Narrative Review on Common Traits of Parkinson’s Disease and Epilepsy
Abstract
:1. Introduction
2. Epilepsy
2.1. Definition and Classification
2.2. Pathophysiology
2.2.1. Voltage Gated Sodium Channels (VGSC)
2.2.2. SCL2A1 Gene
2.2.3. Tuberose Sclerosis Proteins 1 and 2 (TSC1/TSC2)
2.3. Epidemiology
2.4. Diagnosis
2.5. Treatment
2.5.1. Anti-Seizure Medication (ASM)
2.5.2. Epilepsy Surgery and Neurostimulation
2.5.3. Antiseizure Medications (ASM) and the Risk of Parkinson’s Disease
3. Parkinson’s Disease (PD)
3.1. Genetics of PD
3.2. Diagnosis
- -
- Clinical Examination: The assessment of movement patterns, UPDRS scoring, and the Dopa test are essential for the classification and staging of Parkinson’s disease (PD).
- -
- DAT Scan: A DAT scan should be performed early after the first diagnosis of PD to confirm nigrostriatal degeneration for the differential diagnosis of unclear tremors or Parkinsonism, especially if a therapeutic decision will be based on this information.
- -
- FDG-PET: An FDG-PET can be performed to estimate the risk of developing dementia.
- -
- Genetic Testing: As mentioned above, genetic testing plays an important role in diagnosing PD, particularly for younger patients and those with a family history of the disease.
3.3. Treatment
3.3.1. Pharmacological Treatment
3.3.2. Deep Brain Stimulation (DBS)
4. Common Pathophysiology Between PD and Epilepsy
4.1. Dopaminergic Dysfunction
4.2. Neuroinflammation [43,44,45,46]
4.3. Oxidative Stress and Mitochondrial Dysfunction
4.4. Excitotoxicity and Glutamate Dysregulation
4.5. Genetic Overlaps and Shared Risk Factors
4.6. Altered GABAergic Signaling
4.7. Aberrant Protein Aggregation
5. Common Clinical Features Between Epilepsy and PD
5.1. Epileptic Seizures and Cortical Hyperexcitability in PD
5.2. Cognitive Dysfunction in Epilepsy and PD
5.2.1. Memory Impairment
5.2.2. Executive Dysfunction
5.2.3. Attention Deficits
5.3. Neuropsychiatric Symptoms
5.3.1. Depression and Anxiety
5.3.2. Hallucinations and Psychosis
5.3.3. Sleep Disturbances
5.4. Autonomic Dysfunction
6. Common Therapy Between PD and Epilepsy
6.1. Pharmacological Therapies
6.1.1. Dopaminergic Agents
6.1.2. Antiseizure Medication (ASMs)
6.2. Neuroprotective Strategies
6.3. Deep Brain Stimulation (DBS)
6.4. Lifestyle and Alternative Therapies
7. Discussion
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fisher, R.S.; Acevedo, C.; Arzimanoglou, A.; Bogacz, A.; Cross, J.H.; Elger, C.E.; Engel, J., Jr.; Forsgren, L.; French, J.A.; Glynn, M.; et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia 2014, 55, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Höglinger, G.U.; Adler, C.H.; Berg, D.; Klein, C.; Outeiro, T.F.; Poewe, W.; Postuma, R.; Stoessl, A.J.; Lang, A.E. A biological classification of Parkinson’s disease: The SynNeurGe research diagnostic criteria. Lancet Neurol. 2024, 23, 191–204, Erratum in Lancet Neurol. 2024, 23, e7. [Google Scholar] [CrossRef] [PubMed]
- Peljto, A.L.; Barker-Cummings, C.; Vasoli, V.M.; Leibson, C.L.; Hauser, W.A.; Buchhalter, J.R.; Ottman, R. Familial risk of epilepsy: A population-based study. Brain 2014, 137 Pt 3, 795–805. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ebrahimi-Fakhari, D.; Kang, K.-S.; Kotzaeridou, U.; Kohlhase, J.; Klein, C.; Assmann, B.E. Child Neurology: PRRT2-associated movement disorders and differential diagnoses. Neurology 2014, 83, 1680–1683, Erratum in Neurology 2015, 84, 105. [Google Scholar] [CrossRef] [PubMed]
