Clinical Outcomes and Risk Factors Associated with Spinal Kyphotic Deformity Following Osteoporotic Vertebral Fracture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Conservative Treatment
2.3. Patient Characteristics and Radiographic and Bone Quality Assessment
2.4. Paraspinal Muscle and Psoas Muscle Assessment
2.5. Patient-Reported Outcomes Measures
2.6. Data Analysis
3. Results
3.1. GSA at 12 Months After OVF
3.2. Comparison of Patient Characteristics, Muscle Assessment, and Nutrition Status Among the Three Groups at Baseline
3.3. Patient-Reported Outcomes at 12 Months
3.4. Radiographic Parameters at 12 Months
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMD | bone mineral density |
BMI | body mass index |
CSA | cross-sectional area |
CT | computed tomography |
FI | fatty infiltration |
GSA | global sagittal alignment |
JOABPEQ | Japanese Orthopaedic Association Back Pain Evaluation Questionnaire |
LIV | lumbar indentation value |
LL | lumbar lordosis |
LLL | lower lumbar lordosis |
MRI | magnetic resonance imaging |
ODI | Oswestry Disability Index |
OVF | osteoporotic vertebra fracture |
PI | pelvic incidence |
PMI | psoas muscle index |
PT | pelvic tilt |
QOL | quality of life |
SQ | semi-quantitative |
SVA | sagittal vertical axis |
TK | thoracic kyphosis |
TL | Thoracolumbar |
TLK | thoracolumbar kyphosis |
VAS | visual analog scale |
References
- Funayama, T.; Tatsumura, M.; Fujii, K.; Ikumi, A.; Okuwaki, S.; Shibao, Y.; Koda, M.; Yamazaki, M.; The Tsukuba Spine Group. Therapeutic effects of conservative treatment with 2-week bed rest for osteoporotic vertebral fractures: A prospective cohort study. J. Bone Jt. Surg. Am. 2022, 104, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Wakao, N.; Sakai, Y.; Watanabe, T.; Osada, N.; Sugiura, T.; Iida, H.; Ozawa, Y.; Murotani, K. Spinal pseudoarthrosis following osteoporotic vertebral fracture: Prevalence, risk factors, and influence on patients’ activities of daily living 1 year after injury. Arch. Osteoporos. 2023, 18, 45. [Google Scholar] [CrossRef]
- Hoshino, M.; Tsujio, T.; Terai, H.; Namikawa, T.; Kato, M.; Matsumura, A.; Suzuki, A.; Takayama, K.; Takaoka, K.; Nakamura, H. Impact of initial conservative treatment interventions on the outcomes of patients with osteoporotic vertebral fractures. Spine 2013, 38, E641–E648. [Google Scholar] [CrossRef]
- Muratore, M.; Ferrera, A.; Masse, A.; Bistolfi, A. Osteoporotic vertebral fractures: Predictive factors for conservative treatment failure. A systematic review. Eur. Spine J. 2018, 27, 2565–2576. [Google Scholar] [CrossRef]
- Hoshino, M.; Takahashi, S.; Yasuda, H.; Terai, H.; Watanabe, K.; Hayashi, K.; Tsujio, T.; Kono, H.; Suzuki, A.; Tamai, K.; et al. Balloon kyphoplasty versus conservative treatment for acute osteoporotic vertebral fractures with poor prognostic factors: Propensity score matched analysis using data from two prospective multicenter studies. Spine 2019, 44, 110–117. [Google Scholar] [CrossRef]
- Fusini, F.; Colò, G.; Risitano, S.; Massè, A.; Rossi, L.; Coniglio, A.; Girardo, M. Back to the future in traumatic fracture shapes of lumbar spine: An analysis of risk of kyphosis after conservative treatment. J. Craniovertebral Junction Spine 2021, 12, 38–43. [Google Scholar] [CrossRef]
- Prost, S.; Pesenti, S.; Farah, K.; Tropiano, P.; Fuentes, S.; Blondel, B. Sagittal reduction of spinal deformity: Superior versus lateral screw-rod connection. Orthop. Traumatol. Surg. Res. OTSR 2021, 107, 102954. [Google Scholar] [CrossRef]
