Robotic-Assisted Thoracoscopic Surgery Versus Video-Assisted Thoracoscopic Surgery: Which Is the Preferred Approach for Early-Stage NSCLC?
Abstract
:1. Introduction
1.1. Definition and Description of VATS
1.2. Definition and Description of RATS
1.3. Differences in Surgical Equipment
2. Materials and Methods
3. Results
3.1. Intraoperative Complications
Operation Time
3.2. Conversion Rate to Thoracotomy
3.3. Lymph Node Dissection
3.4. Intraoperative Hemorrhage
3.5. Postoperative Complications and Hospital Mortality
3.6. Post-Operative Drainage Days
3.7. Post-Operative Hemorrhage
3.8. Post-Operative Pain and Quality of Life
3.9. Hospital Length of Stay
3.10. Hospital Readmission Rate
3.11. Cost
3.12. Administration of Neo-Adjuvant Therapy
3.13. Long-Term Survival
Outcome | RATS | VATS | p-Value | Interpretation | Reference |
---|---|---|---|---|---|
Lymph Node Dissection | 7.5 ± 1.75 stations | 5.63 ± 1.75 stations | <0.001 | RATS provides more extensive lymph node dissection. | Zeng et al. (2023) [47] |
5.2 ± 1.4 | 3.9 ± 1.2 | 0.0001 | Veronesi et al. (2021) [28] | ||
4.7 (0.97) Mean (SD) | 2.9 (1.10) | <0.001 | Novellis et al. (2018) [12] | ||
Operative Time | 3.5–4.5 h | 2.86–4.23 h | <0.01 | RATS results in longer operative time statistical significant in most trials | Oh et al. (2017) [22] |
215 min (median) | 183 min (median) | 0.0362 | Augustin et al. (2013) [20] | ||
223 min (median) | 202 min (median) | 0.045 | Deen et al. (2014) [21] | ||
241.7 min (median) | 214.4 min (median) | 0.06 | BRAVO Trial (2022) [26] | ||
Conversion to Thoracotomy | 6.3% | 13.1% | <0.01 | Lower conversion rates were observed at RATS compared to VATS | Oh et al. (2017) [22] |
0% conversion rate | 5.9% conversion rate | <0.05 | Qiu et al. (2020) [25] | ||
19.2% | 8.4% | 0.4189 | Augustin et al. (2013) [20] | ||
13.1% | 20.5% | 0.029 | BRAVO Trial (2022) [26] | ||
Postoperative Pain | 0 | 1 | 1 | No significant difference in postoperative pain perception (VAS score > 2) between groups at 3 or 30 days post-surgery | BRAVO Trial (2022) [26] |
Hospital Stay | Median stay: 4–5 days | Median stay: 5–6 days | <0.006 | Fewer hospital stay at patients underwent RATS compared to VATS (significant in most trials) | Oh et al. (2017) [22] |
Median stay: 5 days | Median stay: 6 days | <0.001 | Novellis et al. (2018) [12] | ||
IQR = 2–5 days | IQR = 3–6 days | <0.001 | Louie et al. (2016) [24] | ||
Median stay: 4 days | Median stay: 4 days | (0.6131) | Swanson et al. (2014) [19] | ||
Postoperative Complications | 34.1% | 37.3% | <0.01 | RATS shows fewer complications overall and in particular in bleeding and myocardial infarction events. | Oh et al. (2017) [22] |
18.9% | 35.9% | 0.12 | RATS associated with fewer 90-day complications (not statistically significant) | BRAVO Trial (2022) [26] | |
Costs | USD 22,582 (median cost) | USD 17,874 (median cost) | <0.05 | RATS as a technique costs higher amount compared to VATS at all trials measured | Paul et al. (2014) [34] |
USD 25,040.70 (average inpatient cost) | USD 20,476.60 (average inpatient cost) | <0.0001 | Swanson et al. (2014) [19] | ||
USD 12,821 (hospitalization cost) | USD 8009 (hospitalization cost) | <0.001 | RVlob Trial (2022) [31] | ||
Readmission Rates | 2.7% | 20.5% | 0.029 | Significantly lower 90-day readmission rates compared to | BRAVO Trial (2022) [26] |
