Short-Term and Long-Term Effects of Inhaled Ultrafine Particles on Blood Markers of Cardiovascular Diseases: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
2.5. Data Items and Data Collection Process
2.6. Study Risk of Bias Assessment
2.7. Sensitivity Analysis
2.8. Effect Measures
2.9. Synthesis Methods
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.2.1. Characteristics of Short-Term Effect Studies
3.2.2. Characteristics of Long-Term Effect Studies
3.3. Risk of Bias in Studies
3.4. Results of Individual Studies on UFP Effects on CVD Blood Marker Imbalance
3.4.1. Short-Term Effects of UFP Exposure on Blood Markers of CVDs
3.4.2. Long-Term Effects of UFP Exposure on Blood Markers of CVDs
3.5. Meta-Analysis
4. Discussion
5. Conclusions
6. Strengths and Limitations
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2021 (GBD 2021) Air Pollution Exposure Estimates and Risk Curves 1990–2021. 2024. Available online: https://ghdx.healthdata.org/record/ihme-data/gbd-2021-air-pollution-exposure-estimates-1990-2021 (accessed on 13 February 2025).
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Furlong, M.A.; Klimentidis, Y.C. Associations of air pollution with obesity and body fat percentage, and modification by polygenic risk score for BMI in the UK Biobank. Environ. Res. 2020, 185, 109364. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Münzel, T.; Hahad, O.; Sørensen, M.; Lelieveld, J.; Duerr, G.D.; Nieuwenhuijsen, M.; Daiber, A. Environmental risk factors and cardiovascular diseases: A comprehensive expert review. Cardiovasc. Res. 2022, 118, 2880–2902. [Google Scholar] [CrossRef]
- Lachowicz, J.I.; Milia, S.; Jaremko, M.; Oddone, E.; Cannizzaro, E.; Cirrincione, L.; Malta, G.; Campagna, M.; Lecca, L.I. Cooking Particulate Matter: A Systematic Review on Nanoparticle Exposure in the Indoor Cooking Environment. Atmosphere 2022, 14, 12. [Google Scholar] [CrossRef]
- Working, G.B.D. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar]
- Redberg, R.F.; Vogel, R.A.; Criqui, M.H.; Herrington, D.M.; Lima, J.A.; Roman, M.J. Task force# 3—What is the spectrum of current and emerging techniques for the noninvasive measurement of atherosclerosis? J. Am. Coll. Cardiol. 2003, 41, 1886–1898. [Google Scholar]
- Lachowicz, J.I.; Gać, P. Short- and Long-Term Effects of Inhaled Ultrafine Particles on Blood Pressure: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 6802. [Google Scholar] [CrossRef]
- Zhang, S.; Breitner, S.; Pickford, R.; Lanki, T.; Okokon, E.; Morawska, L.; Samoli, E.; Rodopoulou, S.; Stafoggia, M.; Renzi, M.; et al. Short-term effects of ultrafine particles on heart rate variability: A systematic review and meta-analysis. Environ. Pollut. 2022, 314, 120245. [Google Scholar] [CrossRef]
- Wang, J.; Tan, G.-J.; Han, L.-N.; Bai, Y.-Y.; He, M.; Liu, H.-B. Novel biomarkers for cardiovascular risk prediction. J. Geriatr. Cardiol. 2017, 14, 135–150. [Google Scholar] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- Li, T.; Yu, Y.; Sun, Z.; Duan, J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part. Fibre Toxicol. 2022, 19, 67. [Google Scholar] [CrossRef] [PubMed]
- Pedder, H.; Sarri, G.; Keeney, E.; Nunes, V.; Dias, S. Data extraction for complex meta-analysis (DECiMAL) guide. Syst. Rev. 2016, 5, 212. [Google Scholar] [CrossRef]
- Jonnalagadda, S.R.; Goyal, P.; Huffman, M.D. Automating data extraction in systematic reviews: A systematic review. Syst. Rev. 2015, 4, 78. [Google Scholar] [CrossRef]
- World Health Organization. Regional Office for Europe. Risk of Bias Assessment Instrument for Systematic Reviews Informing Who Global Air Quality Guidelines. 2020. Available online: https://iris.who.int/handle/10665/341717 (accessed on 13 February 2025).
- Brugge, D.; Lane, K.; Padró-Martínez, L.T.; Stewart, A.; Hoesterey, K.; Weiss, D.; Wang, D.D.; Levy, J.I.; Patton, A.P.; Zamore, W.; et al. Highway proximity associated with cardiovascular disease risk: The influence of individual-level confounders and exposure misclassification. Environ. Health 2013, 12, 84. [Google Scholar] [CrossRef]
- Meier, R.; Cascio, W.E.; Ghio, A.J.; Wild, P.; Danuser, B.; Riediker, M. Associations of short-term particle and noise exposures with markers of cardiovascular and respiratory health among highway maintenance workers. Environ. Health Perspect. 2014, 122, 726–732. [Google Scholar] [CrossRef]
- Karottki, D.G.; Bekö, G.; Clausen, G.; Madsen, A.M.; Andersen, Z.J.; Massling, A.; Ketzel, M.; Ellermann, T.; Lund, R.; Sigsgaard, T.; et al. Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects. Environ. Int. 2014, 73, 372–381. [Google Scholar] [CrossRef]
- Devlin, R.B.; Smith, C.B.; Schmitt, M.T.; Rappold, A.G.; Hinderliter, A.; Graff, D.; Carraway, M.S. Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects. Toxicol. Sci. 2014, 140, 61–72. [Google Scholar] [CrossRef]
- Padró-Martínez, L.T.; Owusu, E.; Reisner, E.; Zamore, W.; Simon, M.C.; Mwamburi, M.; Brown, C.A.; Chung, M.; Brugge, D.; Durant, J.L. A randomized cross-over air filtration intervention trial for reducing cardiovascular health risks in residents of public housing near a highway. Int. J. Environ. Res. Public Health 2015, 12, 7814–7838. [Google Scholar] [CrossRef]
- Karottki, D.G.; Spilak, M.; Frederiksen, M.; Andersen, Z.J.; Madsen, A.M.; Ketzel, M.; Massling, A.; Gunnarsen, L.; Møller, P.; Loft, S. Indoor and outdoor exposure to ultrafine, fine and microbiologically derived particulate matter related to cardiovascular and respiratory effects in a panel of elderly urban citizens. Int. J. Environ. Res. Public Health 2015, 12, 1667–1686. [Google Scholar] [CrossRef] [PubMed]
- Fuller, C.H.; Williams, P.L.; Mittleman, M.A.; Patton, A.P.; Spengler, J.D.; Brugge, D. Response of biomarkers of inflammation and coagulation to short-term changes in central site, local, and predicted particle number concentrations. Ann. Epidemiol. 2015, 25, 505–511. [Google Scholar] [CrossRef]