- Sillanpää, M.; Kälviäinen, R.; Klaukka, T.; Helenius, H.; Shinnar, S. Temporalchanges in the incidence of epilepsy in Finland: Nationwide study. Epilepsy Res. 2006, 71, 206–215. [Google Scholar] [CrossRef]
- Boßelmann, C.; Borggräfe, I.; Fazeli, W.; Klein, K.-M.; Kluger, G.J.; Müller-Schlüter, K.; Neubauer, B.A.; von Spiczak, S.; von Stülpnagel, C.S.; Weber, Y.; et al. Genetische Diagnostik der Epilepsien: Empfehlung der Kommission Epilepsie und Genetik der Deutschen Gesellschaft für Epileptologie (DGfE). Clin. Epileptol. 2023, 36, 224–237. [Google Scholar] [CrossRef]
- Brunklaus, A.; Schorge, S.; Smith, A.D.; Ghanty, I.; Stewart, K.; Gardiner, S.; Du, J.; Pérez-Palma, E.; Symonds, J.D.; Collier, A.C.; et al. SCN1A variants from bench to bedside-improved clinical prediction from functional characterization. Hum. Mutat. 2020, 41, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Helbig, K.L.; Goldberg, E.M. SCN3A-Related Neurodevelopmental Disorder. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2021. [Google Scholar] [PubMed]
- Barbieri, R.; Nizzari, M.; Zanardi, I.; Pusch, M.; Gavazzo, P. Voltage-Gated Sodium Channel Dysfunctions in Neurological Disorders. Life 2023, 13, 1191. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koch, H.; Weber, Y.G. The glucose transporter type 1 (Glut1) syndromes. Epilepsy Behav. 2019, 91, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Gruntz, K.; Bloechliger, M.; Becker, C.; Jick, S.S.; Fuhr, P.; Meier, C.R.; Rüegg, S. Parkinson disease and the risk of epileptic seizures. Ann. Neurol. 2018, 83, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Portocarrero, L.K.L.; Quental, K.N.; Samorano, L.P.; de Oliveira, Z.N.P.; Rivitti-Machado, M.C.d.M. Tuberous sclerosis complex: Review based on new diagnostic criteria. An. Bras. Dermatol. 2018, 93, 323–331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- French, J.A.; Lawson, J.A.; Yapici, Z.; Ikeda, H.; Polster, T.; Nabbout, R.; Curatolo, P.; de Vries, P.J.; Dlugos, D.J.; Berkowitz, N.; et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): A phase 3, randomised, double-blind, placebo-controlled study. Lancet 2016, 388, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Sander, J.W. The global burden of epilepsy report: Implications for low- and middle-income countries. Epilepsy Behav. 2020, 105, 106949. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, P.; Soryal, I.; Dhahri, P.; Wimalachandra, W.; Leat, A.; Hughes, D.; Toghill, N.; Hodson, J.; Sawlani, V.; Hayton, T.; et al. Clinical outcomes of VNS therapy with AspireSR® (including cardiac-based seizure detection) at a large complex epilepsy and surgery centre. Seizure 2018, 58, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Klein, P.; Kaminski, R.M.; Koepp, M.; Löscher, W. New epilepsy therapies in development. Nat. Rev. Drug Discov. 2024, 23, 682–708. [Google Scholar] [CrossRef] [PubMed]