0% | 16% | 0.08 | RATS associated with a trend toward reduced readmission rates, though not statistically significant. | ROMAN Trial (2021) [28] |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RATS | Robotic assisted thoracoscopic surgery |
VATS | Video assisted thoracoscopic surgery |
NSCLC | Non-small cell lung cancer |
SCLC | Small cell lung cancer |
RCT | Randomized clinical trial |
LND | Lymph node dissection |
OR | Odds ratio |
HR | Hazard ratio |
SMD | Standardized mean difference |
CI | Confidence interval |
RFS | Relapse free survival |
DFS | Disease free survival |
OS | Overall survival |
IQR | Interquartile range |
AJCC | American Joint Committee on Cancer |
References
- Li, C.; Wang, H.; Jiang, Y.; Fu, W.; Liu, X.; Zhong, R.; Cheng, B.; Zhu, F.; Xiang, Y.; He, J.; et al. Advances in lung cancer screening and early detection. Cancer Biol. Med. 2022, 19, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Liang, H.; Liang, W.; Zhao, L.; Chen, D.; Zhang, J.; Zhang, Y.; Tang, S.; He, J. Robotic Versus Video-assisted Lobectomy/Segmentectomy for Lung Cancer: A Meta-analysis. Ann. Surg. 2018, 268, 254–259. [Google Scholar] [CrossRef]
- Heiden, B.T.; Mitchell, J.D.; Rome, E.; Puri, V.; Meyers, B.F.; Chang, S.-H.; Kozower, B.D. Cost-Effectiveness Analysis of Robotic-assisted Lobectomy for Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2022, 114, 265–272. [Google Scholar] [CrossRef]
- Park, B.J.; Flores, R.M.; Rusch, V.W. Robotic assistance for video-assisted thoracic surgical lobectomy: Technique and initial results. J. Thorac. Cardiovasc. Surg. 2006, 131, 54–59. [Google Scholar] [CrossRef]
- Kent, M.; Wang, T.; Whyte, R.; Curran, T.; Flores, R.; Gangadharan, S. Open, Video-Assisted Thoracic Surgery, and Robotic Lobectomy: Review of a National Database. Ann. Thorac. Surg. 2014, 97, 236–244. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, J.; Tian, Y.; Zou, N.; Zhu, H.; Gu, Z.; Jin, W.; Ning, J.; Jiang, L.; Huang, J.; et al. Short- and long-term outcomes of robotic-assisted versus video-assisted thoracoscopic lobectomy in non-small cell lung cancer patients aged 35 years or younger: A real-world study with propensity score-matched analysis. J. Cancer Res. Clin. Oncol. 2023, 149, 9947–9958. [Google Scholar] [CrossRef] [PubMed]
- Whitson, B.A.; Andrade, R.S.; Boettcher, A.; Bardales, R.; Kratzke, R.A.; Dahlberg, P.S.; Maddaus, M.A. Video-Assisted Thoracoscopic Surgery is More Favorable Than Thoracotomy for Resection of Clinical Stage I Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2007, 83, 1965–1970. [Google Scholar] [CrossRef]
- Hanna, W.C.; De Valence, M.; Atenafu, E.G.; Cypel, M.; Waddell, T.K.; Yasufuku, K.; Pierre, A.; De Perrot, M.; Keshavjee, S.; Darling, G.E. Is video-assisted lobectomy for non-small-cell lung cancer oncologically equivalent to open lobectomy? Eur. J. Cardiothorac. Surg. 2013, 43, 1121–1125. [Google Scholar] [CrossRef]
- Petrella, F.; Rizzo, S.; Attili, I.; Passaro, A.; Zilli, T.; Martucci, F.; Bonomo, L.; Del Grande, F.; Casiraghi, M.; De Marinis, F.; et al. Stage III Non-Small-Cell Lung Cancer: An Overview of Treatment Options. Curr. Oncol. 2023, 30, 3160–3175. [Google Scholar] [CrossRef]
