Inflammatory Markers and Saphenous Vein Graft Stenosis: Insights into the Use of Glucose-to-Lymphocyte Ratio as a Prognostic Marker
Abstract
:1. Introduction
2. Material and Methods
2.1. Patient Selection
2.2. Exclusion Criteria
2.3. Ethical Consent
2.4. Definitions
Coronary Angiography and Percutaneous Coronary Intervention
2.5. Laboratory Analysis
Transthoracic Echocardiography
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abu-Omar, Y.; Taggart, D.P. Coronary Artery Bypass Surgery. Medicine 2014, 42, 527–531. [Google Scholar] [CrossRef]
- Maestri, F.; Formica, F.; Gallingani, A.; Gripshi, F.; Nicolini, F. Radial Artery Versus Saphenous Vein as Third Conduit in Coronary Artery Bypass Graft Surgery for Multivessel Coronary Artery Disease: A Ten-Year Literature Review. Acta Biomed. 2022, 93, e2022049. [Google Scholar] [CrossRef]
- Tranbaugh, R.F.; Schwann, T.A.; Swistel, D.G.; Dimitrova, K.R.; Al-Shaar, L.; Hoffman, D.M.; Geller, C.M.; Engoren, M.; Balaram, S.K.; Puskas, J.D.; et al. Coronary Artery Bypass Graft Surgery Using the Radial Artery, Right Internal Thoracic Artery, or Saphenous Vein as the Second Conduit. Ann. Thorac. Surg. 2017, 104, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Taggart, D.P. Current Status of Arterial Grafts for Coronary Artery Bypass Grafting. Ann. Cardiothorac. Surg. 2013, 2, 427–430. [Google Scholar] [CrossRef]
- Goldman, S.; Zadina, K.; Moritz, T.; Ovitt, T.; Sethi, G.; Copeland, J.G.; Thottapurathu, L.; Krasnicka, B.; Ellis, N.; Anderson, R.J.; et al. Long-Term Patency of Saphenous Vein and Left Internal Mammary Artery Grafts after Coronary Artery Bypass Surgery: Results from a Department of Veterans Affairs Cooperative Study. J. Am. Coll. Cardiol. 2004, 44, 2149–2156. [Google Scholar] [CrossRef]
- Zacharias, A.; Habib, R.H.; Schwann, T.A.; Riordan, C.J.; Durham, S.J.; Shah, A. Improved Survival with Radial Artery versus Vein Conduits in Coronary Bypass Surgery with Left Internal Thoracic Artery to Left Anterior Descending Artery Grafting. Circulation 2004, 109, 1489–1496. [Google Scholar] [CrossRef]
- Tabata, M.; Grab, J.D.; Khalpey, Z.; Edwards, F.H.; O’Brien, S.M.; Cohn, L.H.; Bolman, R.M. Prevalence and Variability of Internal Mammary Artery Graft Use in Contemporary Multivessel Coronary Artery Bypass Graft Surgery: Analysis of the Society of Thoracic Surgeons National Cardiac Database. Circulation 2009, 120, 935–940. [Google Scholar] [CrossRef]
- Weintraub, W.S.; Daniels, S.R.; Burke, L.E.; Franklin, B.A.; Goff, D.C.; Hayman, L.L.; Lloyd-Jones, D.; Pandey, D.K.; Sanchez, E.J.; Schram, A.P.; et al. Value of Primordial and Primary Prevention for Cardiovascular Disease: A Policy Statement from the American Heart Association. Circulation 2011, 124, 967–990. [Google Scholar] [CrossRef]
- Adelborg, K.; Horváth-Puhó, E.; Schmidt, M.; Munch, T.; Pedersen, L.; Nielsen, P.H.; Bøtker, H.E.; Sørensen, H.T. Thirty-Year Mortality After Coronary Artery Bypass Graft Surgery: A Danish Nationwide Population-Based Cohort Study. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e002708. [Google Scholar] [CrossRef]
- Fosbøl, E.L.; Zhao, Y.; Shahian, D.M.; Grover, F.L.; Edwards, F.H.; Peterson, E.D. Repeat Coronary Revascularization after Coronary Artery Bypass Surgery in Older Adults: The Society of Thoracic Surgeons’ National Experience, 1991–2007. Circulation 2013, 127, 1656–1663. [Google Scholar] [CrossRef]