- Shvedova, A.A.; Yanamala, N.; Kisin, E.R.; Khailullin, T.O.; Birch, M.E.; Fatkhutdinova, L.M. Integrated analysis of dysregulated ncRNA and mRNA expression profiles in humans exposed to carbon nanotubes. PLoS ONE 2016, 11, e0150628. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Hsiao, T.-C.; Lee, K.-Y.; Chuang, H.-C.; Cheng, T.-J.; Chuang, K.-J. Association of ultrafine particles with cardiopulmonary health among adult subjects in the urban areas of northern Taiwan. Sci. Total Environ. 2018, 627, 211–215. [Google Scholar] [CrossRef]
- Corlin, L.; Woodin, M.; Hart, J.E.; Simon, M.C.; Gute, D.M.; Stowell, J.; Tucker, K.L.; Durant, J.L.; Brugge, D. Longitudinal associations of long-term exposure to ultrafine particles with blood pressure and systemic inflammation in Puerto Rican adults. Environ. Health 2018, 17, 33. [Google Scholar] [CrossRef] [PubMed]
- Kumarathasan, P.; Vincent, R.; Blais, E.; Bielecki, A.; Guénette, J.; Filiatreault, A.; Brion, O.; Cakmak, S.; Thomson, E.M.; Shutt, R.; et al. Cardiovascular and inflammatory mechanisms in healthy humans exposed to air pollution in the vicinity of a steel mill. Part. Fibre Toxicol. 2018, 15, 34. [Google Scholar] [CrossRef]
- Pilz, V.; Wolf, K.; Breitner, S.; Rückerl, R.; Koenig, W.; Rathmann, W.; Cyrys, J.; Peters, A.; Schneider, A. C-reactive protein (CRP) and long-term air pollution with a focus on ultrafine particles. Int. J. Hyg. Environ. Health 2018, 221, 510–518. [Google Scholar] [CrossRef]
- Espín-Pérez, A.; Krauskopf, J.; Chadeau-Hyam, M.; van Veldhoven, K.; Chung, F.; Cullinan, P.; Piepers, J.; van Herwijnen, M.; Kubesch, N.; Carrasco-Turigas, G.; et al. Short-term transcriptome and microRNAs responses to exposure to different air pollutants in two population studies. Environ. Pollut. 2018, 242, 182–190. [Google Scholar] [CrossRef]
- Krauskopf, J.; Caiment, F.; van Veldhoven, K.; Chadeau-Hyam, M.; Sinharay, R.; Chung, K.F.; Cullinan, P.; Collins, P.; Barratt, B.; Kelly, F.J.; et al. The human circulating miRNome reflects multiple organ disease risks in association with short-term exposure to traffic-related air pollution. Environ. Int. 2018, 113, 26–34. [Google Scholar] [CrossRef]
- Mancini, F.R.; Laine, J.E.; Tarallo, S.; Vlaanderen, J.; Vermeulen, R.; van Nunen, E.; Hoek, G.; Probst-Hensch, N.; Imboden, M.; Jeong, A.; et al. microRNA expression profiles and personal monitoring of exposure to particulate matter. Environ. Pollut. 2020, 263, 114392. [Google Scholar] [CrossRef]
- Guo, N.L.; Bello, D.; Ye, Q.; Tagett, R.; Chanetsa, L.; Singh, D.; Poh, T.Y.; Setyawati, M.I.; Chotirmall, S.H.; Ng, K.W.; et al. Pilot deep RNA sequencing of worker blood samples from Singapore printing industry for occupational risk assessment. NanoImpact 2020, 19, 100248. [Google Scholar] [CrossRef]
- Bello, D.; Chanetsa, L.; Cristophi, C.A.; Poh, T.Y.; Singh, D.; Setyawati, M.I.; Christiani, D.; Chotirmall, S.H.; Ng, K.W.; Demokritou, P. Chronic upper airway and systemic inflammation from copier emitted particles in healthy operators at six Singaporean workplaces. NanoImpact 2021, 22, 100325. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Q.; Jiang, Y.; Zhu, X.; Zhang, Y.; Liu, C.; Niu, Y.; Cai, J.; Chen, R.; Kan, H. Characterization of plasma-derived exosomal miRNA changes following traffic-related air pollution exposure: A randomized, crossover trial based on small RNA sequencing. Environ. Int. 2022, 167, 107430. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, X.; Li, H.; Jiang, Y.; Zhu, X.; Zhang, Y.; Niu, Y.; Liu, C.; Ji, J.; Chillrud, S.N.; et al. Cardiovascular effects of traffic-related air pollution: A multi-omics analysis from a randomized, crossover trial. J. Hazard. Mater. 2022, 435, 129031. [Google Scholar] [CrossRef]
- Yao, Y.; Schneider, A.; Wolf, K.; Zhang, S.; Wang-Sattler, R.; Peters, A.; Breitner, S. Longitudinal associations between metabolites and long-term exposure to ambient air pollution: Results from the KORA cohort study. Environ. Int. 2022, 170, 107632. [Google Scholar] [CrossRef]
- Roswall, N.; Poulsen, A.H.; Hvidtfeldt, U.A.; Hendriksen, P.F.; Boll, K.; Halkjær, J.; Ketzel, M.; Brandt, J.; Frohn, L.M.; Christensen, J.H.; et al. Exposure to ambient air pollution and lipid levels and blood pressure in an adult, Danish cohort. Environ. Res. 2023, 220, 115179. [Google Scholar] [CrossRef]
- Du, X.; Jiang, Y.; Zhang, Q.; Zhu, X.; Zhang, Y.; Liu, C.; Niu, Y.; Cai, J.; Kan, H.; Chen, R. Genome-Wide Profiling of Exosomal Long Noncoding RNAs Following Air Pollution Exposure: A Randomized, Crossover Trial. Environ. Sci. Technol. 2023, 57, 2856–2863. [Google Scholar] [CrossRef]
- Vogli, M.; Peters, A.; Wolf, K.; Thorand, B.; Herder, C.; Koenig, W.; Cyrys, J.; Maestri, E.; Marmiroli, N.; Karrasch, S.; et al. Long-term exposure to ambient air pollution and inflammatory response in the KORA study. Sci. Total Environ. 2024, 912, 169416. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhu, X.; Shen, Y.; He, Y.; Fan, H.; Xu, X.; Zhou, L.; Zhu, Y.; Xue, X.; Zhang, Q.; et al. Mechanistic insights into cardiovascular effects of ultrafine particle exposure: A longitudinal panel study. Environ. Int. 2024, 187, 108714. [Google Scholar] [CrossRef]
- Neyeloff, J.L.; Fuchs, S.C.; Moreira, L.B. Meta-analyses and Forest plots using a microsoft excel spreadsheet: Step-by-step guide focusing on descriptive data analysis. BMC Res. Notes 2012, 5, 52. [Google Scholar] [CrossRef]
- Clifford, S.; Mazaheri, M.; Salimi, F.; Ezz, W.N.; Yeganeh, B.; Low-Choy, S.; Walker, K.; Mengersen, K.; Marks, G.B.; Morawska, L. Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environ. Int. 2018, 114, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.L.; Poh, T.Y.; Pirela, S.; Farcas, M.T.; Chotirmall, S.H.; Tham, W.K.; Adav, S.S.; Ye, Q.; Wei, Y.; Shen, S.; et al. Integrated transcriptomics, metabolomics, and lipidomics profiling in rat lung, blood, and serum for assessment of laser printer-emitted nanoparticle inhalation exposure-induced disease risks. Int. J. Mol. Sci. 2019, 20, 6348. [Google Scholar] [CrossRef]
