The Role of the Cerebellum in Multiple Sclerosis-Related Fatigue and Disability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Ethical Approval
2.2. Participants
2.3. Clinical Assessment
2.4. Radiological Assessment
2.5. Statistical Analysis
3. Results
3.1. Clinical and Structural MRI Measures
3.2. Analysis of Correlations
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, R.D.; Victor, M.; Ropper, A.H.; Daroff, R.B. Principles of Neurology. Neuropsychiatry Neuropsychol. Behav. Neurol. 1997, 10, 220. [Google Scholar]
- Chaudhuri, A.; Behan, P.O. Fatigue and Basal Ganglia. J. Neurol. Sci. 2000, 179, 34–42. [Google Scholar] [CrossRef]
- Khan, F.; Amatya, B.; Galea, M. Management of Fatigue in Persons with Multiple Sclerosis. Front. Neurol. 2014, 5, 177. [Google Scholar] [CrossRef] [PubMed]
- Cook, K.F.; Bamer, A.M.; Roddey, T.S.; Kraft, G.H.; Kim, J.; Amtmann, D. Multiple Sclerosis and Fatigue: Understanding the Patient’s Needs. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Bossa, M.; Manocchio, N.; Argento, O. Non-Pharmacological Treatments of Cognitive Impairment in Multiple Sclerosis: A Review. NeuroSci 2022, 3, 476–494. [Google Scholar] [CrossRef]
- Schreck, L.; Ryan, S.; Monaghan, P. Cerebellum and Cognition in Multiple Sclerosis. J. Neurophysiol. 2018, 120, 2707–2709. [Google Scholar] [CrossRef]
- Schmahmann, J. The Cerebellar Cognitive Affective Syndrome. Brain 1998, 121, 561–579. [Google Scholar] [CrossRef]
- Clausi, S.; Bozzali, M.; Leggio, M.G.; Di Paola, M.; Hagberg, G.E.; Caltagirone, C.; Molinari, M. Quantification of Gray Matter Changes in the Cerebral Cortex after Isolated Cerebellar Damage: A Voxel-Based Morphometry Study. Neuroscience 2009, 162, 827–835. [Google Scholar] [CrossRef]
- Tedesco, A.M.; Chiricozzi, F.R.; Clausi, S.; Lupo, M.; Molinari, M.; Leggio, M.G. The Cerebellar Cognitive Profile. Brain 2011, 134, 3672–3686. [Google Scholar] [CrossRef]
- Leone, C.; Feys, P.; Moumdjian, L.; D’Amico, E.; Zappia, M.; Patti, F. Cognitive-Motor Dual-Task Interference: A Systematic Review of Neural Correlates. Neurosci. Biobehav. Rev. 2017, 75, 348–360. [Google Scholar] [CrossRef]
- Tramontano, M.; Argento, O.; Manocchio, N.; Piacentini, C.; Orejel Bustos, A.S.; De Angelis, S.; Bossa, M.; Nocentini, U. Dynamic Cognitive–Motor Training versus Cognitive Computer-Based Training in People with Multiple Sclerosis: A Preliminary Randomized Controlled Trial with 2-Month Follow-Up. JCM 2024, 13, 2664. [Google Scholar] [CrossRef] [PubMed]
- Stoodley, C.J.; Schmahmann, J.D. Evidence for Topographic Organization in the Cerebellum of Motor Control versus Cognitive and Affective Processing. Cortex 2010, 46, 831–844. [Google Scholar] [CrossRef]
- Fritz, N.E.; Edwards, E.M.; Ye, C.; Prince, J.; Yang, Z.; Gressett, T.; Keller, J.; Myers, E.; Calabresi, P.A.; Zackowski, K.M. Cerebellar Contributions to Motor and Cognitive Control in Multiple Sclerosis. Arch. Phys. Med. Rehabil. 2022, 103, 1592–1599. [Google Scholar] [CrossRef]
