Corneal Endothelial Cell Loss in Shallow Anterior Chamber Eyes After Phacoemulsification Using the Eight-Chop Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Preoperative Assessment
2.3. New Surgical Instruments
2.4. Surgical Technique
2.5. Outcome Measures and Data Collection
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACD | Anterior chamber depth |
CECD | Corneal endothelial cell density |
SAC | Shallow anterior chamber |
BCVA | Best-corrected visual acuity |
IOP | Intraocular pressure |
CDE | Cumulative dissipated energy |
IOL | Intraocular lens |
CCT | Central corneal thickness |
CV | Coefficient of variation |
PHC | Percentage of hexagonal cells |
OVD | Ophthalmic viscosurgical device |
SD | Standard deviation |
References
- Forooghian, F.; Agrón, E.; Clemons, T.E.; Ferris, F.L., 3rd; Chew, E.Y. Visual acuity outcomes after cataract surgery in patients with age-related macular degeneration: Age-related eye disease study report no. 27. Ophthalmology 2009, 116, 2093–2100. [Google Scholar] [CrossRef] [PubMed]
- Nderitu, P.; Ursell, P. Iris hooks versus a pupil expansion ring: Operating times, complications, and visual acuity outcomes in small pupil cases. J. Cataract Refract. Surg. 2019, 45, 167–173. [Google Scholar] [CrossRef]
- Chen, H.C.; Huang, C.W.; Yeh, L.K.; Hsiao, F.C.; Hsueh, Y.J.; Meir, Y.J.; Chen, K.J.; Cheng, C.M.; Wu, W.C. Accelerated corneal endothelial cell loss after phacoemulsification in patients with mildly low endothelial cell density. J. Clin. Med. 2021, 10, 2270. [Google Scholar] [CrossRef] [PubMed]
- Waring, G.O., 3rd; Bourne, W.M.; Edelhauser, H.F.; Kenyon, K.R. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology 1982, 89, 531–590. [Google Scholar] [CrossRef] [PubMed]
- Feizi, S. Corneal endothelial cell dysfunction: Etiologies and management. Ther. Adv. Ophthalmol. 2018, 10, 2515841418815802. [Google Scholar] [CrossRef]
- Bourne, W.M. Clinical estimation of corneal endothelial pump function. Trans. Am. Ophthalmol. Soc. 1998, 96, 229–239, discussion 239–242. [Google Scholar]
- Kinoshita, S.; Koizumi, N.; Ueno, M.; Okumura, N.; Imai, K.; Tanaka, H.; Yamamoto, Y.; Nakamura, T.; Inatomi, T.; Bush, J.; et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N. Engl. J. Med. 2018, 378, 995–1003. [Google Scholar] [CrossRef]
- Claesson, M.; Armitage, W.J.; Stenevi, U. Corneal oedema after cataract surgery: Predisposing factors and corneal graft outcome. Acta Ophthalmol. 2009, 87, 154–159. [Google Scholar] [CrossRef]
- Vasavada, A.; Singh, R. Phacoemulsification in eyes with a small pupil. J. Cataract Refract. Surg. 2000, 26, 1210–1218. [Google Scholar] [CrossRef]
- Igarashi, T.; Ohsawa, I.; Kobayashi, M.; Umemoto, Y.; Arima, T.; Suzuki, H.; Igarashi, T.; Otsuka, T.; Takahashi, H. Effects of hydrogen in prevention of corneal endothelial damage during phacoemulsification: A prospective randomized clinical trial. Am. J. Ophthalmol. 2019, 207, 10–17. [Google Scholar] [CrossRef]