- Knupp, K.G.; Scheffer, I.E.; Ceulemans, B.; Sullivan, J.E.; Nickels, K.C.; Lagae, L.; Guerrini, R.; Zuberi, S.M.; Nabbout, R.; Riney, K.; et al. Efficacy and Safety of Fenfluramine for the Treatment of Seizures Associated with Lennox-Gastaut Syndrome: A Randomized Clinical Trial. JAMA Neurol. 2022, 79, 554–564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arzimanoglou, A.; Brandi, U.; Cross, J.H.; Gil-Nagel, A.; Lagae, L.; Landmark, C.J.; Specchio, N.; Nabbout, R.; Thiele, E.A.; Gubbay, O. The Cannabinoids International Experts Panel; Collaborators. Epilepsy and cannabidiol: A guide to treatment. Epileptic Disord. 2020, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bourdillon, P.; Isnard, J.; Catenoix, H.; Montavont, A.; Rheims, S.; Ryvlin, P.; Ostrowsky-Coste, K.; Mauguiere, F.; Guénot, M. Stereo-electro-encephalography-Guided Radiofrequency Thermocoagulation: From In Vitro and In Vivo Data to Technical Guidelines. World Neurosurg. 2016, 94, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Salanova, V.; Sperling, M.R.; Gross, R.E.; Irwin, C.P.; Vollhaber, J.A.; Giftakis, J.E.; Fisher, R.S.; SANTÉ Study Group. The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 2021, 62, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Schulze-Bonhage, A.; Hirsch, M.; Knake, S.; Kaufmann, E.; Kegele, J.; Rademacher, M.; Vonck, K.; Coenen, V.A.; Glaser, M.; Jenkner, C.; et al. Focal Cortex Stimulation with a Novel Implantable Device and Antiseizure Outcomes in 2 Prospective Multicenter Single-Arm Trials. JAMA Neurol. 2023, 80, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.R.; Laxer, K.D.; Weber, P.B.; Murro, A.M.; Park, Y.D.; Barkley, G.L.; Smith, B.J.; Gwinn, R.P.; Doherty, M.J.; Noe, K.H.; et al. RNS System LTT Study. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology 2020, 95, e1244–e1256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stefan, H.; Kreiselmeyer, G.; Kerling, F.; Kurzbuch, K.; Rauch, C.; Heers, M.; Kasper, B.S.; Hammen, T.; Rzonsa, M.; Pauli, E.; et al. Transcutaneous vagus nerve stimulation (t-VNS) in pharmacoresistant epilepsies: A proof of concept trial. Epilepsia 2012, 53, e115–e118. [Google Scholar] [CrossRef] [PubMed]
- Hilz, M.J. Transcutaneous vagus nerve stimulation—A brief introduction and overview. Auton. Neurosci. 2022, 243, 103038. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Shi, W.; Fan, J.; Wang, X.; Song, Y.; Lian, Y.; Shan, W.; Wang, Q. Transcutaneous Auricular Vagus Nerve Stimulation (ta-VNS) for Treatment of Drug-Resistant Epilepsy: A Randomized, Double-Blind Clinical Trial. Neurotherapeutics 2023, 20, 870–880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lampros, M.; Vlachos, N.; Zigouris, A.; Voulgaris, S.; Alexiou, G.A. Transcutaneous Vagus Nerve Stimulation (t-VNS) and epilepsy: A systematic review of the literature. Seizure 2021, 91, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Dolgacheva, L.P.; Zinchenko, V.P.; Goncharov, N.V. Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int. J. Mol. Sci. 2022, 23, 13043. [Google Scholar] [CrossRef]
- Basselin, M.; Chang, L.; Chen, M.; Bell, J.M.; Rapoport, S.I. Chronic carbamazepine administration attenuates dopamine D2-like receptor-initiated signaling via arachidonic acid in rat brain. Neurochem. Res. 2008, 33, 1373–1383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramadan, E.; Basselin, M.; Taha, A.Y.; Cheon, Y.; Chang, L.; Chen, M.; Rapoport, S.I. Chronic valproate treatment blocks D2-like receptor-mediated brain signaling via arachidonic acid in rats. Neuropharmacology 2011, 61, 