- Argento, O.; Spanò, B.; Pisani, V.; Incerti, C.C.; Bozzali, M.; Foti, C.; Caltagirone, C.; Nocentini, U. Dual-Task Performance in Multiple Sclerosis’ Patients: Cerebellum Matters? Arch. Clin. Neuropsychol. 2021, 36, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Weier, K.; Banwell, B.; Cerasa, A.; Collins, D.L.; Dogonowski, A.-M.; Lassmann, H.; Quattrone, A.; Sahraian, M.A.; Siebner, H.R.; Sprenger, T. The Role of the Cerebellum in Multiple Sclerosis. Cerebellum 2015, 14, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Mechelli, A.; Price, C.J.; Friston, K.J.; Ashburner, J. Voxel-Based Morphometry of the Human Brain: Methods and Applications. Curr. Med. Imaging 2005, 1, 105–113. [Google Scholar] [CrossRef]
- Stoodley, C.; Schmahmann, J. Functional Topography in the Human Cerebellum: A Meta-Analysis of Neuroimaging Studies. NeuroImage 2009, 44, 489–501. [Google Scholar] [CrossRef]
- Schmahmann, J.D. The Cerebellum and Cognition. Neurosci. Lett. 2019, 688, 62–75. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191. [CrossRef]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating Neurologic Impairment in Multiple Sclerosis: An Expanded Disability Status Scale (EDSS). Neurology 1983, 33, 1444. [Google Scholar] [CrossRef] [PubMed]
- Fisk, J.D.; Ritvo, P.G.; Ross, L.; Haase, D.A.; Marrie, T.J.; Schlech, W.F. Measuring the Functional Impact of Fatigue: Initial Validation of the Fatigue Impact Scale. Clin. Infect. Dis. 1994, 18, S79–S83. [Google Scholar] [CrossRef]
- Piscitelli, D.; Brichetto, G.; Geri, T.; Battista, S.; Testa, M.; Monti Bragadin, M.; Pellicciari, L. Italian Adaptation and Psychometric Validation of the Fatigue Impact Scale (FIS) and Its Modified Versions in Adults with Multiple Sclerosis: A Rasch Analysis Study. Disabil. Rehabil. 2024, 46, 5366–5379. [Google Scholar] [CrossRef]
- Diedrichsen, J.; Balsters, J.H.; Flavell, J.; Cussans, E.; Ramnani, N. A Probabilistic MR Atlas of the Human Cerebellum. NeuroImage 2009, 46, 39–46. [Google Scholar] [CrossRef]
- Diedrichsen, J. A Spatially Unbiased Atlas Template of the Human Cerebellum. NeuroImage 2006, 33, 127–138. [Google Scholar] [CrossRef]
- Munro, B.H. Statistical Methods for Health Care Research; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; Volume 1, ISBN 0-7817-4840-2. [Google Scholar]
- Arm, J.; Ribbons, K.; Lechner-Scott, J.; Ramadan, S. Evaluation of MS Related Central Fatigue Using MR Neuroimaging Methods: Scoping Review. J. Neurol. Sci. 2019, 400, 52–71. [Google Scholar] [CrossRef]
- Rocca, M.A.; Meani, A.; Riccitelli, G.C.; Colombo, B.; Rodegher, M.; Falini, A.; Comi, G.; Filippi, M. Abnormal Adaptation over Time of Motor Network Recruitment in Multiple Sclerosis Patients with Fatigue. Mult. Scler. 2016, 22, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Genova, H.M.; Rajagopalan, V.; Deluca, J.; Das, A.; Binder, A.; Arjunan, A.; Chiaravalloti, N.; Wylie, G. Examination of Cognitive Fatigue in Multiple Sclerosis Using Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging. PLoS ONE 2013, 8, e78811. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Rocca, M.A.; Colombo, B.; Falini, A.; Codella, M.; Scotti, G.; Comi, G. Functional Magnetic Resonance Imaging Correlates of Fatigue in Multiple Sclerosis. Neuroimage 2002, 15, 559–567. [Google Scholar] [CrossRef]