- Motwani, J.G.; Topol, E.J. Aortocoronary Saphenous Vein Graft Disease: Pathogenesis, Predisposition, and Prevention. Circulation 1998, 97, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Stary, H.C.; Blankenhorn, D.H.; Chandler, A.B.; Glagov, S.; Insull, W.; Richardson, M.; Rosenfeld, M.E.; Schaffer, S.A.; Schwartz, C.J.; Wagner, W.D. A Definition of the Intima of Human Arteries and of Its Atherosclerosis-Prone Regions. A Report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1992, 85, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Kashav, R.; Kohli, J.K.; Magoon, R.; ItiShri; Walian, A.; Grover, V. Systemic Immune-Inflammation Index Predicts Poor Outcome After Elective Off-Pump CABG: A Retrospective, Single-Center Study. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2397–2404. [Google Scholar] [CrossRef]
- Gurbuz, O.; Kumtepe, G.; Ozkan, H.; Karal, I.H.; Velioglu, Y.; Ercan, A.; Yüksel, A.; Ener, S. Predictive Value of Neutrophil-Lymphocyte Ratio for Long-Term Cardiovascular Event Following Coronary Artery Bypass Grafting. Braz. J. Cardiovasc. Surg. 2020, 35, 274–284. [Google Scholar] [CrossRef]
- Oksuz, F.; Elcik, D.; Yarlioglues, M.; Duran, M.; Ozturk, S.; Celik, I.E.; Kurtul, A.; Kilic, A.; Murat, S.N. The Relationship between Lymphocyte-to-Monocyte Ratio and Saphenous Vein Graft Patency in Patients with Coronary Artery Bypass Graft. Biomark Med. 2017, 11, 867–876. [Google Scholar] [CrossRef]
- Kolh, P.; Windecker, S.; Alfonso, F.; Collet, J.-P.; Cremer, J.; Falk, V.; Filippatos, G.; Hamm, C.; Head, S.J.; Jüni, P.; et al. 2014 ESC/EACTS Guidelines on Myocardial Revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the Special Contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. J. Cardio-Thorac. Surg. 2014, 46, 517–592. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Chronic Coronary Syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Cetinkaya, Z.; Kelesoglu, S.; Tuncay, A.; Yilmaz, Y.; Karaca, Y.; Karasu, M.; Secen, O.; Cinar, A.; Harman, M.; Sahin, S.; et al. The Role of Pan-Immune-Inflammation Value in Determining the Severity of Coronary Artery Disease in NSTEMI Patients. J. Clin. Med. 2024, 13, 1295. [Google Scholar] [CrossRef]
- Yazdani, S.K.; Farb, A.; Nakano, M.; Vorpahl, M.; Ladich, E.; Finn, A.V.; Kolodgie, F.D.; Virmani, R. Pathology of Drug-Eluting versus Bare-Metal Stents in Saphenous Vein Bypass Graft Lesions. JACC Cardiovasc. Interv. 2012, 5, 666–674. [Google Scholar] [CrossRef]
- Back, L.; Ladwiniec, A. Saphenous Vein Graft Failure: Current Challenges and a Review of the Contemporary Percutaneous Options for Management. J. Clin. Med. 2023, 12, 7118. [Google Scholar] [CrossRef]
- Ruparelia, N.; Choudhury, R. Inflammation and Atherosclerosis: What Is on the Horizon? Heart 2020, 106, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Oguz, M.; Torun, A. Prognostic Value of Systemic Immune-Inflammation Index in Predicting Premature Saphenous Vein Graft Disease in Patients With Coronary Artery Bypass Grafting. Cureus 2023, 15, e42833. [Google Scholar] [CrossRef] [PubMed]
- Serhatlioglu, F.; Cetinkaya, Z.; Yilmaz, Y. The Predictive Value of Pan-Immune-Inflammation Value for Saphenous Vein Graft Disease in Post-Coronary Artery Bypass Grafting Patients. J. Cardiovasc. Dev. Dis. 2024, 11, 337. [Google Scholar] [CrossRef] [PubMed]
- Yayla, C.; Gayretli Yayla, K. C-Reactive Protein to Albumin Ratio in Patients With Saphenous Vein Graft Disease. Angiology 2021, 72, 770–775. [Google Scholar] [CrossRef]
- Ni, J.; Li, Z.; Song, W.; Zhang, H.; Wang, Y.; Zhang, Y.; Zhang, H.; Yang, G.; Xie, J.; Wang, K.; et al. Prognostic Value of Glucose to Lymphocyte Ratio for Patients with Renal Cell Carcinoma Undergoing Laparoscopic Nephrectomy: A Multi-Institutional, Propensity Score Matching Cohort Study. Front. Surg. 2022, 9. [Google Scholar] [CrossRef]