- Chau, L.T.C.; Hu, Z.; Ko, K.S.Y.; Man, G.C.W.; Yeung, K.H.; Law, Y.Y.; Lau, L.C.M.; Wong, R.M.Y.; Chu, W.C.W.; Cheng, J.C.Y.; et al. Global sagittal alignment of the spine, pelvis, lower limb after vertebral compression fracture and its effect on quality of life. BMC Musculoskelet. Disord. 2021, 22, 476. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, T.; Li, W.; Sun, J.; Yao, Z.; Liu, W. Role of paraspinal muscle degeneration in the occurrence and recurrence of osteoporotic vertebral fracture: A meta-analysis. Front. Endocrinol. 2022, 13, 1073013. [Google Scholar] [CrossRef]
- Jeon, I.; Kim, S.W.; Yu, D. Paraspinal muscle fatty degeneration as a predictor of progressive vertebral collapse in osteoporotic vertebral compression fractures. Spine J. 2022, 22, 313–320. [Google Scholar] [CrossRef]
- Ligthart-Melis, G.C.; Luiking, Y.C.; Kakourou, A.; Cederholm, T.; Maier, A.B.; de van der Schueren, M.A.E. Frailty, sarcopenia, and malnutrition frequently (co-)occur in hospitalized older adults: A systematic review and meta-analysis. J. Am. Med. Dir. Assoc. 2020, 21, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
- Kusukawa, T.; Maruo, K.; Toi, M.; Yamaura, T.; Hatano, M.; Nagao, K.; Oishi, H.; Horinouchi, Y.; Arizumi, F.; Kishima, K.; et al. Subsequent domino osteoporotic vertebral fractures adversely affect short-term health-related quality of life: A prospective multicenter study. Medicina 2023, 59, 590. [Google Scholar] [CrossRef] [PubMed]
- Takayama, K.; Kita, T.; Nakamura, H.; Kanematsu, F.; Yasunami, T.; Sakanaka, H.; Yamano, Y. New predictive index for lumbar paraspinal muscle degeneration associated with aging. Spine 2016, 41, E84–E90. [Google Scholar] [CrossRef]
- Hashizume, H.; Konno, S.; Takeshita, K.; Fukui, M.; Takahashi, K.; Chiba, K.; Miyamoto, M.; Matsumoto, M.; Kasai, Y.; Kanamori, M.; et al. Japanese orthopaedic association back pain evaluation questionnaire (JOABPEQ) as an outcome measure for patients with low back pain: Reference values in healthy volunteers. J. Orthop. Sci. Off. J. Jpn. Orthop. Assoc. 2015, 20, 264–280. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers, 13th ed.; Oxford Academic: Oxford, UK, 1958. [Google Scholar] [CrossRef]
- Tukey, J.W. Comparing individual means in the analysis of variance. Biometrics. 1949, 5, 99–114. [Google Scholar] [CrossRef]
- Hu, Z.; Man, G.C.W.; Kwok, A.K.L.; Law, S.W.; Chu, W.W.C.; Cheung, W.H.; Qiu, Y.; Cheng, J.C.Y. Global sagittal alignment in elderly patients with osteoporosis and its relationship with severity of vertebral fracture and quality of life. Arch. Osteoporos. 2018, 13, 95. [Google Scholar] [CrossRef]
- Langella, F.; Balestrino, A.; Damilano, M.; Cecchinato, R.; Biber, Z.; Paoletta, M.; Iolascon, G.; Lamartina, C.; Peretti, G.M.; Berjano, P. The aging spine: The effect of vertebral fragility fracture on sagittal alignment. Arch. Osteoporos. 2021, 16, 109. [Google Scholar] [CrossRef]
- Plais, N.; Bustos, J.G.; Mahillo-Fernández, I.; Tomé-Bermejo, F.; Mengis, C.; Alvarez-Galovich, L. Osteoporotic vertebral fractures localized in the lumbar area significantly impact sagittal alignment. Osteoporos. Int. 2024, 35, 277–284. [Google Scholar] [CrossRef]
- Najjar, E.; Pasku, D.; Mardashti, A.; Meshneb, M.; Komaitis, S.; Salem, K.M.; Quraishi, N.A. The influence of osteoporotic vertebral fractures on global sagittal alignment in elderly patients: A systematic review and meta-analysis. Eur. Spine J. 2023, 32, 2580–2587. [Google Scholar] [CrossRef]