- Cao, C.; Manganas, C.; Ang, S.C.; Peeceeyen, S.; Yan, T.D. Video-assisted thoracic surgery versus open thoracotomy for non-small cell lung cancer: A meta-analysis of propensity score-matched patients. Interact. Cardiovasc. Thorac. Surg. 2013, 16, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Novellis, P.; Bottoni, E.; Voulaz, E.; Cariboni, U.; Testori, A.; Bertolaccini, L.; Giordano, L.; Dieci, E.; Granato, L.; Vanni, E.; et al. Robotic surgery, video-assisted thoracic surgery, and open surgery for early stage lung cancer: Comparison of costs and outcomes at a single institute. J. Thorac. Dis. 2018, 10, 790–798. [Google Scholar] [CrossRef]
- Matern, L.H.; Bao, X. A narrative review of video-assisted thoracic surgery for geriatric patients: Optimizing organ function and perioperative recovery. Video-Assist. Thorac. Surg. 2023, 8. [Google Scholar] [CrossRef]
- Melfi, F.M.A.; Menconi, G.F.; Mariani, A.M.; Angeletti, C.A. Early experience with robotic technology for thoracoscopic surgery. Eur. J. Cardio-Thorac. Surg. 2002, 21, 864–868. [Google Scholar] [CrossRef]
- Gharagozloo, F. Robotic Surgery of the Mediastinum: A Review. World J. Cardiovasc. Surg. 2022, 12, 70–84. [Google Scholar] [CrossRef]
- Odeh, A.M.; Wyant, K.; Freeman, R.K.; Abdelsattar, Z.M. Tackling complex thoracic surgical operations with robotic solutions: A narrative review. J. Thorac. Dis. 2024, 16, 1521–1536. [Google Scholar] [CrossRef]
- Veronesi, G. Technical Considerations and Learning Curve for Pulmonary Resection. Thorac. Surg. Clin. 2014, 24, 135–141. [Google Scholar] [CrossRef]
- Park, B.J.; Melfi, F.; Mussi, A.; Maisonneuve, P.; Spaggiari, L.; Da Silva, R.K.C.; Veronesi, G. Robotic lobectomy for non-small cell lung cancer (NSCLC): Long-term oncologic results. J. Thorac. Cardiovasc. Surg. 2012, 143, 383–389. [Google Scholar] [CrossRef]
- Swanson, S.J.; Miller, D.L.; McKenna, R.J.; Howington, J.; Marshall, M.B.; Yoo, A.C.; Moore, M.; Gunnarsson, C.L.; Meyers, B.F. Comparing robot-assisted thoracic surgical lobectomy with conventional video-assisted thoracic surgical lobectomy and wedge resection: Results from a multihospital database (Premier). J. Thorac. Cardiovasc. Surg. 2014, 147, 929–937. [Google Scholar] [CrossRef]
- Augustin, F.; Bodner, J.; Maier, H.; Schwinghammer, C.; Pichler, B.; Lucciarini, P.; Pratschke, J.; Schmid, T. Robotic-assisted minimally invasive vs. thoracoscopic lung lobectomy: Comparison of perioperative results in a learning curve setting. Langenbecks Arch. Surg. 2013, 398, 895–901. [Google Scholar] [CrossRef]
- Deen, S.A.; Wilson, J.L.; Wilshire, C.L.; Vallières, E.; Farivar, A.S.; Aye, R.W.; Ely, R.E.; Louie, B.E. Defining the Cost of Care for Lobectomy and Segmentectomy: A Comparison of Open, Video-Assisted Thoracoscopic, and Robotic Approaches. Ann. Thorac. Surg. 2014, 97, 1000–1007. [Google Scholar] [CrossRef]
- Oh, D.S.; Reddy, R.M.; Gorrepati, M.L.; Mehendale, S.; Reed, M.F. Robotic-Assisted, Video-Assisted Thoracoscopic and Open Lobectomy: Propensity-Matched Analysis of Recent Premier Data. Ann. Thorac. Surg. 2017, 104, 1733–1740. [Google Scholar] [CrossRef]
- Adams, R.D.; Bolton, W.D.; Stephenson, J.E.; Henry, G.; Robbins, E.T.; Sommers, E. Initial Multicenter Community Robotic Lobectomy Experience: Comparisons to a National Database. Ann. Thorac. Surg. 2014, 97, 1893–1900. [Google Scholar] [CrossRef] [PubMed]