- Li, Y.; He, X.; Li, C.; Gong, L.; Liu, M. Identification of Candidate Genes and MicroRNAs for Acute Myocardial Infarction by Weighted Gene Coexpression Network Analysis. BioMed Res. Int. 2019, 2019, 5742608. [Google Scholar] [CrossRef] [PubMed]
- Vidale, S.; Campana, C. Ambient air pollution and cardiovascular diseases: From bench to bedside. Eur. J. Prev. Cardiol. 2018, 25, 818–825. [Google Scholar] [CrossRef]
- Thupakula, S.; Nimmala, S.S.R.; Ravula, H.; Chekuri, S.; Padiya, R. Emerging biomarkers for the detection of cardiovascular diseases. Egypt. Heart J. 2022, 74, 77. [Google Scholar] [CrossRef]
- Van Rooij, E.; Sutherland, L.B.; Liu, N.; Williams, A.H.; McAnally, J.; Gerard, R.D.; Richardson, J.A.; Olson, E.N. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA 2006, 103, 18255–18260. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, J.I.; Lecca, L.I.; Meloni, F.; Campagna, M. Metals and metal-nanoparticles in human pathologies: From exposure to therapy. Molecules 2021, 26, 6639. [Google Scholar] [CrossRef]
- Weichenthal, S.; Olaniyan, T.; Christidis, T.; Lavigne, E.; Hatzopoulou, M.; Van Ryswyk, K.; Tjepkema, M.; Burnett, R. Within-city spatial variations in ambient ultrafine particle concentrations and incident brain tumors in adults. Epidemiology 2020, 31, 177–183. [Google Scholar] [CrossRef]
- Mo, Y.; Wan, R.; Chien, S.; Tollerud, D.J.; Zhang, Q. Activation of endothelial cells after exposure to ambient ultrafine particles: The role of NADPH oxidase. Toxicol. Appl. Pharmacol. 2009, 236, 183–193. [Google Scholar] [CrossRef]
- Musunuru, K.; Ingelsson, E.; Fornage, M.; Liu, P.; Murphy, A.M.; Newby, L.K.; Newton-Cheh, C.; Perez, M.V.; Voora, D.; Woo, D. The Expressed Genome in Cardiovascular Diseases and Stroke: Refinement, Diagnosis, and Prediction: A Scientific Statement From the American Heart Association. Circ. Cardiovasc. Genet. 2017, 10, e000037. [Google Scholar] [CrossRef]
- Ashraf, G.M.; Perveen, A.; Zaidi, S.K.; Ahmad, A.; Shakil, S.; Firoz, C.K.; Jabir, N.R.; Hassan, I.; Khan, T.A.; Yarla, N.S.; et al. Galectins—A potential target for cardiovascular therapy. Curr. Vasc. Pharmacol. 2017, 15, 296–312. [Google Scholar] [CrossRef] [PubMed]
- van der Hoeven, N.W.; Hollander, M.R.; Yıldırım, C.; Jansen, M.F.; Teunissen, P.; Horrevoets, A.J.; van der Pouw Kraan, T.C.; van Royen, N. The emerging role of galectins in cardiovascular disease. Vasc. Pharmacol. 2016, 81, 31–41. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X. Bioinformatic Gene Analysis for Potential Biomarkers and Therapeutic Targets of Heart Fibrillation and Stroke. 2023. Available online: https://www.researchsquare.com/article/rs-3247127/v1 (accessed on 2 February 2025).
- Li, M.; Wang, Y.-F.; Yang, X.-C.; Xu, L.; Li, W.-M.; Xia, K.; Zhang, D.-P.; Wu, R.-N.; Gan, T. Circulating long noncoding RNA LIPCAR acts as a novel biomarker in patients with ST-segment elevation myocardial infarction. Med. Sci. Monit. 2018, 24, 5064–5070. [Google Scholar] [CrossRef]
- Gao, H.; Wang, X.; Lin, C.; An, Z.; Yu, J.; Cao, H.; Fan, Y.; Liang, X. Exosomal MALAT1 derived from ox-LDL-treated endothelial cells induce neutrophil extracellular traps to aggravate atherosclerosis. Biol. Chem. 2020, 401, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kan, X.; Shen, J.; Li, J. Increased long non-coding RNA NORAD reflects serious cardiovascular stenosis, aggravated inflammation status, and higher lipid level in coronary heart disease. J. Clin. Lab. Anal. 2022, 36, e24717. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ma, Y.; Wang, R.; Wang, L. Prospective Study of lncRNA NORAD for Predicting Cerebrovascular Events in Asymptomatic Patients with Carotid Artery Stenosis. Clin. Appl. Thromb. 2025, 31, 10760296241299792. [Google Scholar] [CrossRef]
- Lang, Z.; Fan, X.; Lin, H.; Qiu, L.; Zhang, J.; Gao, C. Silencing of SNHG6 alleviates hypoxia/reoxygenation-induced cardiomyocyte apoptosis by modulating miR-135a-5p/HIF1AN to activate Shh/Gli1 signalling pathway. J. Pharm. Pharmacol. 2021, 73, 22–31. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Ding, Z.; Chen, Y.; Wang, W. LncRNA H19: A Novel Biomarker in Cardiovascular Disease. Acta Cardiol. Sin. 2024, 40, 172–181. [Google Scholar]
- Busscher, D.; Boon, R.A.; Juni, R.P. The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin. Sci. 2022, 136, 1157–1178. [Google Scholar] [CrossRef]
- Kot, A.; Skwarek-Dziekanowska, A.; Sobieszek, G.; Małecka-Massalska, T.; Powrózek, T. Relationship between expression of blood circulating lncRNA: LRRC75A-AS1, clinical characteristics and prognosis of chronic heart failure patients. Med. Stud. 2023, 39, 215–222. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.; Sun, Z.; Li, J. A review of literature: Role of long noncoding RNA TPT1-AS1 in human diseases. Clin. Transl. Oncol. 2023, 25, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, X.; Wang, L.; Zhao, C. Low LncRNA LUCAT1 Expression Assists in the Diagnosis of Chronic Heart Failure and Predicts Poor Prognosis. Int. Heart J. 2023, 64, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Gao, L.; Zimmerman, M.C.; Zucker, I.H. Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. Am. J. Physiol. Circ. Physiol. 2018, 314, H928–H939. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Agbor-Enoh, S.; Bagchi, P.; Defilippi, C.; Mercado, A.; Diao, G.; Morales, D.; Shah, K.; Najjar, S.; Feller, E.; et al. Circulating microRNA Biomarkers in Cellular and Antibody-Mediated Heart Transplant Rejection. J. Heart Lung Transplant. 2022, 41, S93. [Google Scholar] [CrossRef]