- Hidalgo de la Cruz, M.; d’Ambrosio, A.; Valsasina, P.; Pagani, E.; Colombo, B.; Rodegher, M.; Falini, A.; Comi, G.; Filippi, M.; Rocca, M.A. Abnormal Functional Connectivity of Thalamic Sub-Regions Contributes to Fatigue in Multiple Sclerosis. Mult. Scler. 2018, 24, 1183–1195. [Google Scholar] [CrossRef]
- Andreasen, A.K.; Iversen, P.; Marstrand, L.; Siersma, V.; Siebner, H.R.; Sellebjerg, F. Structural and Cognitive Correlates of Fatigue in Progressive Multiple Sclerosis. Neurol. Res. 2019, 41, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Zhou, C.; Yin, L.; Zhu, Y.; Yin, W.; Lu, Y.; Liu, B.; Ren, H.; Xu, Z.; Yang, X. Resting-State Functional Magnetic Resonance Imaging of the Cerebellar Vermis in Patients with Parkinson’s Disease and Visuospatial Disorder. Neurosci. Lett. 2021, 760, 136082. [Google Scholar] [CrossRef] [PubMed]
- McIsaac, T.L.; Fritz, N.E.; Quinn, L.; Muratori, L.M. Cognitive-Motor Interference in Neurodegenerative Disease: A Narrative Review and Implications for Clinical Management. Front. Psychol. 2018, 9, 2061. [Google Scholar] [CrossRef]
- van Es, D.M.; van der Zwaag, W.; Knapen, T. Topographic Maps of Visual Space in the Human Cerebellum. Curr. Biol. 2019, 29, 1689–1694.e3. [Google Scholar] [CrossRef] [PubMed]
- Marafioti, G.; Cardile, D.; Culicetto, L.; Quartarone, A.; Lo Buono, V. The Impact of Social Cognition Deficits on Quality of Life in Multiple Sclerosis: A Scoping Review. Brain Sci. 2024, 14, 691. [Google Scholar] [CrossRef]
- Halicka, D.; Tarasiuk, J.; Szczepański, M.; Krajewska, A.; Kułakowska, A. Fatigue Syndrome, Depression and the Quality of Life in Patients with Multiple Sclerosis. Pielęgniarstwo Neurol. Neurochir. 2017, 6, 81–87. [Google Scholar] [CrossRef]
- Lazzarotto, A.; Margoni, M.; Franciotta, S.; Zywicki, S.; Riccardi, A.; Poggiali, D.; Anglani, M.; Gallo, P. Selective Cerebellar Atrophy Associates with Depression and Fatigue in the Early Phases of Relapse-Onset Multiple Sclerosis. Cerebellum 2020, 19, 192–200. [Google Scholar] [CrossRef]
- Powell, D.J.H.; Liossi, C.; Schlotz, W.; Moss-Morris, R. Tracking Daily Fatigue Fluctuations in Multiple Sclerosis: Ecological Momentary Assessment Provides Unique Insights. J. Behav. Med. 2017, 40, 772–783. [Google Scholar] [CrossRef]
- Pardini, M.; Bonzano, L.; Bergamino, M.; Bommarito, G.; Feraco, P.; Murugavel, A.; Bove, M.; Brichetto, G.; Uccelli, A.; Mancardi, G.; et al. Cingulum Bundle Alterations Underlie Subjective Fatigue in Multiple Sclerosis. Mult. Scler. 2015, 21, 442–447. [Google Scholar] [CrossRef]