- Okamoto, Y.; Murakami, H.; Demura, S.; Kato, S.; Yoshioka, K.; Hayashi, H.; Sakamoto, J.; Kawahara, N.; Tsuchiya, H. The effect of kyphotic deformity because of vertebral fracture: A finite element analysis of a 10° and 20° wedge-shaped vertebral fracture model. Spine J. 2015, 15, 713–720. [Google Scholar] [CrossRef]
- Fechtenbaum, J.; Etcheto, A.; Kolta, S.; Feydy, A.; Roux, C.; Briot, K. Sagittal balance of the spine in patients with osteoporotic vertebral fractures. Osteoporos. Int. 2016, 27, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, K.; Ikeda, N.; Tanaka, H.; Ito, Y.; Sugie, A.; Yamada, M.; Wanibuchi, M.; Kawanishi, M. Changes in spinal sagittal balance after a new osteoporotic vertebral compression fracture. Osteoporos. Int. 2024, 35, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Zhou, S.; Qiu, W.; Fan, Z.; Yue, L.; Li, W.; Wang, W.; Sun, Z.; Li, W. Role of the paraspinal muscles in the sagittal imbalance cascade: The effects of their endurance and of their morphology on sagittal spinopelvic alignment. J. Bone Jt. Surg. Am. 2023, 105, 1954–1961. [Google Scholar] [CrossRef]
- Tamai, K.; Chen, J.; Stone, M.; Arakelyan, A.; Paholpak, P.; Nakamura, H.; Buser, Z.; Wang, J.C. The evaluation of lumbar paraspinal muscle quantity and quality using the Goutallier classification and lumbar indentation value. Eur. Spine J. 2018, 27, 1005–1012. [Google Scholar] [CrossRef]
- Asada, T.; Miura, K.; Kadone, H.; Sakashita, K.; Funayama, T.; Takahashi, H.; Noguchi, H.; Sato, K.; Eto, F.; Gamada, H.; et al. The relationship between spinal alignment and activity of paravertebral muscle during gait in patients with adult spinal deformity: A retrospective study. BMC Musculoskelet. Disord. 2023, 24, 2. [Google Scholar] [CrossRef]
- Miyazaki, M.; Yamamoto, A.; Malis, V.; Statum, S.; Chung, C.B.; Sozanski, J.; Bae, W.C. Time-Resolved Noncontrast Magnetic Resonance Perfusion Imaging of Paraspinal Muscles. J. Magn. Reson. Imaging 2022, 56, 1591–1599. [Google Scholar] [CrossRef]
- Jeon, I.; Park, S.B.; Moon, B.J.; Choi, M.; Kuh, S.U.; Kim, J. Comparison of the Clinical Efficacy of Anabolic Agents and Bisphosphonates in the Patients With Osteoporotic Vertebral Fracture: Systematic Review and Meta-analysis of Randomized Controlled Trials. Neurospine 2024, 21, 416–429. [Google Scholar] [CrossRef]
- Ohyama, S.; Hoshino, M.; Terai, H.; Toyoda, H.; Suzuki, A.; Takahashi, S.; Hayashi, K.; Tamai, K.; Hori, Y.; Nakamura, H. Sarcopenia is related to spinal sagittal imbalance in patients with spinopelvic mismatch. Eur. Spine J. 2019, 28, 1929–1936. [Google Scholar] [CrossRef]
- Kajiki, Y.; Tsuji, H.; Misawa, H.; Nakahara, R.; Tetsunaga, T.; Yamane, K.; Oda, Y.; Takao, S.; Ozaki, T. Psoas muscle index predicts osteoporosis and fracture risk in individuals with degenerative spinal disease. Nutrition 2022, 93, 111428. [Google Scholar] [CrossRef]
Variable | Group N | Group M | Group S | p-Value |
---|---|---|---|---|
Age (years) | 76.2 ± 7.0 | 81.1 ± 7.7 | 81.8 ± 6.0 | 0.03 * |
Sex, female (n, %) | 15 (75) | 28 (82) | 14 (88) | 0.6 |
BMI (kg/m2) | 22.7 ± 3.2 | 22.6 ± 3.0 | 22.9 ± 3.2 | 0.9 |
Lumbar YAM (%) | 77.1 ± 15.2 | 81.5 ± 18.2 | 77.4 ± 14.8 | 0.7 |
Total hip YAM (%) | 71.4 ± 9.9 | 74.3 ± 16.2 | 68.8 ± 16.9 | 0.5 |
Variable | Group N | Group M | Group S | p-Value |
---|---|---|---|---|
Fracture location, n (%) | 0.1 | |||