- Mens, M.M.; Heshmatollah, A.; Fani, L.; Ikram, M.A.; Ikram, M.K.; Ghanbari, M. Circulatory MicroRNAs as Potential Biomarkers for Stroke Risk: The Rotterdam Study. Stroke 2021, 52, 945–953. [Google Scholar] [CrossRef]
- Bošnjak, M.; Večerić-Haler, Ž.; Boštjančič, E.; Kojc, N. Renal tissue miRNA expression profiles in ANCA-associated vasculitis—A comparative analysis. Int. J. Mol. Sci. 2021, 23, 105. [Google Scholar] [CrossRef]
- Lin, S.; Xu, X.; Hu, H.; Cheng, J.; Chen, R.; Hu, Y.; Chen, X. The expression profile of platelet-derived miRNA in coronary artery disease patients with clopidogrel resistance. Pharmacol. Res. Perspect. 2022, 9, e00751. [Google Scholar] [CrossRef]
- Jia, R.; Yuan, X.; Yang, C.; Han, J.; Cao, X.; Qin, Z.; Nan, J.; Jin, Z. LINC00460 Stimulates the Proliferation of Vascular Endothelial Cells by Downregulating miRNA-24-3p. Dis. Markers 2022, 2022, 2524156. [Google Scholar] [CrossRef]
- Aroca-Esteban, J.; Souza-Neto, F.V.; Aguilar-Latorre, C.; Tribaldo-Torralbo, A.; González-López, P.; Ruiz-Simón, R.; Álvarez-Villareal, M.; Ballesteros, S.; de Ceniga, M.V.; Landete, P.; et al. Potential protective role of let-7d-5p in atherosclerosis progression reducing the inflammatory pathway regulated by NF-κB and vascular smooth muscle cells proliferation. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2024, 1870, 167327. [Google Scholar] [CrossRef]
- Lightbody, R.J.; Taylor, J.M.W.; Dempsie, Y.; Graham, A. Induction of microRNA hsa-let-7d-5p, and repression of HMGA2, contribute protection against lipid accumulation in macrophage “foam” cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 159005. [Google Scholar] [CrossRef]
- Vartak, T.; Giardini, E.; Kelly, D.; Moran, B.; Kennedy, C.; Barry, M.; Godson, C.; Brennan, E. Induction of let-7d-5p miRNA modulates aortic smooth muscle inflammatory signaling and phenotypic switching. Atherosclerosis 2024, 395, 117573. [Google Scholar] [CrossRef] [PubMed]
- Recamonde-Mendoza, M.; Werhli, A.V.; Biolo, A. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy. Gene 2019, 698, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Dimmeler, S.; Zeiher, A.M. Circulating microRNAs: Novel biomarkers for cardiovascular diseases? Eur. Heart J. 2010, 31, 2705–2707. [Google Scholar] [CrossRef] [PubMed]
- Zampetaki, A.; Willeit, P.; Tilling, L.; Drozdov, I.; Prokopi, M.; Renard, J.-M.; Mayr, A.; Weger, S.; Schett, G.; Shah, A.; et al. Prospective study on circulating MicroRNAs and risk of myocardial infarction. J. Am. Coll. Cardiol. 2012, 60, 290–299. [Google Scholar] [CrossRef]
- Huang, Y.; Gulshan, K.; Nguyen, T.; Wu, Y. Biomarkers of cardiovascular disease. Dis. Markers 2017, 2017, 8208609. [Google Scholar] [CrossRef]
- Agruss, J.C.; Garrett, K. New markers for CVD. Nurse Pract. 2005, 30, 26–31. [Google Scholar] [CrossRef]
- Vasan, R.S. Biomarkers of cardiovascular disease: Molecular basis and practical considerations. Circulation 2006, 113, 2335–2362. [Google Scholar] [CrossRef]
- Chrysohoou, C.; Pitsavos, C.; Barbetseas, J.; Kotroyiannis, I.; Brili, S.; Vasiliadou, K.; Papadimitriou, L.; Stefanadis, C. Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (Hellenic Heart Failure Study). Heart Vessel. 2009, 24, 22–26. [Google Scholar] [CrossRef]
- Rivera, M.; Taléns-Visconti, R.; Sirera, R.; Bertomeu, V.; Salvador, A.; Cortés, R.; de Burgos, F.G.; Climent, V.; Payá, R.; Martinez-Dolz, L.; et al. Soluble TNF-α and interleukin-6 receptors in the urine of heart failure patients. Their clinical value and relationship with plasma levels. Eur. J. Heart Fail. 2004, 6, 877–882. [Google Scholar] [CrossRef]
- Wollert, K.C.; Drexler, H. The role of interleukin-6 in the failing heart. Heart Fail. Rev. 2001, 6, 95–103. [Google Scholar] [CrossRef]
- Gabriele, P.; Song, Z.F.; Tonny, D.T.T.; Carsten, K.; Hideo, A.B.; Michael, E.; Markus, F.; Thomas, W.; Hans, H.S.; Mario, C.D. Activation of the cardiac interleukin-6 system in advanced heart failure. Eur. J. Heart Fail. 2001, 3, 415–421. [Google Scholar] [CrossRef]
- Raymond, R.J.; Dehmer, G.J.; Theoharides, T.C.; Deliargyris, E.N. Elevated interleukin-6 levels in patients with asymptomatic left ventricular systolic dysfunction. Am. Heart J. 2001, 141, 435–438. [Google Scholar] [CrossRef]
- Pudil, R.; Tichý, M.; Andrýs, C.; Řeháček, V.; Bláha, V.; Vojáček, J.; Palička, V. Plasma interleukin-6 level is associated with NT-proBNP level and predicts short- and long term mortality in patients with acute heart failure. Acta Medica 2010, 53, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Sugiyama, A.; Reid, P.C.; Ito, Y.; Miyauchi, K.; Mukai, S.; Sagara, M.; Miyamoto, K.; Satoh, H.; Kohno, I.; et al. Establishment of a high sensitivity plasma assay for human pentraxin3 as a marker for unstable angina pectoris. Arter. Thromb. Vasc. Biol. 2007, 27, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Haybar, H.; Bandar, B.; Torfi, E.; Mohebbi, A.; Saki, N. Cytokines and their role in cardiovascular diseases. Cytokine 2023, 169, 156261. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.L.A.; Zuckerman, S.H. Gamma interferon: A central mediator in atherosclerosis. Inflamm. Res. 2005, 54, 395–411. [Google Scholar] [CrossRef]
- Ranjbaran, H.; Sokol, S.I.; Gallo, A.; Eid, R.E.; Iakimov, A.O.; D’alessio, A.; Kapoor, J.R.; Akhtar, S.; Howes, C.J.; Aslan, M.; et al. An inflammatory pathway of IFN-γ production in coronary atherosclerosis. J. Immunol. 2007, 178, 592–604. [Google Scholar] [CrossRef]
- Poller, W.C.; Nahrendorf, M.; Swirski, F.K. Hematopoiesis and cardiovascular disease. Circ. Res. 2020, 126, 1061–1085. [Google Scholar] [CrossRef]
- Kopčeková, J.; Holovičová, M.; Gažarová, M.; Mrázová, J.; Habánová, M.; Mečiarová, L.; Bronkowska, M. Association between selected dietary habits and lipid profiles of patients with cardiovascular disease. Int. J. Environ. Res. Public Health 2020, 17, 7605. [Google Scholar] [CrossRef]