1256–1264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhu, H.; Wang, Z.; Jin, J.; Pei, X.; Zhao, Y.; Wu, H.; Lin, W.; Tao, J.; Ji, Y. Parkinson’s disease-like forelimb akinesia induced by BmK I, a sodium channel modulator. Behav. Brain Res. 2016, 308, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloem, B.R. The Emerging Evidence of the Parkinson Pandemic. J. Park. Dis. 2018, 8, S3–S8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Belete, D.; Jacobs, B.M.; Simonet, C.; Bestwick, J.P.; Waters, S.; Marshall, C.R.; Dobson, R.; Noyce, A.J. Association Between Antiepileptic Drugs and Incident Parkinson Disease. JAMA Neurol. 2023, 80, 183–187, Erratum in JAMA Neurol. 2023, 80, 216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bergman, H.; Deuschl, G. Pathophysiology of Parkinson’s disease: From clinical neurology to basic neuroscience and back. Mov. Disord. 2002, 17 (Suppl. S3), S28–S40. [Google Scholar] [CrossRef] [PubMed]
- Schwab, B.C.; Heida, T.; Zhao, Y.; Marani, E.; van Gils, S.A.; van Wezel, R.J. Synchrony in Parkinson’s disease: Importance of intrinsic properties of the external globus pallidus. Front. Syst. Neurosci. 2013, 7, 60. [Google Scholar] [CrossRef]
- Rogawski, M.A.; Loscher, W. The neurobiology of antiepileptic drugs. Nat. Rev. Neurosci. 2004, 5, 553–564. [Google Scholar] [CrossRef]
- Mullin, S.; Smith, L.; Lee, K.; D’Souza, G.; Woodgate, P.; Elflein, J.; Hällqvist, J.; Toffoli, M.; Streeter, A.; Hosking, J.; et al. Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A Nonrandomized, Noncontrolled Trial. JAMA Neurol. 2020, 77, 427–434. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, A.; Patel, S.; Mehta, M.; Patel, Y.; Langaliya, D.; Bhalodiya, S.; Bambharoliya, T. Recent Update on the Development of Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors: A Promising Target for the Treatment of Parkinson’s Disease. Med. Chem. 2022, 18, 757–771. [Google Scholar] [CrossRef] [PubMed]
- McFarthing, K.; Buff, S.; Rafaloff, G.; Pitzer, K.; Fiske, B.; Navangul, A.; Beissert, K.; Pilcicka, A.; Fuest, R.; Wyse, R.K.; et al. Parkinson’s Disease Drug Therapies in the Clinical Trial Pipeline: 2024 Update. J. Park. Dis. 2024, 14, 899–912. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Fátima Dos Santos Sampaio, M.; de Paiva, Y.B.; Sampaio, T.B.; Pereira, M.G.; Coimbra, N.C. Therapeutic applicability of cannabidiol and other phytocannabinoids in epilepsy, multiple sclerosis and Parkinson’s disease and in comorbidity with psychiatric disorders. Basic Clin. Pharmacol. Toxicol. 2024, 134, 574–601. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-C.; Liao, Y.-S.; Yeh, W.-H.; Liang, S.-F.; Shaw, F.-Z. Directions of Deep Brain Stimulation for Epilepsy and Parkinson’s Disease. Front. Neurosci. 2021, 15, 680938. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krauss, J.K.; Lipsman, N.; Aziz, T.; Boutet, A.; Brown, P.; Chang, J.W.; Davidson, B.; Grill, W.M.; Hariz, M.I.; Horn, A.; et al. TTechnology of deep brain stimulation: Current status and future directions. Nat. Rev. Neurol. 2021, 17, 75–87. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bergantin, L.B. The Interplay Among Epilepsy, Parkinson’s Disease and Inflammation: Revisiting the Link through Ca2+/cAMP Signalling. Curr. Neurovasc. Res. 2021, 18, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A.; Granata, T. Brain inflammation in epilepsy: Experimental and clinical evidence. Epilepsia 2005, 46, 1724–1743. