C.M.; Freitas, I.N.; Nunes, V.S.; Guizoni, D.M.; Victorio, J.A.; Oliveira, H.C.F.; Davel, A.P. Sex-Specific Effects of Cholesteryl Ester Transfer Protein (CETP) on the Perivascular Adipose Tissue. Function 2024, 5, 024. [Google Scholar] [CrossRef] [PubMed]
- Hanscom, M.; Morales-Soto, W.; Watts, S.W.; Jackson, W.F.; Gulbransen, B.D. Innervation of adipocytes is limited in mouse perivascular adipose tissue. Am. J. Physiol. Heart Circ. Physiol. 2024, 327, H155–H181. [Google Scholar] [CrossRef]
- Wabel, E.A.; Krieger-Burke, T.; Watts, S.W. Vascular chemerin from PVAT contributes to norepinephrine and serotonin-induced vasoconstriction and vascular stiffness in a sex-dependent manner. Am. J. Physiol. Heart Circ. Physiol. 2024, 327, H1577–H1589. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.A.; Randall, M.D.; Roberts, R.E. Sex differences in the regulation of porcine coronary artery tone by perivascular adipose tissue: A role of adiponectin? Br. J. Pharmacol. 2017, 174, 2773–2783. [Google Scholar] [CrossRef]
- Praticò, D.; Tillmann, C.; Zhang, Z.B.; Li, H.W.; FitzGerald, G.A. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc. Natl. Acad. Sci. USA 2001, 98, 3358–3363. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.A.; Randall, M.D.; Roberts, R.E. Sex differences in the role of phospholipase A(2)-dependent arachidonic acid pathway in the perivascular adipose tissue function in pigs. J. Physiol. 2017, 595, 6623–6634. [Google Scholar] [CrossRef]
- Bernasochi, G.B.; Bell, J.R.; Simpson, E.R.; Delbridge, L.M.D.; Boon, W.C. Impact of Estrogens on the Regulation of White, Beige, and Brown Adipose Tissue Depots. Compr. Physiol. 2019, 9, 457–475. [Google Scholar] [CrossRef]
- Kurylowicz, A. Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines 2023, 11, 690. [Google Scholar] [CrossRef]
- Ahmed, F.; Kamble, P.G.; Hetty, S.; Fanni, G.; Vranic, M.; Sarsenbayeva, A.; Kristofi, R.; Almby, K.; Svensson, M.K.; Pereira, M.J.; et al. Role of Estrogen and Its Receptors in Adipose Tissue Glucose Metabolism in Pre- and Postmenopausal Women. J. Clin. Endocrinol. Metab. 2022, 107, E1879–E1889. [Google Scholar] [CrossRef]
- Sun, B.; Yang, D.; Yin, Y.Z.; Xiao, J. Estrogenic and anti-inflammatory effects of pseudoprotodioscin in atherosclerosis-prone mice: Insights into endothelial cells and perivascular adipose tissues. Eur. J. Pharmacol. 2020, 869, 172887. [Google Scholar] [CrossRef]
- Henckel, M.M.; Chun, J.H.; Knaub, L.A.; Pott, G.B.; James, G.E.; Hunter, K.S.; Shandas, R.; Walker, L.A.; Reusch, J.E.; Keller, A.C. Thermoneutral-housed rats demonstrate impaired perivascular adipose tissue and vascular crosstalk. J. Hypertens. 2025, 43, 752–767. [Google Scholar] [CrossRef] [PubMed]
- Rittig, K.; Staib, K.; Machann, J.; Bottcher, M.; Peter, A.; Schick, F.; Claussen, C.; Stefan, N.; Fritsche, A.; Haring, H.U.; et al. Perivascular fatty tissue at the brachial artery is linked to insulin resistance but not to local endothelial dysfunction. Diabetologia 2008, 51, 2093–2099. [Google Scholar] [CrossRef] [PubMed]
- Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H.C. Endothelial dysfunction and vascular disease—A 30th anniversary update. Acta Physiol. 2017, 219, 22–96. [Google Scholar] [CrossRef]