- Lozano, J.V.; Pallarés, V.; Cea-Calvo, L.; Llisterri, J.L.; Fernández-Pérez, C.; Martí-Canales, J.C.; Aznar, J.; Gil-Guillén, V.; Redón, J.; on behalf of the Investigators of the PReV-ICTUS Study. Serum lipid profiles and their relationship to cardiovascular disease in the elderly: The PREV-ICTUS study. Curr. Med. Res. Opin. 2008, 24, 659–670. [Google Scholar] [CrossRef]
- Islam, S.; Choudhury, K.N.; Mainuddin, A.; Wahiduzzaman, M. Serum lipid profile and its association with hypertension in Bangladesh. Vasc. Health Risk Manag. 2014, 10, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Budzynski, A.Z.; Shainoff, J.R. Fibrinogen and fibrin: Biochemistry and pathophysiology. Crit. Rev. Oncol. Hematol. 1986, 6, 97–146. [Google Scholar] [CrossRef]
- Canseco-Ávila, L.M.; Jerjes-Sánchez, C.; Ortiz-López, R.; Rojas-Martínez, A.; Guzmán-Ramírez, D. Fibrinogen. Cardiovascular risk factor or marker? Arch. Cardiol. Mex. 2006, 76, 158–172. [Google Scholar]
- Galanakis, D.K. Fibrinogen anomalies and disease. A clinical update. Hematol. Oncol. Clin. N. Am. 1992, 6, 1171–1187. [Google Scholar] [CrossRef]
- Tousoulis, D.; Papageorgiou, N.; Androulakis, E.; Briasoulis, A.; Antoniades, C.; Stefanadis, C. Fibrinogen and cardiovascular disease: Genetics and biomarkers. Blood Rev. 2011, 25, 239–245. [Google Scholar] [CrossRef]
- Gupta, L.; Thomas, J.; Ravichandran, R.; Singh, M.; Nag, A.; Panjiyar, B.K. Inflammation in Cardiovascular Disease: A Comprehensive Review of Biomarkers and Therapeutic Targets. Cureus 2023, 15, e45483. [Google Scholar] [CrossRef] [PubMed]
- Pieters, M.; Ferreira, M.; de Maat, M.P.M.; Ricci, C. Biomarker association with cardiovascular disease and mortality–The role of fibrinogen. A report from the NHANES study. Thromb. Res. 2021, 198, 182–189. [Google Scholar] [CrossRef]
- Volpato, S.; Guralnik, J.M.; Ferrucci, L.; Balfour, J.; Chaves, P.; Fried, L.P.; Harris, T.B. Cardiovascular disease, interleukin-6, and risk of mortality in older women: The women’s health and aging study. Circulation 2001, 103, 947–953. [Google Scholar] [CrossRef]
- Castro, A.R.; Silva, S.O.; Soares, S.C. The use of high sensitivity C-reactive protein in cardiovascular disease detection. J. Pharm. Pharm. Sci. 2018, 21, 496–503. [Google Scholar] [CrossRef]
- Pitthan, E.; Martins, O.M.O.; Barbisan, J.N. Novos biomarcadores inflamatórios e de disfunção endotelial: Predição de risco cardiovascular. Rev. AMRIGS 2014, 58, 69–77. [Google Scholar]
- Aguiar, F.J.; Ferreira-Júnior, M.; Sales, M.M.; Cruz-Neto, L.M.; Fonseca, L.A.; Sumita, N.M.; Duarte, N.J.; Lichtenstein, A.; Duarte, A.J. Proteína C reativa: Aplicações clínicas e propostas para utilização racional. Rev. Assoc. Med. Bras. 2013, 59, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Mańkowska-Wierzbicka, D.; Karczewski, J.; Poniedziałek, B.; Grzymisławska, M.; Staszewski, R.; Królczyk, A.; Dobrowolska, A.; Grzymisławski, M. C-reactive protein as a diagnostic and prognostic factor in inflammatory bowel diseases. Adv. Hyg. Exp. Med./Postep. Hig. Med. Dosw. 2016, 70, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Krishna, A.; Rathore, B.S. Assessing disease severity by hsCRP as a biochemical marker for psoriasis. Int. J. Res. Dermatol. 2017, 3, 501–505. [Google Scholar] [CrossRef]
- Dessein, P.H.; Joffe, B.I.; Stanwix, A.E. High sensitivity C-reactive protein as a disease activity marker in rheumatoid arthritis. J. Rheumatol. 2004, 31, 1095–1097. [Google Scholar]
No | Year | First Author | Study Design | Location | Time Outcome | Study Time Range | Population | Exposure Location | Experiment | Exposure Assignment | Size Range (nm) | Mean ± SD (Range) (×103 particles/cm3) | Pollutants/Risk Factors | Exposure Quantification | Outcome | Time After Exposure of Outcome Measure |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2013 | Brugge et al. [18] | cross-sectional | Boston, MA, USA | long-term | 7.2009–6.2011 | 260 adults (mean age 58.2; 58% women), no health status discrimination | outdoor | real environment | mobile monitoring of particle number concentration | ND | 3000 | only UFPs | continuous | high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), tumor necrosis factor alpha receptor II (TNF-RII), and fibrinogen | ND |
2 | 2014 | Meier et al. [19] | panel study | Western Switzerland | short-term | 5.2010 and 2.2012 | 18 participants (healthy male highway maintenance workers aged 31–59 years) | indoor and outdoor | occupational environment | personal monitoring | <100 nm | 75.699 ± 81.761 | PM2.5, noise, and gaseous co-pollutants (CO, NO2, O3), temperature, humidity | continuous | blood pressure (BP), IL-6, TNF-α, hsCRP, serum amyloid A (SAA), lung function, electrocardiogram (ECG), heart rate variability (HRV), fractional exhaled nitric oxide (FeNO) | exposure to PM2.5, UFP, noise, and gaseous co-pollutants were assessed during five nonconsecutive work shifts; to control post-work-shift exposure, personal PM2.5 real-time and noise exposure measurements were continued after the end of work (around 1700 h) until the next morning |
3 | 2014 | Karottki et al. [20] | cross-sectional | Copenhagen, Denmark | short-term | 10.2011–2.2012 | 78 healthy, middle-aged participants (mean age data ND); 33 women and 45 men | indoor and outdoor | real environment | indoor PNC monitored for 48 h with Philips NanoTracer1000; outdoor PNC measured with ambient air pollution data by Aarhus University (Danish Air Quality Monitoring Programme) | 10–300 | indoor: 12.4 (median); outdoor: 3.9 (median) | indoor bacteria, endotoxins, and fungi; PM10 and PM2.5 | continuous | MVF, HbA1c, hsCRP, leukocytes, monocytes, neutrophils, CD31, CD62L, CD11b, CD49d, FEV1/FVC, eosinophils, lymphocytes | microvascular function (MVF); blood pressure (BP); forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) |