- Zhong, A.; Cheng, C.; Kai, J.; Lu, R.; Guo, L. Clinical Significance of Glucose to Lymphocyte Ratio (GLR) as a Prognostic Marker for Patients With Pancreatic Cancer. Front. Oncol. 2020, 10, 520330. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Wang, D.; Kuang, T.; Wu, W.; Xu, X.; Jin, D.; Lou, W. Prognostic Value of Preoperative Glucose to Lymphocyte Ratio in Patients with Resected Pancreatic Cancer. Int. J. Clin. Oncol. 2021, 26, 135–144. [Google Scholar] [CrossRef]
- Chen, J.; Tang, R.; Zhan, X.; Deng, J.; Zhang, Y.; Long, H.; Peng, F.; Tian, N.; Wen, Y.; Wang, X.; et al. Clinical Significance of Serum Glucose to Lymphocyte Ratio as a Prognostic Marker in Peritoneal Dialysis Patients. Ren. Fail. 2023, 45, 2224893. [Google Scholar] [CrossRef]
- Liu, J.; Hu, X. Association between Glucose-to-Lymphocyte Ratio and in-Hospital Mortality in Acute Myocardial Infarction Patients. PLoS ONE 2023, 18, e0295602. [Google Scholar] [CrossRef]
- Serhatlioglu, F.; Cetinkaya, Z.; Yilmaz, Y. The Role of Glucose-Lymphocyte Ratio in Evaluating the Severity of Coronary Artery Disease. J. Clin. Med. 2024, 13, 6711. [Google Scholar] [CrossRef]
- Kaya, A.; Kurt, M.; Tanboga, I.H.; Işık, T.; Günaydın, Z.Y.; Kaya, Y.; Topçu, S.; Sevimli, S. Relation of Neutrophil to Lymphocyte Ratio with the Presence and Severity of Stable Coronary Artery Disease. Clin. Appl. Thromb. Hemost. 2014, 20, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, S.; Agus, H.Z.; Avci, Y.; Serbest, N.G.; Guner, A.; Erturk, M. The Neutrophil to Lymphocyte Ratio (NLR) Is Associated With Residual Syntax Score in Patients With ST-Segment Elevation Myocardial Infarction. Angiology 2021, 72, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Karabağ, Y.; Çağdaş, M.; Rencuzogullari, I.; Karakoyun, S.; Artaç, İ.; İliş, D.; Atalay, E.; Yesin, M.; Gürsoy, M.O.; Halil Tanboğa, I. Relationship between C-Reactive Protein/Albumin Ratio and Coronary Artery Disease Severity in Patients with Stable Angina Pectoris. J. Clin. Lab. Anal. 2018, 32, e22457. [Google Scholar] [CrossRef]
- Çağdaş, M.; Karakoyun, S.; Yesin, M.; Rencüzoğulları, İ.; Karabağ, Y.; Uluganyan, M.; Ozan Gürsoy, M.; Artaç, İ.; İliş, D.; Atalay, E.; et al. The Association between Monocyte HDL-C Ratio and SYNTAX Score and SYNTAX Score II in STEMI Patients Treated with Primary PCI. Acta Cardiol. Sin. 2018, 34, 23–30. [Google Scholar] [CrossRef]
- Navarro, J.; Kang, I.; Hwang, H.K.; Yoon, D.S.; Lee, W.J.; Kang, C.M. Glucose to Lymphocyte Ratio as a Prognostic Marker in Patients With Resected pT2 Gallbladder Cancer. J. Surg. Res. 2019, 240, 17–29. [Google Scholar] [CrossRef]
- Azab, B.; Zaher, M.; Weiserbs, K.F.; Torbey, E.; Lacossiere, K.; Gaddam, S.; Gobunsuy, R.; Jadonath, S.; Baldari, D.; McCord, D.; et al. Usefulness of Neutrophil to Lymphocyte Ratio in Predicting Short- and Long-Term Mortality after Non-ST-Elevation Myocardial Infarction. Am. J. Cardiol. 2010, 106, 470–476. [Google Scholar] [CrossRef]
- Abdolmaleki, F.; Gheibi Hayat, S.M.; Bianconi, V.; Johnston, T.P.; Sahebkar, A. Atherosclerosis and Immunity: A Perspective. Trends Cardiovasc. Med. 2019, 29, 363–371. [Google Scholar] [CrossRef]
- Kelesoglu, S.; Yilmaz, Y.; Elcik, D.; Bireciklioglu, F.; Ozdemir, F.; Balcı, F.; Tuncay, A.; Kalay, N. Increased Serum Systemic Immune-Inflammation Index Is Independently Associated With Severity of Carotid Artery Stenosis. Angiology 2023, 74, 790–797. [Google Scholar] [CrossRef]
- Núñez, J.; Núñez, E.; Bodí, V.; Sanchis, J.; Miñana, G.; Mainar, L.; Santas, E.; Merlos, P.; Rumiz, E.; Darmofal, H.; et al. Usefulness of the Neutrophil to Lymphocyte Ratio in Predicting Long-Term Mortality in ST Segment Elevation Myocardial Infarction. Am. J. Cardiol. 2008, 101, 747–752. [Google Scholar] [CrossRef]