- Palmer, B.F.; Clegg, D.J. The sexual dimorphism of obesity. Mol. Cell. Endocrinol. 2015, 402, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.E.; Ramirez, L.A.; Musall, J.B.; Sullivan, J.C. Tipping the scales: Are females more at risk for obesity- and high-fat diet-induced hypertension and vascular dysfunction? Br. J. Pharmacol. 2019, 176, 4226–4242. [Google Scholar] [CrossRef]
- Sigdel, S.; Udoh, G.; Albalawy, R.; Wang, J.J. Perivascular Adipose Tissue and Perivascular Adipose Tissue-Derived Extracellular Vesicles: New Insights in Vascular Disease. Cells 2024, 13, 1309. [Google Scholar] [CrossRef]
- Nakamura, T.; Miyamoto, K.; Kugo, H.; Sutoh, K.; Kiriyama, K.; Moriyama, T.; Zaima, N. Ovariectomy Causes Degeneration of Perivascular Adipose Tissue. J. Oleo Sci. 2021, 70, 1651–1659. [Google Scholar] [CrossRef]
- Wang, D.; Wang, C.; Wu, X.; Zheng, W.; Sandberg, K.; Ji, H.; Welch, W.J.; Wilcox, C.S. Endothelial dysfunction and enhanced contractility in microvessels from ovariectomized rats: Roles of oxidative stress and perivascular adipose tissue. Hypertension 2014, 63, 1063–1069. [Google Scholar] [CrossRef]
- Hetemäki, N.; Robciuc, A.; Vihma, V.; Haanpää, M.; Hämäläinen, E.; Tikkanen, M.J.; Mikkola, T.S.; Savolainen-Peltonen, H. Adipose Tissue Sex Steroids in Postmenopausal Women with and Without Menopausal Hormone Therapy. J. Clin. Endocrinol. Metab. 2024, 110, 511–522. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Marwan, M.; Desai, M.Y.; Mancio, J.; Alashi, A.; Hutt Centeno, E.; Thomas, S.; Herdman, L.; Kotanidis, C.P.; Thomas, K.E.; et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet 2018, 392, 929–939. [Google Scholar] [CrossRef]
- Stieber, C.; Malka, K.; Boucher, J.M.; Liaw, L. Human Perivascular Adipose Tissue as a Regulator of the Vascular Microenvironment and Diseases of the Coronary Artery and Aorta. J. Cardiol. Cardiovasc. Sci. 2019, 3, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.G.; Park, H. Metabolic Disorders in Menopause. Metabolites 2022, 12, 954. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Luo, H.; Feng, J.; Li, R.; Yang, Y. Diagnosis of perimenopausal coronary heart disease patients using radiomics signature of pericoronary adipose tissue based on coronary computed tomography angiography. Sci. Rep. 2024, 14, 19643. [Google Scholar] [CrossRef]
- Ginzburg, D.; Nowak, S.; Attenberger, U.; Luetkens, J.; Sprinkart, A.M.; Kuetting, D. Computer tomography-based assessment of perivascular adipose tissue in patients with abdominal aortic aneurysms. Sci. Rep. 2024, 14, 20512. [Google Scholar] [CrossRef]
- Huang, M.G.; Han, T.T.; Nie, X.; Zhu, S.M.; Yang, D.; Mu, Y.; Zhang, Y. Clinical value of perivascular fat attenuation index and computed tomography derived fractional flow reserve in identification of culprit lesion of subsequent acute coronary syndrome. Front. Cardiovasc. Med. 2023, 10, 1090397. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, S.; Forte, S.M.; Restante, G.; Gabelloni, M.; Guglielmi, G.; Neri, E. Artificial intelligence, radiomics and other horizons in body composition assessment. Quant. Imaging Med. Surg. 2020, 10, 1650–1660. [Google Scholar] [CrossRef]
- Akoumianakis, I.; Tarun, A.; Antoniades, C. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: Identifying novel therapeutic targets. Br. J. Pharmacol. 2017, 174, 3411–3424. [Google Scholar] [CrossRef]