- Redlicka, J.; Zielińska-Nowak, E.; Lipert, A.; Miller, E. Impact of Moderate Individually Tailored Physical Activity in Multiple Sclerosis Patients with Fatigue on Functional, Cognitive, Emotional State, and Postural Stability. Brain Sci. 2021, 11, 1214. [Google Scholar] [CrossRef]
- García-Muñoz, C.; Cortés-Vega, M.-D.; Hernández-Rodríguez, J.-C.; Fernández-Seguín, L.M.; Escobio-Prieto, I.; Casuso-Holgado, M.J. Immersive Virtual Reality and Vestibular Rehabilitation in Multiple Sclerosis: Case Report. JMIR Serious Games 2022, 10, e31020. [Google Scholar] [CrossRef] [PubMed]
- Abasi, A.; Raji, P.; Friedman, J.H.; Hadian, M.-R.; Hoseinabadi, R.; Abbasi, S.; Baghestani, A. Effects of Vestibular Rehabilitation on Fatigue and Activities of Daily Living in People with Parkinson’s Disease: A Pilot Randomized Controlled Trial Study. Park. Dis. 2020, 2020, 8624986. [Google Scholar] [CrossRef] [PubMed]
- Chasiotis, A.K.; Kitsos, D.K.; Stavrogianni, K.; Giannopapas, V.; Papadopoulou, M.; Zompola, C.; Paraskevas, G.P.; Bakalidou, D.; Giannopoulos, S. Rehabilitation on Cerebellar Ataxic Patients with Multiple Sclerosis: A Systematic Review. J. Neurosci. Res. 2023, 101, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Johansson, S.; Skjerbæk, A.G.; Nørgaard, M.; Boesen, F.; Hvid, L.G.; Dalgas, U. Associations between Fatigue Impact and Lifestyle Factors in People with Multiple Sclerosis—The Danish MS Hospitals Rehabilitation Study. Mult. Scler. Relat. Disord. 2021, 50, 102799. [Google Scholar] [CrossRef]
- Houniet-de Gier, M.; Beckerman, H.; Van Vliet, K.; Knoop, H.; De Groot, V. Testing Non-Inferiority of Blended versus Face-to-Face Cognitive Behavioural Therapy for Severe Fatigue in Patients with Multiple Sclerosis and the Effectiveness of Blended Booster Sessions Aimed at Improving Long-Term Outcome Following Both Therapies: Study Protocol for Two Observer-Blinded Randomized Clinical Trials. Trials 2020, 21, 98. [Google Scholar] [CrossRef]
F-MS (n = 17) | nF-MS (n = 27) | p-Value | |
---|---|---|---|
Sex | 0.651 * | ||
Men | 7 (41.1%) | 13 (48.1%) | |
Women | 10 (58.9%) | 14 (51.9%) | |
Age [years] | 47.1 ± 10.2 | 41.7 ± 10.3 | 0.094 ** |
Education [years] | 14.3 ± 3.9 | 14.5 ± 2.7 | 0.851 ** |
MS phenotype | 0.001 * | ||
Relapsing-remitting | 5 (29.4%) | 22 (81.5%) | |
Secondary progressive | 12 (70.6%) | 5 (18.5%) | |
Disease duration [years] | 13.8 ± 9.3 | 9.7 ± 9.8 | 0.173 ** |
EDSS score | 4.3 ± 1.7 | 2.7 ± 1.2 | 0.001 ** |
MFIS score | 47.8 ± 9.7 | 20.4 ± 11.3 | <0.001 ** |
MFIS physical score | 24.1 ± 4.5 | 12.8 ± 6.1 | <0.001 ** |
MFIS cognitive score | 19.1 ± 6.8 | 5.4 ± 4.9 | <0.001 ** |
MFIS psychosocial score | 4.6 ± 1.7 | 2.2 ± 2.6 | <0.001 ** |
T1 GMV TOTAL C [mm3] | 116,182.8 ± 13,751.7 | 116,735.6 ± 11,545.8 | 0.886 ** |
T1 GMV SMC [mm3] | 3835.2 ± 570.2 | 4054.2 ± 654.1 | 0.262 ** |
T1 GMV MC [mm3] | 4392.1 ± 747.8 | 4207.3 ± 653.7 | 0.392 ** |
T1 GMV CC [mm3] | 7625.0 ±3507.9 | 7667.4 ± 3611.0 | 0.969 ** |
T1 GMV LC [mm3] | 4068.3 ± 4494.5 | 4112.7 ± 4543.7 | 0.974 ** |