4 | 2014 | Devlin et al. [21] | crossover randomized | Campus of the University of North Carolina | short-term | data not delivered | 34 middle-aged participants with metabolic syndrome (13 male and 21 female), mean age 47.8 | exposure chamber | laboratory exposure chamber | monitored in real-time using a TSI 3022A CPC | 20–250 | 100 | only UFPs | 2 h | holter ECG (SDNN, PNN50; HF, LF, premature atrial contractions (PACs) and premature ventricular contractions (PVCs)), brachial artery diameter (BAD), endothelium-dependent flow-mediated dilatation (FMD), and nitric oxide-mediated dilatation (NMD), images of the right brachial artery (BAD1) were captured at the end-diastole | participants were exposed two times for 2 h (clean air and concentrated ambient ultrafine particles) |
5 | 2015 | Padró-Martínez et al. [22] | double-blind crossover trial | Somerville, MA, USA | long-term | 2. 2011–11. 2012 | 20 participants (17 women); mean age 53.9 | indoor | real environment | stationary particle counter | 7–3000 | 4.8 | only UFPs | continuous | hsCRP, IL-6, TNF-RII, and fibrinogen; BP | first day: before HEPA/sham filtration was started; twenty-first day: 1–2 h before the filters were changed; forty-second day: before the end of this study |
6 | 2015 | Karottki et al. [23] | crossover | Copenhagen, Denmark | short-term | 11.2010–5.2011 | 48 elderly subjects (22 men and 26 women); 67 ± 7 (mean ± SD) years old, no health status discrimination | indoor and outdoor | real environment | Danish Air Quality Monitoring Programme and custom-built Differential Mobility Particle Sizer (outdoor); PNC was monitored for about 48 h with Philips NanoTracer1000 (indoor) | 10–300 | 13.6 (indoor); 3.0 (outdoor) | PM2.5 | continuous | bacteria, endotoxins, fungi, serine protease, MVF, leucocytes, lymphocytes, monocytes, granulocytes, CD31, CD62, CD11b, FEV1/FVC, CC16, SPD | hours–days |
7 | 2015 | Fuller et al. [24] | cross-sectional | Boston, Massachusetts (United States) | short-term | 8. 2009–10. 2010 | 125 participants, 58.6 mean age, 99 female and 43 male, no health status discrimination | outdoor | real environment | ambient monitoring station | <100 nm | 14,135 (interquartile range [IQR]: 7314–19,964) | only UFPs | continuous | IL-6, hs-CRP, and fibrinogen | between 1 and 28 days |
8 | 2016 | Shvedova et al. [25] | cross-sectional | Kazan, Russia | short-term | data not delivered | 15 healthy workers; gender data ND | indoor | working environment | pump collecting particles | <100 nm | 14.42 ± 3.8 [µg/m3] | elemental carbon (EC) | continuous | miRNA, lncRNA, mRNA | ND |
9 | 2018 | Liu et al. [26] | panel study | Northern Taiwan | short-term | 1. 2014–8. 2017 | 100 healthy adults (non-smoking, age range of 20–64 years; mean age 45.9 ± 7.2); 50% women | indoor | real environment | stationary particle counter | 50–100 | 1.47 ± 0.88 [µg/m3] | PM10, PM2.5, NO2, O3, temperature, and relative humidity | continuous | SBP, DBP, FEV1, hsCRP | each participant was repeatedly interviewed and examined three times occurring at one-month intervals |
10 | 2018 | Corlin et al. [27] | longitudinal | Massachusetts, USA | long-term | 2004–2015 | 791 adults (69% women) participating in the longitudinal Boston Puerto Rican Health Study; mean age 57; no health status discrimination | outdoor | real environment | residential annual average UFP exposure assigned with model accounting for spatial and temporal trends (data from mobile and stationary platforms, meteorological data, and distances from specific roadways and bus routes) | <100 | 23 (3.4) | only UFPs | continuous | systolic blood pressure, diastolic blood pressure, hsCRP, particle inhalation rate (PIR) | participants were visited up to three times over approximately six years (visit one between 2004 and 2009, visit two between 2006 and 2011, and visit three between 2011 and 2015); the mean time between visit one and visit two was 2.2 years while the mean time between visit two and visit three was 4.1 years |
11 | 2018 | Kumarathasan et al. [28] | crossover randomized | Sault Ste. Marie, Ontario, Canada | short-term | summer 2010 | 52 healthy participants (aged 18–34), median age 23; 28 female and 24 male | outdoor | real environment | fixed-site ambient air quality monitor | 10–1000 | 14.830 (13.604; 16.057) | SO2, NO2, NOx, O3, temperature and relative humidity, air pressure | continuous (hourly between 8 h and 18 h) | salivary ET-11-21, ET-11-31, ET-3, and BET-1; hsCRP, haptoglobin, fibrinogen, platelet factor (PF4), adiponectin, von Willebrand Factor (vWF), α2-macroglobulin (A2M), α-acid glycoprotein (AGP), serum amyloid protein (SAP), L-selectin, and cytokines [interleukins (IL-1, -2, -4, -5, -6, -7, -8, -10, -12, -13), tumor necrosis factor (TNF-α), granulocyte–macrophage colony-stimulating factor (GMCSF), and interferon gamma (IFN-γ)], BET-1 | at the end of the week |
12 | 2018 | Pilz et al. [29] | cross-sectional | Region of Augsburg, Germany | long-term | 3.2014–4.2015 | 2252 participants, mean age 60.3 ± 12.3; no health status discrimination; male 1091 (48.4%) | outdoor | real environment | framework of the ULTRA 3 project modeling; NanoScan SMPS Nanoparticle Sizer | 10–420 | 7.2 | PM10, PM2.5, NO2 or NOx, O3; traffic noise | continuous | hsCRP | ND |
13 | 2018 | Espín-Perez et al. [30] | crossover | Barcelona, Spain; London, United Kingdom | short-term | ND | 59 (London) and 30 (Barcelona) healthy volunteers, mean age data not delivered; 50% female | outdoor | real environment | real-time personal portable monitors | <100 | Barcelona: 46.481 ± 21.027; London: 166.667 ± 28.759 | PM10, PM2.5, NO2, NOx, BC, CO, CO2 | continuous | miRNA | few hours |
14 | 2018 | Krauskopf et al. [31] | crossover | London, United Kingdom | short-term | ND | 24 volunteers (12 male and 12 female), mean age 65.1 (7.7); healthy, COPD, and IHD patients | outdoor | real environment | real-time personal condensation particle | 100 nm | Hyde Park: 5.975 (CI 4.815–7.133); Oxford Street: 28.656 (CI 25.803–31.509) | BC, NO2 | continuous (2 h) | miRNA | few hours |