- Louie, B.E.; Wilson, J.L.; Kim, S.; Cerfolio, R.J.; Park, B.J.; Farivar, A.S.; Vallières, E.; Aye, R.W.; Burfeind, W.R.; Block, M.I. Comparison of VATS and Robotic Approaches For Clinical Stage I and II NSCLC Using the STS Database. Ann. Thorac. Surg. 2016, 102, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Zhao, Y.; Xuan, Y.; Qin, Y.; Niu, Z.; Shen, Y.; Jiao, W. Robotic sleeve lobectomy for centrally located non-small cell lung cancer: A propensity score–weighted comparison with thoracoscopic and open surgery. J. Thorac. Cardiovasc. Surg. 2020, 160, 838–846.e2. [Google Scholar] [CrossRef]
- Terra, R.M.; de Araujo, P.H.X.N.; Lauricella, L.L.; de Campos, J.R.M.; Trindade, J.R.M.; Pêgo-Fernandes, P.M. A Brazilian randomized study: Robotic-Assisted vs. Video-assisted lung lobectomy Outcomes (BRAVO trial). J. Bras. Pneumol. 2022, 48, e20210464. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Tang, Z.; Mi, Y.; Xu, H.; Li, K.; Liang, Y.; Wang, N.; Wang, L. Robotic and video-assisted lobectomy/segmentectomy for non-small cell lung cancer have similar perioperative outcomes: A systematic review and meta-analysis. Transl. Cancer Res. 2021, 10, 3883. [Google Scholar] [CrossRef]
- Veronesi, G.; Abbas, A.E.S.; Muriana, P.; Lembo, R.; Bottoni, E.; Perroni, G.; Testori, A.; Dieci, E.; Bakhos, C.T.; Car, S.; et al. Perioperative Outcome of Robotic Approach Versus Manual Videothoracoscopic Major Resection in Patients Affected by Early Lung Cancer: Results of a Randomized Multicentric Study (ROMAN Study). Front. Oncol. 2021, 11, 726408. [Google Scholar] [CrossRef]
- Nasir, B.S.; Bryant, A.S.; Minnich, D.J.; Wei, B.; Cerfolio, R.J. Performing Robotic Lobectomy and Segmentectomy: Cost, Profitability, and Outcomes. Ann. Thorac. Surg. 2014, 98, 203–209. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, L.; Lu, H.; Ma, A.; Wang, G. Short-Term Surgical Outcomes for Lobectomy Between Robot-Assisted Thoracic Surgery and Uniportal Video-Assisted Thoracoscopic Surgery. Front. Oncol. 2022, 12, 914059. [Google Scholar] [CrossRef]
- Jin, R.; Zheng, Y.; Yuan, Y.; Han, D.; Cao, Y.; Zhang, Y.; Li, C.; Xiang, J.; Zhang, Z.; Niu, Z.; et al. Robotic-assisted Versus Video-assisted Thoracoscopic Lobectomy: Short-term Results of a Randomized Clinical Trial (RVlob Trial). Ann. Surg. 2022, 275, 295. [Google Scholar] [CrossRef]
- Dezube, A.R.; Mazzola, E.; Bravo-Iñiguez, C.E.; De León, L.E.; Rochefort, M.M.; Bueno, R.; Wiener, D.C.; Jaklitsch, M.T. Analysis of Lymph Node Sampling Minimums in Early Stage Non-Small-Cell Lung Cancer. Semin. Thorac. Cardiovasc. Surg. 2021, 33, 834–845. [Google Scholar] [CrossRef] [PubMed]
- Hennon, M.W.; DeGraaff, L.H.; Groman, A.; Demmy, T.L.; Yendamuri, S. The association of nodal upstaging with surgical approach and its impact on long-term survival after resection of non-small-cell lung cancer. Eur. J. Cardio-Thorac. Surg. 2020, 57, 888–895. [Google Scholar] [CrossRef]
- Paul, S.; Jalbert, J.; Isaacs, A.J.; Altorki, N.K.; Isom, O.W.; Sedrakyan, A. Comparative Effectiveness of Robotic-Assisted vs Thoracoscopic Lobectomy. Chest 2014, 146, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Farivar, A.S.; Cerfolio, R.J.; Vallières, E.; Knight, A.W.; Bryant, A.; Lingala, V.; Aye, R.W.; Louie, B.E. Comparing robotic lung resection with thoracotomy and video-assisted thoracoscopic surgery cases entered into the Society of Thoracic Surgeons database. Innovations 2014, 9, 10–15. [Google Scholar] [CrossRef]