EDSS | totMFIS | pMFIS | cMFIS | psMFIS | |
---|---|---|---|---|---|
LeftVIGM | −0.580 * | −0.262 | −0.176 | −0.170 | −0.110 |
RightVIGM | −0.515 * | −0.135 | −0.084 | −0.087 | 0.058 |
LeftCrusIIGM | −0.023 | 0.419 | 0.443 | 0.391 | 0.570 * |
RightCrusIIGM | 0.195 | 0.280 | 0.352 | 0.197 | 0.511 * |
LeftVIIbGM | −0.028 | 0.264 | 0.276 | 0.264 | 0.509 * |
VermisVIIIbGM | −0.050 | −0.517 * | −0.124 | −0.555 * | 0.210 |
LeftV/totGMc | −0.211 | −0.172 | −0.417 | 0.010 | −0.550 * |
RightVGM/totGMc | −0.146 | −0.248 | −0.597 * | 0.047 | −0.442 |
LeftVIIb/totGMc | 0.378 | 0.252 | 0.274 | 0.196 | 0.488 * |
VermisVIIIb/totGMc | 0.077 | −0.549 * | −0.204 | −0.648 ** | −0.109 |
VermisIX/totGMc | −0.136 | −0.391 | 0.039 | −0.570 * | −0.144 |
LeftVI-ICV | −0.583 * | −0.214 | −0.160 | −0.167 | −0.233 |
VermisCrusI-ICV | 0.666 ** | −0.088 | 0.010 | 0.000 | 0.366 |
LeftCrusII-ICV | 0.303 | 0.386 | 0.514 * | 0.204 | 0.494 * |
VermisVIIIb-ICV | 0.211 | −0.460 | 0.014 | −0.629 ** | 0.157 |
EDSS | totMFIS | pMFIS | cMFIS | psMFIS | |
---|---|---|---|---|---|
totMFIS | 0.447 * | / | / | / | / |
pMFIS | 0.419 * | / | / | / | / |
LeftCrusIGM | −0.416 * | −0.156 | −0.145 | 0.002 | −0.211 |
LeftVIIIaGM/totGMc | −0.014 | −0.269 | −0.173 | −0.424 * | 0.036 |
VermisXGM/totGMc | 0.202 | 0.241 | 0.235 | 0.034 | 0.393 * |
RightXGM/totGMc | 0.408 * | −0.046 | −0.151 | 0.033 | 0.204 |
LeftCrusIGM-ICV | −0.409 * | −0.171 | −0.056 | −0.188 | −0.265 |
RightCrusIIGM-ICV | −0.091 | −0.168 | −0.021 | −0.401 * | −0.074 |
LeftVIIbGM-ICV | −0.236 | −0.245 | −0.094 | −0.458 * | −0.082 |
LeftVIIIaGM-ICV | −0.228 | −0.298 | −0.124 | −0.504 ** | −0.086 |
LeftVIIIbGM-ICV | −0.209 | −0.277 | −0.078 | −0.469 * | −0.133 |
LeftIXGM-ICV | −0.218 | −0.102 | 0.095 | −0.390 * | −0.041 |
totGMc-ICV | −0.404 * | −0.222 | −0.020 | −0.417 * | −0.215 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manocchio, N.; Argento, O.; Bossa, M.; Spanò, B.; Pellicciari, L.; Foti, C.; Nocentini, U. The Role of the Cerebellum in Multiple Sclerosis-Related Fatigue and Disability. J. Clin. Med. 2025, 14, 2840. https://doi.org/10.3390/jcm14082840
Manocchio N, Argento O, Bossa M, Spanò B, Pellicciari L, Foti C, Nocentini U. The Role of the Cerebellum in Multiple Sclerosis-Related Fatigue and Disability. Journal of Clinical Medicine. 2025; 14(8):2840. https://doi.org/10.3390/jcm14082840
Chicago/Turabian StyleManocchio, Nicola, Ornella Argento, Michela Bossa, Barbara Spanò, Leonardo Pellicciari, Calogero Foti, and Ugo Nocentini. 2025. "The Role of the Cerebellum in Multiple Sclerosis-Related Fatigue and Disability" Journal of Clinical Medicine 14, no. 8: 2840. https://doi.org/10.3390/jcm14082840
APA StyleManocchio, N., Argento, O., Bossa, M., Spanò, B., Pellicciari, L., Foti, C., & Nocentini, U. (2025). The Role of the Cerebellum in Multiple Sclerosis-Related Fatigue and Disability. Journal of Clinical Medicine, 14(8), 2840. https://doi.org/10.3390/jcm14082840