- Park, J.; Yum, H.R.; Kim, M.S.; Harrison, A.R.; Kim, E.C. Comparison of phaco-chop, divide-and-conquer, and stop-and-chop phaco techniques in microincision coaxial cataract surgery. J. Cataract Refract. Surg. 2013, 39, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Dzhaber, D.; Mustafa, O.; Alsaleh, F.; Mihailovic, A.; Daoud, Y.J. Comparison of changes in corneal endothelial cell density and central corneal thickness between conventional and femtosecond laser-assisted cataract surgery: A randomised, controlled clinical trial. Br. J. Ophthalmol. 2020, 104, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H. Corneal Endothelium and Phacoemulsification. Cornea 2016, 35 (Suppl. S1), S3–S7. [Google Scholar] [CrossRef]
- O’Brien, P.D.; Fitzpatrick, P.; Kilmartin, D.J.; Beatty, S. Risk factors for endothelial cell loss after phacoemulsification surgery by a junior resident. J. Cataract Refract. Surg. 2004, 30, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Reuschel, A.; Bogatsch, H.; Oertel, N.; Wiedemann, R. Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 745–752. [Google Scholar] [CrossRef]
- Sato, T. Efficacy and safety of the eight-chop technique in phacoemulsification for patients with Cataract. J. Cataract Refract. Surg. 2023, 49, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Sato, T. Eight-chop technique in phacoemulsification using iris hooks for patients with cataracts and small pupils. J. Clin. Med. 2024, 13, 7298. [Google Scholar] [CrossRef]
- Khalid, M.; Ameen, S.S.; Ayub, N.; Mehboob, M.A. Effects of anterior chamber depth and axial length on corneal endothelial cell density after phacoemulsification. Pak. J. Med. Sci. 2019, 35, 200–204. [Google Scholar] [CrossRef]
- Fernández-Vigo, J.I.; Fernández-Vigo, J.; Macarro-Merino, A.; Fernández-Pérez, C.; Martínez-de-la-Casa, J.M.; García-Feijoó, J. Determinants of anterior chamber depth in a large Caucasian population and agreement between intra-ocular lens Master and Pentacam measurements of this variable. Acta Ophthalmol. 2016, 94, e150–e155. [Google Scholar] [CrossRef]
- Emery, J.M. Kelman phacoemulsification; patient selection. In Extracapsular Cataract Surgery; Emery, J.M., Mclyntyre, D.J., Eds.; CV Mosby: St Louis, MI, USA, 1983; pp. 95–100. [Google Scholar]
- Huang, J.; Savini, G.; Hoffer, K.J.; Chen, H.; Lu, W.; Hu, Q.; Bao, F.; Wang, Q. Repeatability and interobserver reproducibility of a new optical biometer based on swept-source optical coherence tomography and comparison with IOLMaster. Br. J. Ophthalmol. 2017, 101, 493–498. [Google Scholar] [CrossRef]
- Miyata, K.; Nagamoto, T.; Maruoka, S.; Tanabe, T.; Nakahara, M.; Amano, S. Efficacy and safety of the soft-shell technique in cases with a hard lens nucleus. J. Cataract Refract. Surg. 2002, 28, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Walkow, T.; Anders, N.; Klebe, S. Endothelial cell loss after phacoemulsification: Relation to preoperative and intraoperative parameters. J. Cataract Refract. Surg. 2000, 26, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.S.; Ong, K. Risk factors for corneal endothelial cell loss after phacoemulsification. Taiwan J. Ophthalmol. 2024, 14, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.B.; Lyu, B.; Yim, H.B.; Lee, N.Y. Endothelial cell loss after phacoemulsification according to different anterior chamber depths. J. Ophthalmol. 2015, 2015, 210716. [Google Scholar] [CrossRef]