- Wójcicka, G.; Jamroz-Wisniewska, A.; Atanasova, P.; Chaldakov, G.N.; Chylinska-Kula, B.; Beltowski, J. Differential effects of statins on endogenous HS formation in perivascular adipose tissue. Pharmacol. Res. 2011, 63, 68–76. [Google Scholar] [CrossRef]
- Tong, J.; Schriefl, A.J.; Cohnert, T.; Holzapfel, G.A. Gender Differences in Biomechanical Properties, Thrombus Age, Mass Fraction and Clinical Factors of Abdominal Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2013, 45, 364–372. [Google Scholar] [CrossRef]
Category | Description | References |
---|---|---|
Localization and composition | PVAT surrounds large blood vessels and consists of 40–50% adipocytes embedded in fibrous connective tissue, nerves, vasa vasorum, and a variety of stromal-vascular cells including preadipocytes, fibroblasts, endothelial cells, mesenchymal cells, vSMCs, and immune cells | [40,41,42] |
Morphological plasticity | PVAT displays features of both white and brown adipose tissue depending on anatomical location. Thoracic PVAT resembles thermogenic brown adipose tissue, abdominal PVAT is more similar to metabolically active white adipose tissue | [41,43,44,45] |
Species differences | Human PVAT is predominantly white adipose tissue, whereas rodent studies often describe more brown-like characteristics, highlighting species differences | [41,46] |
Functional State | Features/Mechanisms | References |
---|---|---|
Physiological | PVAT exerts vasoprotective and anti-inflammatory effects secretion of adipokines (e.g., adiponectin, leptin) Vascular tone regulation (e.g., via ADRF and PDRF), contribution to endothelial function via IL-10 and nitric oxide (NO) | [41,47,48,49,55,56] |
Pathological (e.g., obesity, atherosclerosis) | Metabolic imbalances lead to PVAT-dysfunction with increased vasoconstriction and inflammation Altered adipokine secretion (↑ leptin, IL-6, TNF-α; ↓ adiponectin, NO, H2S) promotes ROS production, oxidative stress, and vascular damage | [17,41,42,46,55,59,60,61,62,63] |
Atherogenesis (plaque formation) | PVAT-derived adipokines act via outside-in signaling, promoting LDL accumulation, vSMC migration, foam cell formation, and plaque vulnerability through reduced collagen synthesis and fibrous cap thinning | [41] |
Immune modulation | A balance between pro-inflammatory (TNF-α, IL-6) and anti-inflammatory (IL-10) cytokines is crucial Pathological PVAT ↑ CD68+ macrophages and CD4+ T-cells, contributing to chronic inflammation and impaired vasodilation | [49,50,51,52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heller, K.; Doukas, P.; Uhl, C.; Gombert, A. Sex-Specific Characteristics of Perivascular Fat in Aortic Aneurysms. J. Clin. Med. 2025, 14, 3071. https://doi.org/10.3390/jcm14093071
Heller K, Doukas P, Uhl C, Gombert A. Sex-Specific Characteristics of Perivascular Fat in Aortic Aneurysms. Journal of Clinical Medicine. 2025; 14(9):3071. https://doi.org/10.3390/jcm14093071
Chicago/Turabian StyleHeller, Katja, Panagiotis Doukas, Christian Uhl, and Alexander Gombert. 2025. "Sex-Specific Characteristics of Perivascular Fat in Aortic Aneurysms" Journal of Clinical Medicine 14, no. 9: 3071. https://doi.org/10.3390/jcm14093071
APA StyleHeller, K., Doukas, P., Uhl, C., & Gombert, A. (2025). Sex-Specific Characteristics of Perivascular Fat in Aortic Aneurysms. Journal of Clinical Medicine, 14(9), 3071. https://doi.org/10.3390/jcm14093071