15 | 2020 | Mancini et al. [32] | panel study | Switzerland (Basel), United Kingdom (Norwich), Italy (Turin), and The Netherlands (Utrecht) | short-term | 12, 2013–2, 2015 | 143 healthy subjects (>40 participants per country), mean age data ND; 86 women and 56 men | outdoor | real environment | real-time personal portable monitors | 10–300 | 6.318 (0.785–22.536) | PM2.5 | continuous | total RNA | three sessions at different seasons within 12 months |
16 | 2020 | Guo et al. [33] | panel study | Singapore | short-term | NA | 11 health workers, aged > 21 years old, mean age data ND; controls from both companies were female, and all subjects in Company 2 were female (numerical data ND) | indoor | working environment | ND | ND | ND | only UFPs | ND | total RNA, protein expression of sICAM | four time points (TPs) over a 2-week period: the first Monday, the first Friday, the second Monday, and the second Friday |
17 | 2021 | Bello et al. [34] | cross-sectional | Singapore | short-term | 2018–2019 | 19 healthy workers, mean age 36.2 ± 12.1; 9 female and 10 male | indoor | working environment | personal monitoring | 10–420 | 1.680–49.900 (week means) | PM2.5 | continuous (at least 4 h a day) | forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio greater than 0.8; IL-1β; IL-6; IL-8; IL-19; eotaxin; fractalkine; GCSF; IFN-gamma; GM-CSF; TNF-α; MCP1; EGF; IL-1α; VEGF | between 1 and 3 days |
18 | 2022 | Du et al. [35] | crossover randomized | Shanghai, China | short-term | 10–12, 2019 | 56 healthy participants (25 males and 31 females); mean age data ND | outdoor | real environment | real-time personal portable monitors | 10–100 | road session: 33.83 (7.24); park session: 15.61 (4.76) | PM2.5, BC, NO2, and CO2 | continuous | exosomal miRNA | ND |
19 | 2022 | Zhang et al. [36] | crossover | Shanghai, China | short-term | 10–12.2019 | 56 healthy participants (25 males and 31 females); mean age 23.5 ± 2.4 | outdoor | real environment | real-time personal exposure | ND | park: 13.4 (11.7, 17.0); road: 32.3 (29.4, 39.7) | BC, NO2, CO, PM2.5, noise, temperature, relative humidity | continuous | 28 targeted biomarkers | 1 h |
20 | 2022 | Yao et al. [37] | longitudinal panel study | Region of Augsburg, Germany | long-term | 1999–2013 | 2583 whole population without health status discrimination; mean age 57.5 ± 13.3; 1240 male | outdoor | real environment | estimated using land-use regression (LUR) models | ≤100 nm | 7.3 ± 1.8 | PM10, PMcoarse, PM2.5, NO2, NOx, O3 | ND | hsCRP, metabolites (amino acids, phosphatidylcholines, sphinogmyelins, acylcarnitines, lysophosphatidylcholines, hexoses) | 8 h |
21 | 2023 | Roswall et al. [38] | cohort | Denmark | short-term | 2015–2019 | 32,851 adult Danes taking part of the Diet, Cancer and Health—Next Generations cohort, mean age 42.5 ± 12.8; 59.1% female | outdoor | real environment | AirGIS modeling system | ND | 8.539 ± 2.354 | PM2.5, EC, NO2, noise, intensity of traffic, along with emission factors, meteorology, and street and building configurations | continuous | high-density lipoprotein (HDL), non-high-density lipoprotein (non-HDL), systolic and diastolic blood pressure | between 24 h and 90 days before blood sampling |
22 | 2023 | Du et al. [39] | crossover randomized | Shanghai, China | short-term | 10–12, 2020 | 56 healthy participants (31 females and 25 males) mean age data ND | outdoor | real environment | real-time personal portable monitors | 10–101 | high exposure: 31.61 (24.56−49.89): low exposure: 14.78 (8.12−24.46) | PM2.5, BC, CO, NO2 | continuous | exosomal lncRNA | ND |
23 | 2024 | Vogli et al. [40] | cross-sectional | Region of Augsburg, Germany | long-term | 1999–2001 | 4261 participants, aged 25–75 years, mean age 49.0 ± 13.9; 50.5% female; mean age in older subsample 64.0 ± 5.4 and 48.1% female; no health status discrimination | outdoor | real environment | annual average concentrations estimated by land-use regression models and assigned to participants’ home addresses | <100 | PM10, PM2.5, O3, NO2, NOx | continuous | fibrinogen, hs-CRP, SAA, adiponectin, IL-6 | ND | |
24 | 2024 | Jiang et al. [41] | longitudinal panel study | Shanghai, China | short-term | 10. 2020–11. 2021 | 32 participants (15 male, 17 female), 24.2 ± 2.7 mean age, healthy non-smoking | indoor and outdoor | real environment | fixed-site monitors; UFP: Scanning Mobility Particle Sizer (SMPS, TSI Corporation, Washington, DC, USA) and NanoTracer XP | <100 nm | 0–3 h: 14.520 (6.153); 4–6 h: 13.991 (5.054); 7–12 h: 10.236 (3.064); 13–24 h: 12.461 (4.612); 25–48 h: 12.305 (4.612) | PM2.5, NO2, CO, or O3 | continuous | hs-CRP, TNF-α, interferon-γ (IFN-γ), IL-6, glucose, insulin, total cholesterol, triglyceride, high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) | systemic inflammation (hsCRP, TNF-α, IFN-γ, IL-1β, IL-6): 0–3 h; IL-8: 4–6 h; blood glucose: 0–3 h; blood lipid: DHL 13–24 h, LDL 7–12 h; ApoA-I 25–48 h; ApoB 25–48 h |
Nucleic Acid | Concordant DE Genes in Blood Samples of Occupational Workers Exposed to UFP Emissions and PEPs Exposed to Rat Blood by Guo et al. [33] | mRNAs in the Blood of MWCNT High-Exposure Workers Associated with Various Pulmonary and Systemic Outcomes (Obtained with Ingenuity Pathway Analysis) by Shvedova et al. [25] |