- Louie, B.E.; Farivar, A.S.; Aye, R.W.; Vallières, E. Early Experience With Robotic Lung Resection Results in Similar Operative Outcomes and Morbidity When Compared With Matched Video-Assisted Thoracoscopic Surgery Cases. Ann. Thorac. Surg. 2012, 93, 1598–1605. [Google Scholar] [CrossRef]
- Veronesi, G.; Galetta, D.; Maisonneuve, P.; Melfi, F.; Schmid, R.A.; Borri, A.; Vannucci, F.; Spaggiari, L. Four-arm robotic lobectomy for the treatment of early-stage lung cancer. J. Thorac. Cardiovasc. Surg. 2010, 140, 19–25. [Google Scholar] [CrossRef]
- Huang, J.; Tian, Y.; Zhou, Q.J.; Ning, J.-W.; Gu, Z.-N.; Lu, P.-J.; Li, J.-T.; Lin, H.; Chen, T.-X.; Yang, Y.-H.; et al. Comparison of perioperative outcomes of robotic-assisted versus video-assisted thoracoscopic right upper lobectomy in non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 4549. [Google Scholar] [CrossRef]
- Betticher, D.C.; Hsu Schmitz, S.F.; Tötsch, M.; Hansen, E.; Joss, C.; von Briel, C.; Schmid, R.A.; Pless, M.; Habicht, J.; Roth, A.D.; et al. Mediastinal lymph node clearance after docetaxel-cisplatin neoadjuvant chemotherapy is prognostic of survival in patients with stage IIIA pN2 non-small-cell lung cancer: A multicenter phase II trial. J. Clin. Oncol. 2003, 21, 1752–1759. [Google Scholar] [CrossRef]
- Pan, X.; Chen, Y.; Shi, J.; Zhao, H.; Chen, H. Robotic Assisted Extended Sleeve Lobectomy After Neoadjuvant Chemotherapy. Ann. Thorac. Surg. 2015, 100, e129–e131. [Google Scholar] [CrossRef]
- Yamamoto, R.; Tada, H.; Kishi, A.; Tojo, T. Effects of preoperative chemotherapy and radiation therapy on human bronchial blood flow. J. Thorac. Cardiovasc. Surg. 2000, 119, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Liu, Q.; Li, H.; Cui, B.; Cheng, T.; Lu, Y.; Wu, X.; Jin, D.; Gou, Y.; Dong, X.; et al. Effect of da Vinci robot versus thoracoscopic surgery on lung function and oxidative stress levels in NSCLC patients: A propensity score-matched study. Surg. Endosc. 2024, 38, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Romero Román, A.; Campo-Cañaveral De La Cruz, J.L.; Macía, I.; Escobar Campuzano, I.; Figueroa Almánzar, S.; Delgado Roel, M.; Gálvez Muñoz, C.; García Fontán, E.M.; Muguruza Trueba, I.; Romero Vielva, L.; et al. Outcomes of surgical resection after neoadjuvant chemoimmunotherapy in locally advanced stage IIIA non-small-cell lung cancer. Eur. J. Cardiothorac. Surg. 2021, 60, 81–88. [Google Scholar] [CrossRef]
- Yang, C.F.J.; McSherry, F.; Mayne, N.R.; Wang, X.; Berry, M.F.; Tong, B.; Harpole, D.H.; D’Amico, T.A.; Christensen, J.D.; Ready, N.E.; et al. Surgical Outcomes After Neoadjuvant Chemotherapy and Ipilimumab for Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2018, 105, 924–929. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Xiao, D.; Zhou, Y.; Chen, Y.; Yang, H.; Wang, L.; Zeng, J.; He, B.; He, R.; et al. Robotic-assisted thoracic surgery following neoadjuvant chemoimmunotherapy in patients with stage III non-small cell lung cancer: A real-world prospective cohort study. Front. Oncol. 2022, 12, 969545. [Google Scholar] [CrossRef]