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, A.; Baram, T.Z. New roles for interleukin-1 beta in the mechanisms of epilepsy. Epilepsy Curr. 2007, 7, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Galic, M.A.; Pittman, Q.J. Contributions of peripheral in flammation to seizure susceptibility: Cytokines and brain excitability. Epilepsy Res. 2010, 89, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Perucca, P.; Bahlo, M.; Berkovic, S.F. The Genetics of Epilepsy. Annu. Rev. Genom. Hum. Genet. 2020, 21, 205–230. [Google Scholar] [CrossRef]
- Simuni, T.; Chahine, L.M.; Poston, K.; Brumm, M.; Buracchio, T.; Campbell, M.; Chowdhury, S.; Coffey, C.; Concha-Marambio, L.; Dam, T.; et al. A biological definition of neuronal α-synuclein disease: Towards an integrated staging system for research. Lancet Neurol. 2024, 23, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Kapsali, I.; Brinia, M.E.; Constantinides, V.C. Cerebrospinal Fluid Total, Phosphorylated and Oligomeric A-Synuclein in Parkinson’s Disease: A Systematic Review, Meta-Analysis and Meta-Regression Study. Biomedicines 2024, 12, 2266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ali, N.H.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Alnaaim, S.A.; Hetta, H.F.; Saad, H.M.; Batiha, G.E.-S. A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway. Mol. Neurobiol. 2024, 61, 10198–10215. [Google Scholar] [CrossRef] [PubMed]
- Rong, H.; Jin, L.; Wei, W.; Wang, X.; Xi, Z. Alpha-synuclein is a potential biomarker in the serum and CSF of patients with intractable epilepsy. Seizure 2015, 27, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008, 79, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Vercueil, L. Myoclonus and movement disorders. Neurophysiol. Clin. 2006, 36, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Wenzelburger, R.; Raethjen, J. Tremor. Curr. Opin. Neurol. 2000, 13, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Pajares, M.; Rojo, A.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells 2020, 9, 1687. [Google Scholar] [CrossRef]
- Tufekci, K.U.; Meuwissen, R.; Genc, S.; Genc, K. Inflammation in Parkinson’s disease. Adv. Protein Chem. Struct. Biol. 2012, 88, 69–132. [Google Scholar]
- Wise, A.; Lemus, H.N.; Fields, M.; Swan, M.; Bressman, S. Refractory Seizures Secondary to Vitamin B6 Deficiency in Parkinson Disease: The Role of Carbidopa-Levodopa. Case Rep. Neurol. 2022, 14, 291–295. [Google Scholar] [CrossRef]
- Vriend, J.; Alexiuk, N.A.M.; Green-Johnson, J.; Ryan, E. Determination of amino acids and monoamine neurotransmitters in caudate nucleus of seizure-resistant and seizure-prone BALB/c mice. J. Neurochem. 1993, 60, 1300–1307. [Google Scholar] [CrossRef]
- Wyrobnik, M.; van der Meer, E.; Klostermann, F. Relation between event segmentation and memory dysfunction in Parkinson’s disease. Brain Cogn. 2022, 163, 105912. [Google Scholar] [CrossRef]
- Helmstaedter, C.; Witt, J.A. Epilepsy and cognition—A bidirectional relationship? Seizure 2017, 49, 83–89. [Google Scholar] [CrossRef]
- Dirnberger, G.; Jahanshahi, M. Executive dysfunction in Parkinson’s disease: A review. J. Neuropsychol. 2013, 7, 193–224. [Google Scholar] [CrossRef] [PubMed]