total RNA | CD9, DNAJA1, GAPT, GBP6, HERC6, KMO, LGALS2, MMP9, MRAS, NPRL3, SGMS2, SOX4, ZC3HL5, AOAH, BHLHE40, GBP1, GZMA, NETO2, RAB6B | Lung inflammation and/or fibrosis: DNRA, PTGIR, PTGS2, IL-6, SPHK1, FGFR1, RETNLB, PLG, CSF2, VTN, CXCL12, EGFR, PPARD, TNFRSF25, CHRNG, ACKR1, FCGR2B, CCR5, TNSF4, HRH1, ST3GAL3, HMGCR, IMPDH1, CDH13, IKBKE, LDLR, BSG, CALCA, MARK2, RORA, LTA, TFPI, LIPA, VEGFA, TRPV4, GATA3, MAPK3, POMC, CD276, CD44, STAT1, GSS, HLA-DRA, IL-11RA, RLN2/3, CD3D, CD46, TSLP, FGFR3, LGALS3, LIF, TLN1, CHRNE, SERPINB1, ANXA1, ADORA1, IMPDH2, PRDX, E2F2, CASP1, CYLD, NRTN, C3AR1 Granuloma: IL-6, LTA, TREM2, HGF, VEGFA, CD44, STAT1, BRAF Immunosuppression: TNFSF4, Pka Bronchoalveloar adenoma: TP63, TNK1, TP73, BRAF, XPA, HTAT1P2, NUDT1 Bronchoalveolar adenoarcinoma: EGFR, TNRC6B Formation of lung tumors: PTGS2, PTN, Integrin, Jnk, S100A10, Cdk, FHIT, ATP synthase, RARB Goblet cell metaplasia: HRH1, ADORA1, LGALS3 Goblet cell hyperplasia: IKBKE, RORA, GATA3, CDH13, TSLP Systemic inflammation: OLR1, LGALS3 Atherosclerotic lesions: GSTT1, LTA, GPX8, FUT4, CCR5, PLG, MMP19, BMP7, VEGFA, CSF2, LDLR, TNFSF4, FUT7, CXCR1, CD44, CCL3L3, FABP4, HMOX2, CD3, GRK4, MIF, LDL Vasodilation of arteries: VEGFA, MFAP5, NOX1, PIK3R1/R3, PLG, LDLR, CALCA, ERK, PLCD3, HMOX2, GUCY1A3, PDGFB, SOD1, RLN2/3, PLCL2, PTPN1, CELA1 |
Nucleic acid | Top 20 Differentially Expressed lncRNAs Associated with Air Pollution Exposure by Du et al. [39] | |
lncRNA | AC093503.2, NORAD, SNHG6, MALAT1, AL138963.3, H19, AC103691.1, LINC01871, LRRC75A-AS1, AP001189.1 LINC02280, TPT1-AS1, BAALC-AS1, AL161457-2, GABPB1-AS1, LINC00632, MCM3AP-AS1, LUCAT1, AC245452.1, AL031595.3 |
N. | Shvedova et al. [25] | Mancini et al. [32] | Espín-Perez et al. [30] | Krauskopfa et al. [31] | Du et al. [35] |
---|---|---|---|---|---|
1 | hsa-miR-24-3p | hsa-miR-24-3p | hsa-miR-24-5p | ||
2 | hsa-let-7d-5p | hsa-let-7d-5p | hsa-let-7d-3p | ||
3 | hsa-miR-425-5p | hsa-miR-425-5p | |||
4 | hsa-miR-505-3p | hsa-miR-505-3p | |||
5 | hsa-miR-16-5p | hsa-miR-16-5p | |||
6 | hsa-miR-197-3p | hsa-miR-197-3p | |||
7 | hsa-miR-29a-3p | hsa-miR-29a-3p | |||
8 | hsa-miR-15a-5p | hsa-miR-15a-5p | |||
9 | hsa-miR-92a-3p | hsa-miR-92a-3p | |||
10 | hsa-miR-133a-3p | hsa-miR-133a-3p | |||
11 | hsa-miR-193b-3p | hsa-miR-193b-3p | |||
12 | hsa-miR-433-3p | hsa-miR-433-3p | |||
13 | hsa-miR-145-5p | hsa-miR-145-5p |
N. | Study | Name of Marker | Up/Down | Time of Measure After UFP Exposure |
---|---|---|---|---|
1 | Zhang et al. [36] | Granulocyte–macrophage colony-stimulating factor (pg/mL) | ↑ | 1 h |
2 | Zhang et al. [36] | Interferon-induced T-cell alpha chemoattractant (pg/mL) | ↑ | 1 h |
3 | Jiang et al. [41] | IFN-γ (pg/mL) | ↑ | 0–3 h |
4 | Bello et al. [34] | IL-1α | ↑ | two randomly selected consecutive weeks: Monday AM and Friday PM on both Week 1 and Week 2 during 2018–2021 |
5 | Zhang et al. [36] | IL-1β (pg/mL) | ↑ | 1 h |
6 | Bello et al. [34] | IL-1β | ↑ | two randomly selected consecutive weeks: Monday AM and Friday PM on both Week 1 and Week 2 during 2018–2019 |
7 | Jiang et al. [41] | IL-1β (pg/mL) | ↑ | 0–3 h |
8 | Padró-Martínez et al. * [22] | IL-6 | ↓ | 104 particles/cm3 increase in PNC moving average (MA) (14- or 21-day MA) adjusted for baseline blood biomarker concentrations |
9 | Jiang et al. [41] | IL-6 (pg/mL) | ↑ | 0–3 h |
10 | Brugge et al. * [18] | IL-6 | ↑ | in the morning in the study areas |
11 | Brugge et al. * [18] | IL-6 | ↑ | |
12 | Jiang et al. [41] | IL-8 (pg/mL) | ↑ | 0–3 h |
13 | Zhang et al. [36] | IL-10 (pg/mL) | ↑ | 1 h |
14 | Karottki et al. [23] | Leukocytes (×109 cells/L) (indoor exposure) | ↑ | at the end of the 2-day indoor air monitoring period (indoor exposure) |
15 | Karottki et al. [20] | Leukocytes (109 cells/L) | ↓ | hours–days (outdoor exposure) |
16 | Karottki et al. [20] | Lymphocytes (×109 cells/L) (indoor exposure) | ↑ | at the end of the 2-day indoor air monitoring period (indoor exposure) |
17 | Karottki et al. [20] | Monocytes (×109 cells/L) (indoor exposure) | ↑ | at the end of the 2-day indoor air monitoring period (indoor exposure) |
18 | Jiang et al. [41] | TNF-α (pg/mL) | ↑ | 0–3 h |
19 | Kumarathasan et al. [28] | Fibrinogen | ↑ | data not provided |
20 | Jiang et al. [41] | HDL (mmol/L) | ↓ | 13–24 h |
21 | Jiang et al. [41] | LDL (mmol/L) | ↑ | 7–12 h |
22 | Kumarathasan et al. [28] | A2M | ↑ | blood samples (n = 52) were collected late in the afternoon (between 2 and 5 pm) at the end of the exposure week (Friday) at both College and Bayview sites; the baseline sample was collected for blood one week prior (Friday between 2 pm and 5 pm) to the beginning of the sequence of exposures |
23 | Kumarathasan et al. [28] | Adipsin | ↑ | |
24 | Kumarathasan et al. [28] | AGP | ↑ | |
25 | Kumarathasan et al. [28] | Haptoglobin | ↑ | |
26 | Kumarathasan et al. [28] | L-selectin | ↑ | |
27 | Kumarathasan et al. [28] | PF4 | ↑ | |
28 | Kumarathasan et al. [28] | ET 1–21 (plasma) | ↑ | |
29 | Karottki et al. [20] | MVF (outdoor exposure) | ↓ | at the end of the 2-day indoor air monitoring period (indoor exposure) |
30 | Karottki et al. [20] | HbA1c (mmol/mol) | ↑ | at the end of the 2-day indoor air monitoring period (indoor exposure) |
31 | Jiang et al. [41] | Glucose (mmol/L) | ↑ | 0–3 h |
32 | Jiang et al. [41] | Insulin (pmol/L) | ↑ | 0–3 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachowicz, J.I.; Gać, P. Short-Term and Long-Term Effects of Inhaled Ultrafine Particles on Blood Markers of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 2846. https://doi.org/10.3390/jcm14082846
Lachowicz JI, Gać P. Short-Term and Long-Term Effects of Inhaled Ultrafine Particles on Blood Markers of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2025; 14(8):2846. https://doi.org/10.3390/jcm14082846
Chicago/Turabian StyleLachowicz, Joanna Izabela, and Paweł Gać. 2025. "Short-Term and Long-Term Effects of Inhaled Ultrafine Particles on Blood Markers of Cardiovascular Diseases: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 14, no. 8: 2846. https://doi.org/10.3390/jcm14082846
APA StyleLachowicz, J. I., & Gać, P. (2025). Short-Term and Long-Term Effects of Inhaled Ultrafine Particles on Blood Markers of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 14(8), 2846. https://doi.org/10.3390/jcm14082846