Thoracic (T4-9) | 1 (5) | 2 (6) | 1 (6) | |
TL junction (T10-L2) | 17 (85) | 26 (76) | 8 (50) | |
Lumbar (L3-5) | 2 (10) | 6 (18) | 7 (44) | |
SQ grade, n (%) | 0.3 | |||
0 | 0 | 3 (9) | 2 (13) | |
1 | 11 (55) | 12 (35) | 10 (63) | |
2 | 8 (40) | 15 (44) | 4 (25) | |
3 | 1 (5) | 4(12) | 0 | |
Prior OVF, n (%) | 5 (25) | 11 (32) | 9 (56) | 0.1 |
Wedge angle (°) | 15.1 ± 8.3 | 16.8 ± 9.2 | 16.7 ± 9.1 | 0.8 |
Pseudoarthrosis | 5 (25) | 6 (18) | 6 (37.5) | 0.3 |
Variable | Group N | Group M | Group S | p-Value |
---|---|---|---|---|
Goutallier 3 or 4, n (%) | 4 (20) | 13 (38) | 8 (50) | 0.2 |
LIV (mm) | 10.9 ± 4.9 | 10.8 ± 5.3 | 8.3 ± 6.3 | 0.3 |
PMI (cm2)/m2 | 2.1 ± 0.6 | 2.0 ± 0.5 | 2.0 ± 0.7 | 0.7 |
CONUT score | 1.7 ± 2.5 | 1.7 ± 1.4 | 2.1 ± 1.8 | 0.8 |
Variable | Group N | Group M | Group S | p-Value |
---|---|---|---|---|
JOABPEQ | ||||
Pain-related disorder | 68.5 ± 36.1 | 70.5 ± 30.1 | 64.2 ± 39.5 | 0.96 |
Lumbar function | 71.6 ± 28.8 | 68.9 ± 29.5 | 61.8 ± 33.0 | 0.66 |
Walling ability | 74.9 ± 23.9 | 59.7 ± 33.7 | 41.2 ± 33.1 | 0.01 * |
Social life function | 67.1 ± 25.5 | 58.4 ±23.0 | 49.2 ± 25.0 | 0.05 |
Mental health | 61.5 ± 15.5 | 57.3 ± 17.7 | 48.0 ± 19.0 | 0.12 |
VAS for LBP | 23.7 ± 4.6 | 30.8 ± 26.2 | 24.7 ± 24.5 | 0.34 |
ODI | 19.0 ± 1943 | 23.9 ± 18.9 | 41.7 ± 25.1 | <0.01 * |
Variable | Group N | Group M | Group S | p-Value |
---|---|---|---|---|
TK (°) | 31.6 ± 14.9 | 34.7 ± 16.0 | 40.9 ± 19.8 | 0.25 |
TLK (°) | 20.5 ± 9.1 | 22.6 ± 14.4 | 22.5 ± 13.5 | 0.83 |
LL (°) | 39.7 ± 12.4 | 34.4 ± 11.5 | 26.9 ± 23.3 | 0.05 |
LLL (°) | 33.2 ± 7.0 | 26.9 ± 10.2 | 23.3 ± 12.9 | 0.01 * |
PI (°) | 54.2 ± 7.9 | 49.2 ± 10.2 | 49.7 ± 7.2 | 0.14 |
PT (°) | 24.3 ± 7.2 | 24.6 ± 7.6 | 29.1 ± 17.9 | 0.33 |
PI-LL (°) | 14.4 ± 12.0 | 14.8 ± 13.2 | 22.7 ± 25.1 | 0.24 |
Variable | Group N | Group M | Group S | p-Value |
---|---|---|---|---|
L3-5 acute OVF, n (%) | 2 (10) | 6 (18) | 7 (44) | 0.1 |
L3-5 prior OVF, n (%) | 4 (20) | 2 (6) | 4 (25) | 0.1 |
L3-5 OVF, n (%) (acute + prior OVF) | 5 (25) | 8 (24) | 11 (69) | <0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oishi, H.; Maruo, K.; Kusukawa, T.; Yamaura, T.; Nagao, K.; Toi, M.; Hatano, M.; Arizumi, F.; Yoshie, N.; Tachibana, T. Clinical Outcomes and Risk Factors Associated with Spinal Kyphotic Deformity Following Osteoporotic Vertebral Fracture. J. Clin. Med. 2025, 14, 2769. https://doi.org/10.3390/jcm14082769
Oishi H, Maruo K, Kusukawa T, Yamaura T, Nagao K, Toi M, Hatano M, Arizumi F, Yoshie N, Tachibana T. Clinical Outcomes and Risk Factors Associated with Spinal Kyphotic Deformity Following Osteoporotic Vertebral Fracture. Journal of Clinical Medicine. 2025; 14(8):2769. https://doi.org/10.3390/jcm14082769
Chicago/Turabian StyleOishi, Hayato, Keishi Maruo, Tomoyuki Kusukawa, Tetsuto Yamaura, Kazuma Nagao, Masakazu Toi, Masaru Hatano, Fumihiro Arizumi, Norichika Yoshie, and Toshiya Tachibana. 2025. "Clinical Outcomes and Risk Factors Associated with Spinal Kyphotic Deformity Following Osteoporotic Vertebral Fracture" Journal of Clinical Medicine 14, no. 8: 2769. https://doi.org/10.3390/jcm14082769
APA StyleOishi, H., Maruo, K., Kusukawa, T., Yamaura, T., Nagao, K., Toi, M., Hatano, M., Arizumi, F., Yoshie, N., & Tachibana, T. (2025). Clinical Outcomes and Risk Factors Associated with Spinal Kyphotic Deformity Following Osteoporotic Vertebral Fracture. Journal of Clinical Medicine, 14(8), 2769. https://doi.org/10.3390/jcm14082769