- Hamed, S.A. The aspects and mechanisms of cognitive alterations in epilepsy: The role of antiepileptic medications. CNS Neurosci. Ther. 2009, 15, 134–156. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Pan, L.; Du, X.; Hou, Y.; Li, X.; Song, Y. Functional brain network mechanism of executive control dysfunction in temporal lobe epilepsy. BMC Neurol. 2020, 20, 137. [Google Scholar] [CrossRef]
- Yang, J.; Pourzinal, D.; McMahon, K.L.; Byrne, G.J.; Copland, D.A.; O’Sullivan, J.D.; Dissanayaka, N.N. Neural correlates of attentional deficits in Parkinson’s disease patients with mild cognitive impairment. Park. Relat. Disord. 2021, 85, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Hermann, B.P.; Jones, J.E.; Sheth, R.; Koehn, M.; Becker, T.; Fine, J.; Allen, C.A.; Seidenberg, M. Growing up with epilepsy: A two-year investigation of cognitive development in children with new onset epilepsy. Epilepsia 2008, 49, 1847–1858. [Google Scholar] [CrossRef]
- Memon, A.A.; Bagley, M.E.; Creed, R.B.; Amara, A.W.; Goldberg, M.S.; McMahon, L.L. Basal Synaptic Transmission and Long-Term Plasticity at CA3-CA1 Synapses Are Unaffected in Young Adult PINK1-Deficient Rats. Front. Neurosci. 2021, 15, 655901. [Google Scholar] [CrossRef]
- Kanner, A.M. Depression and epilepsy: A bidirectional relation? Epilepsia 2011, 52 (Suppl. S1), 21–27. [Google Scholar] [CrossRef]
- Ffytche, D.H.; Creese, B.; Politis, M.; Chaudhuri, K.R.; Weintraub, D.; Ballard, C.; Aarsland, D. The psychosis spectrum in Parkinson disease. Nat. Rev. Neurol. 2017, 13, 81–95. [Google Scholar] [CrossRef]
- Trimble, M.; Kanner, A.; Schmitz, B. Postictal psychosis. Epilepsy Behav. 2010, 19, 159–161. [Google Scholar] [CrossRef]
- Gros, P.; Videnovic, A. Overview of Sleep and Circadian Rhythm Disorders in Parkinson Disease. Clin. Geriatr. Med. 2020, 36, 119–130. [Google Scholar] [CrossRef]
- Moore, J.L.; Carvalho, D.Z.; St Louis, E.K.; Bazil, C. Sleep and Epilepsy: A Focused Review of Pathophysiology, Clinical Syndromes, Co-morbidities, and Therapy. Neurotherapeutics 2021, 18, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, G.; Liu, J. Autonomic dysfunction in Parkinson’s disease: Implications for pathophysiology, diagnosis, and treatment. Neurobiol. Dis. 2020, 134, 104700. [Google Scholar] [CrossRef] [PubMed]
- Sivathamboo, S.; Perucca, P. Interictal autonomic dysfunction. Curr. Opin. Neurol. 2021, 34, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Safarpour, D.; Sharzehi, K.; Pfeiffer, R.F. Gastrointestinal Dysfunction in Parkinson’s Disease. Drugs 2022, 82, 169–197. [Google Scholar] [CrossRef]
- Pfeiffer, R.F. Gastroenterology and Neurology. Contin. Lifelong Learn. Neurol. 2017, 23, 744–761. [Google Scholar] [CrossRef]
- Turski, W.A.; Cavalheiro, E.A.; Ikonomidou, C.; Bortolotto, Z.A.; Klockgether, T.; Turski, L. Dopamine control of seizure propagation: Intranigral dopamine D1 agonist SKF-38393 enhances susceptibility to seizures. Synapse 1990, 5, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Starr, M.S. The role of dopamine in epilepsy. Synapse 1996, 22, 159–194. [Google Scholar] [CrossRef] [PubMed]