- Mencucci, R.; De Vitto, C.; Cennamo, M.; Vignapiano, R.; Buzzi, M.; Favuzza, E. Femtosecond laser-assisted cataract surgery in eyes with shallow anterior chamber depth: Comparison with conventional phacoemulsification. J. Cataract Refract. Surg. 2020, 46, 1604–1610. [Google Scholar] [CrossRef]
- Hayashi, K.; Nakao, F.; Hayashi, F. Corneal endothelial cell loss after phacoemulsification using nuclear cracking procedures. J. Cataract Refract. Surg. 1994, 20, 44–47. [Google Scholar] [CrossRef]
- Kohlhaas, M.; Klemm, M.; Kammann, J.; Richard, G. Endothelial cell loss secondary to two different phacoemulsification techniques. Ophthalmic Surg. Lasers 1998, 29, 890–895. [Google Scholar] [CrossRef]
- Storr-Paulsen, A.; Norregaard, J.C.; Ahmed, S.; Storr-Paulsen, T.; Pedersen, T.H. Endothelial cell damage after cataract surgery: Divide-and-conquer versus phaco-chop technique. J. Cataract Refract. Surg. 2008, 34, 996–1000. [Google Scholar] [CrossRef]
- Roberts, T.V.; Lawless, M.; Bali, S.J.; Hodge, C.; Sutton, G. Surgical outcomes and safety of femtosecond laser cataract surgery: A prospective study of 1500 consecutive cases. Ophthalmology 2013, 120, 227–233. [Google Scholar] [CrossRef]
- Cruz, J.C.G.; Moreno, C.B.; Soares, P.; Moscovici, B.K.; Colombo-Barboza, G.N.; Colombo-Barboza, L.R.; Colombo-Barboza, M.N. Comparison of endothelial cell loss in diabetic patients after conventional phacoemulsification and femtosecond laser-assisted cataract surgery. BMC Ophthalmol. 2023, 23, 181. [Google Scholar] [CrossRef]
Characteristic/Parameter | SAC Group | Control Group | p-Value |
---|---|---|---|
Number of eyes | 80 | 80 | |
Age (y) | 74.9 ± 5.48 | 75.0 ± 6.2 | 0.11 a |
Gender: Men | 22 (27.5%) | 22 (27.5%) | 1.0 b |
Women | 58 (72.5%) | 58 (72.5%) | |
Anterior chamber depth (mm) | 2.75 ± 0.19 | 3.32 ± 0.20 | <0.01 c |
Axial length (mm) | 22.93 ± 0.91 | 23.92 ± 1.29 | <0.01 c |
Lens hardness | 2.40 ± 0.30 | 2.26 ± 0.26 | <0.01 c |
Operative time (min) | 4.7 ± 1.1 | 4.5 ± 0.7 | 0.09 a |
Phaco time (s) | 15.4 ± 6.1 | 13.9 ± 3.7 | 0.06 a |
Aspiration time (s) | 65.6 ± 17.3 | 62.6 ± 11.3 | 0.19 a |
CDE | 5.87 ± 2.01 | 5.59 ± 1.56 | 0.34 a |
Volume of fluid used (mL) | 26.6 ± 8.1 | 24.5 ± 4.9 | <0.05 c |
Group (n = 80 Each) | Preoperatively | 7 Weeks Postoperatively | 19 Weeks Postoperatively | 1 Year Postoperatively | p-Value |
---|---|---|---|---|---|
SAC logMAR | 0.062 ± 0.121 | −0.050 ± 0.051 | −0.046 ± 0.060 | −0.045 ± 0.065 | 0.96 a |
Control logMAR | 0.120 ± 0.187 | −0.064 ± 0.039 | −0.070 ± 0.025 | −0.066 ± 0.030 | |
p-Value | <0.01 b |
Group (n = 80 Each) | Preoperatively | 7 Weeks Postoperatively | 19 Weeks Postoperatively | 1 Year Postoperatively | p-Value |
---|---|---|---|---|---|
SAC (cells/mm2) loss (%) | 2678.3 ± 257.5 | 2640.5 ± 244.3 1.3 ± 2.1 | 2648.5 ± 247.6 1.1 ± 1.1 | 2653.2 ± 254.8 0.9 ± 1.8 | <0.01 a |
Control (cells/mm2) loss (%) | 2751.6 ± 254.7 | 2687.6 ± 248.7 2.3 ± 3.1 | 2730.8 ± 248.4 0.7 ± 2.3 | 2738.6 ± 252.9 0.5 ± 1.7 | |
p-Value | 0.34 b |