- Pan, H.; Zou, N.; Tian, Y.; Zhu, H.; Zhang, J.; Jin, W.; Gu, Z.; Ning, J.; Li, Z.; Kong, W.; et al. Short-term outcomes of robot-assisted versus video-assisted thoracoscopic surgery for non-small cell lung cancer patients with neoadjuvant immunochemotherapy: A single-center retrospective study. Front. Immunol. 2023, 14, 1228451. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Yi, B.; Chang, R.; Chen, Y.; Yu, Z.; Gao, Y. Safety and feasibility of robotic-assisted thoracic surgery after neoadjuvant chemoimmunotherapy in non-small cell lung cancer. Front. Oncol. 2023, 13, 1134713. [Google Scholar] [CrossRef]
- Wilson, J.L.; Louie, B.E.; Cerfolio, R.J.; Park, B.J.; Vallières, E.; Aye, R.W.; Abdel-Razek, A.; Bryant, A.; Farivar, A.S. The Prevalence of Nodal Upstaging During Robotic Lung Resection in Early Stage Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2014, 97, 1901–1907. [Google Scholar] [CrossRef]
- Lee, P.C.; Nasar, A.; Port, J.L.; Paul, S.; Stiles, B.; Chiu, Y.-L.; Andrews, W.G.; Altorki, N.K. Long-term survival after lobectomy for non-small cell lung cancer by video-assisted thoracic surgery versus thoracotomy. Ann. Thorac. Surg. 2013, 96, 951–960, discussion 960–961. [Google Scholar] [CrossRef]
- Fabbri, G.; Femia, F.; Lampridis, S.; Farinelli, E.; Maraschi, A.; Routledge, T.; Bille, A. Long-Term Oncologic Outcomes in Robot-Assisted and Video-Assisted Lobectomies for Non-Small Cell Lung Cancer. J. Clin. Med. 2023, 12, 6609. [Google Scholar] [CrossRef]
- Vachani, A.; Carroll, N.M.; Simoff, M.J.; Neslund-Dudas, C.; Honda, S.; Greenlee, R.T.; Rendle, K.A.; Burnett-Hartman, A.; Ritzwoller, D.P. Stage Migration and Lung Cancer Incidence After Initiation of Low-Dose Computed Tomography Screening. J. Thorac. Oncol. 2022, 17, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syrigos, N.; Fyta, E.; Goumas, G.; Trontzas, I.P.; Vathiotis, I.; Panagiotou, E.; Nikiteas, N.I.; Kotteas, E.; Dimitroulis, D. Robotic-Assisted Thoracoscopic Surgery Versus Video-Assisted Thoracoscopic Surgery: Which Is the Preferred Approach for Early-Stage NSCLC? J. Clin. Med. 2025, 14, 3032. https://doi.org/10.3390/jcm14093032
Syrigos N, Fyta E, Goumas G, Trontzas IP, Vathiotis I, Panagiotou E, Nikiteas NI, Kotteas E, Dimitroulis D. Robotic-Assisted Thoracoscopic Surgery Versus Video-Assisted Thoracoscopic Surgery: Which Is the Preferred Approach for Early-Stage NSCLC? Journal of Clinical Medicine. 2025; 14(9):3032. https://doi.org/10.3390/jcm14093032
Chicago/Turabian StyleSyrigos, Nikolaos, Eleni Fyta, Georgios Goumas, Ioannis P. Trontzas, Ioannis Vathiotis, Emmanouil Panagiotou, Nikolaos I. Nikiteas, Elias Kotteas, and Dimitrios Dimitroulis. 2025. "Robotic-Assisted Thoracoscopic Surgery Versus Video-Assisted Thoracoscopic Surgery: Which Is the Preferred Approach for Early-Stage NSCLC?" Journal of Clinical Medicine 14, no. 9: 3032. https://doi.org/10.3390/jcm14093032
APA StyleSyrigos, N., Fyta, E., Goumas, G., Trontzas, I. P., Vathiotis, I., Panagiotou, E., Nikiteas, N. I., Kotteas, E., & Dimitroulis, D. (2025). Robotic-Assisted Thoracoscopic Surgery Versus Video-Assisted Thoracoscopic Surgery: Which Is the Preferred Approach for Early-Stage NSCLC? Journal of Clinical Medicine, 14(9), 3032. https://doi.org/10.3390/jcm14093032