- Brodovskaya, A.; Kapur, J. Anticonvulsant dopamine type 2 receptor agonist activates inhibitory parvalbumin interneurons. Epilepsia 2021, 62, e147–e152. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gubler, F.S.; Turan, E.I.; Ramlagan, S.; Ackermans, L.; Kubben, P.L.; Kuijf, M.L.; Temel, Y. Brain vascularization in deep brain stimulation surgeries: Epilepsy, Parkinson’s disease, and obsessive-compulsive disorder. J. Neurosurg. Sci. 2023, 67, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Dyńka, D.; Kowalcze, K.; Paziewska, A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients 2022, 14, 5003. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cartagena, Y.; Cardona-Gallón, D.C.; Isaza, S.P.; Ladino, L.D. El ejercicio como estrategia terapéutica en la epilepsia: Revisión bibliográfica [Exercise as a therapeutic strategy in epilepsy: A literature review]. Rev. Neurol. 2020, 71, 31–37. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- Gaßner, H.; Trutt, E.; Seifferth, S.; Friedrich, J.; Zucker, D.; Salhani, Z.; Adler, W.; Winkler, J.; Jost, W.H. Treadmill training and physiotherapy similarly improve dual task gait performance: A randomized-controlled trial in Parkinson’s disease. J. Neural Transm. 2022, 129, 1189–1200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hwang, Y.S.; Kang, M.G.; Yeom, S.W.; Jeong, C.Y.; Shin, B.-S.; Koh, J.; Kim, J.S.; Kang, H.G. Increasing incidence of Parkinson’s disease in patients with epilepsy: A Nationwide cohort study. J Neurol Sci. 2024, 458, 122891. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, J.A.; Weinrauch, L.A. Calcium Ion Channels: Roles in Infection and Sepsis Mechanisms of Calcium Channel Blocker Benefits in Immunocompromised Patients at Risk for Infection. Int. J. Mol. Sci. 2018, 19, 2465. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Deransart, C.; Depaulis, A. The control of seizures by the basal ganglia? A review of experimental data. Epileptic Disord. 2002, 4 (Suppl. S3), S61–S72. [Google Scholar] [CrossRef] [PubMed]
- Yakovlev, P. Epilepsy and parkinsonism. N. Eng. J. Med. 1928, 198, 629–638. [Google Scholar] [CrossRef]
- Obeso, J.A.; Stamelou, M.; Goetz, C.G.; Poewe, W.; Lang, A.E.; Weintraub, D.; Burn, D.; Halliday, G.M.; Bezard, E.; Przedborski, S.; et al. Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy. Disord. 2017, 32, 1264–1310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bodenmann, P.; Ghika, J.; Van Melle, G.; Bogousslavsky, J. Comorbidités neurologiques du parkinsonisme [Neurological comorbidity in parkinsonism]. Rev. Neurol. 2001, 157, 45–54. (In French) [Google Scholar] [PubMed]
- Feddersen, B.; Rémi, J.; Einhellig, M.; Stoyke, C.; Krauss, P.; Noachtar, S. Parkinson’s disease: Less epileptic seizures, more status epilepticus. Epilepsy Res. 2014, 108, 349–354. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilz, C.; Wang-Tilz, Y. Narrative Review on Common Traits of Parkinson’s Disease and Epilepsy. J. Clin. Med. 2025, 14, 2716. https://doi.org/10.3390/jcm14082716
Tilz C, Wang-Tilz Y. Narrative Review on Common Traits of Parkinson’s Disease and Epilepsy. Journal of Clinical Medicine. 2025; 14(8):2716. https://doi.org/10.3390/jcm14082716
Chicago/Turabian StyleTilz, Christian, and Ying Wang-Tilz. 2025. "Narrative Review on Common Traits of Parkinson’s Disease and Epilepsy" Journal of Clinical Medicine 14, no. 8: 2716. https://doi.org/10.3390/jcm14082716
APA StyleTilz, C., & Wang-Tilz, Y. (2025). Narrative Review on Common Traits of Parkinson’s Disease and Epilepsy. Journal of Clinical Medicine, 14(8), 2716. https://doi.org/10.3390/jcm14082716