Group (n = 80 Each) | Preoperatively | 7 Weeks Postoperatively | 19 Weeks Postoperatively | 1 Year Postoperatively | p-Value |
---|---|---|---|---|---|
CCT (mean ± SD) | |||||
SAC | 514.9 ± 34.3 | 518.7 ± 35.6 | 518.9 ± 36.2 | 517.6 ± 35.4 | <0.01 a |
Control | 528.0 ± 31.9 | 533.4 ± 31.7 | 528.7 ± 32.1 | 527.1 ± 36.0 | |
p-Value | 0.64 c | ||||
CV (mean ± SD) | |||||
SAC | 39.6 ± 4.6 | 39.4 ± 4.0 | 39.0 ± 4.9 | 36.6 ± 3.6 | 0.63 b |
Control | 38.9 ± 5.6 | 39.6 ± 5.4 | 38.5 ± 5.4 | 36.8 ± 5.6 | |
p-Value | <0.01 d | ||||
PHC (mean ± SD) | |||||
SAC | 44.1 ± 6.9 | 44.4 ± 5.5 | 45.9 ± 5.5 | 47.2 ± 5.9 | 0.018 a |
Control | 46.0 ± 6.0 | 44.8 ± 5.5 | 46.5 ± 5.6 | 48.8 ± 5.9 | |
p-Value | <0.01 d |
Group (n = 80 Each) | Preoperatively | 7 Weeks Postoperatively | 19 Weeks Postoperatively | 1 Year Postoperatively | p-Value |
---|---|---|---|---|---|
SAC (mmHg) % decrease | 13.7 ± 2.1 | 11.3 ± 1.9 16.7 ± 11.6 | 11.6 ± 2.0 14.9 ± 10.1 | 12.3 ± 1.9 9.7 ± 9.9 | <0.01 a |
Control (mmHg) % decrease | 13.2 ± 1.8 | 11.7 ± 1.6 10.9 ± 9.3 | 12.3 ± 1.6 6.6 ± 10.0 | 12.6 ± 1.7 3.8 ± 11.2 | |
p-Value | <0.01 b |
SAC Group (n = 80) | Control Group (n = 80) | Total (n = 160) | ||||
---|---|---|---|---|---|---|
Parameters | r-Value | p-Value | r-Value | p-Value | r-Value | p-Value |
Age | 0.062 | 0.587 | −0.058 | 0.607 | 0.025 | 0.750 |
Lens hardness | 0.083 | 0.466 | 0.035 | 0.759 | 0.094 | 0.237 |
Anterior chamber depth | −0.058 | 0.609 | −0.105 | 0.356 | −0.152 | 0.055 |
Axial length | 0.023 | 0.837 | 0.058 | 0.610 | −0.008 | 0.924 |
Operative time | −0.006 | 0.960 | −0.029 | 0.801 | 0.003 | 0.966 |
Phaco time | 0.133 | 0.240 | −0.056 | 0.621 | 0.081 | 0.310 |
Aspiration time | 0.048 | 0.672 | −0.071 | 0.530 | 0.016 | 0.841 |
CDE | 0.318 | 0.004 a | −0.027 | 0.811 | 0.179 | 0.023 a |
Volume of fluid used | 0.046 | 0.687 | −0.087 | 0.441 | 0.017 | 0.827 |
Preoperative IOP | 0.159 | 0.159 | −0.016 | 0.885 | 0.025 | 0.750 |
Preoperative BCVA | 0.169 | 0.135 | −0.118 | 0.296 | −0.025 | 0.755 |
Preoperative CECD | 0.127 | 0.263 | 0.169 | 0.134 | 0.138 | 0.082 |
Preoperative CCT | 0.240 | 0.032 a | 0.013 | 0.906 | 0.105 | 0.185 |
Preoperative CV | −0.226 | 0.044 a | 0.063 | 0.578 | −0.062 | 0.433 |
Preoperative PHC | 0.342 | 0.002 a | 0.066 | 0.560 | 0.195 | 0.014 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, T. Corneal Endothelial Cell Loss in Shallow Anterior Chamber Eyes After Phacoemulsification Using the Eight-Chop Technique. J. Clin. Med. 2025, 14, 3045. https://doi.org/10.3390/jcm14093045
Sato T. Corneal Endothelial Cell Loss in Shallow Anterior Chamber Eyes After Phacoemulsification Using the Eight-Chop Technique. Journal of Clinical Medicine. 2025; 14(9):3045. https://doi.org/10.3390/jcm14093045
Chicago/Turabian StyleSato, Tsuyoshi. 2025. "Corneal Endothelial Cell Loss in Shallow Anterior Chamber Eyes After Phacoemulsification Using the Eight-Chop Technique" Journal of Clinical Medicine 14, no. 9: 3045. https://doi.org/10.3390/jcm14093045
APA StyleSato, T. (2025). Corneal Endothelial Cell Loss in Shallow Anterior Chamber Eyes After Phacoemulsification Using the Eight-Chop Technique. Journal of Clinical Medicine, 14(9), 3045. https://doi.org/10.3390/jcm14093045