- Reljic, D.; Herrmann, H.J.; Neurath, M.F.; Zopf, Y. Iron Beats Electricity: Resistance Training but Not Whole-Body Electromyostimulation Improves Cardiometabolic Health in Obese Metabolic Syndrome Patients during Caloric Restriction—A Randomized-Controlled Study. Nutrients 2021, 13, 1640. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation, Metaflammation and Immunometabolic Disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-C.; Yang, W.-C.V. Hyperglycemia, Tumorigenesis, and Chronic Inflammation. Crit. Rev. Oncol. Hematol. 2016, 108, 146–153. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and Metabolic Disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Han, Z.; Couvillon, A.D.; Kaufman, R.J.; Exton, J.H. Autocrine Tumor Necrosis Factor Alpha Links Endoplasmic Reticulum Stress to the Membrane Death Receptor Pathway through IRE1alpha-Mediated NF-kappaB Activation and down-Regulation of TRAF2 Expression. Mol. Cell Biol. 2006, 26, 3071–3084. [Google Scholar] [CrossRef] [PubMed]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 Diabetes and Its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef]
- de Heredia, F.P.; Gómez-Martínez, S.; Marcos, A. Obesity, Inflammation and the Immune System. Proc. Nutr. Soc. 2012, 71, 332–338. [Google Scholar] [CrossRef]
- D’Onofrio, N.; Sardu, C.; Paolisso, P.; Minicucci, F.; Gragnano, F.; Ferraraccio, F.; Panarese, I.; Scisciola, L.; Mauro, C.; Rizzo, M.R.; et al. MicroRNA-33 and SIRT1 Influence the Coronary Thrombus Burden in Hyperglycemic STEMI Patients. J. Cell. Physiol. 2020, 235, 1438–1452. [Google Scholar] [CrossRef]
- Kitano, D.; Takayama, T.; Nagashima, K.; Akabane, M.; Okubo, K.; Hiro, T.; Hirayama, A. A Comparative Study of Time-Specific Oxidative Stress after Acute Myocardial Infarction in Patients with and without Diabetes Mellitus. BMC Cardiovasc. Disord. 2016, 16, 102. [Google Scholar] [CrossRef]
Saphenous Vein Graft Stenosis | |||
---|---|---|---|
Non-Existent | Exist | p Value | |
Variables | (n = 437) | (n = 341) | - |
Age (years) a | 57 (41–67) | 57 (48–64) | 0.155 |
Men gender (n, %) | 234 (53.4%) | 190 (55.7%) | 0.546 |
BMI (kg/m2) | |||
Diabetes mellitus (n, %) | 88 (20.1%) | 102 (29.9%) | 0.002 |
Hypertension (n, %) | 182 (41.6%) | 152 (44.5%) | 0.413 |
Hypercholesterolemia (n, %) | 89 (20.3%) | 80 (23.4%) | 0.299 |
Current smoker (n, %) | 76 (17%) | 68 (19%) | 0.363 |
LVEF (%) b | 48.3 ± 8.7 | 51.4 ± 10.3 | 0.098 |
Postoperative medications | |||
Aspirin (n, %) | 301 (68.9) | 229 (67.2) | 0.642 |
Β-blocker (n, %) | 357 (81.7) | 275 (80.6) | 0.119 |
Angiotensin–aldosterone antagonists (n, %) | 286 (67.8) | 242 (70.9) | 0.253 |
Statin (n, %) | 258 (59) | 224 (65.7) | 0.856 |
Clopidogrel (n, %) | 163 (37.3) | 115 (33.7) | 0.35 |
Nitrat (n, %) | 85 (19.5) | 76 (22.3) | 0.559 |
Saphenous Vein Graft Stenosis | |||
---|---|---|---|
Non-Existent | Existent | p Value | |
Number of Patients | (n = 437) | (n = 341) | |
Glucose (mg/dL) a | 89 (78–106) | 113 (88–160) | <0.001 |
Creatinine (mg/dL) b | 1.1 + 4 | 0.96 + 0.6 | 0.540 |
AST (U/L) b | 24.3 + 16 | 24.6 + 17 | 0.844 |
ALT (U/L) b | 23.6 + 18 | 26.2 + 16 | 0.157 |
Total cholesterol (mg/dL) b | 197.2 + 46.4 | 199.4 + 40 | 0.502 |
High-density lipoprotein cholesterol(mg/dL) b | 48.7 + 12 | 48.5 + 12 | 0.797 |
Low-density lipoprotein cholesterol (mg/dL) b | 117 + 37 | 120 + 35 | 0.221 |
Triglyceride (mg/dL) b | 155.4 + 87 | 159.1 + 87 | 0.565 |
Hemoglobin (mg/dL) b | 14.0 + 2 | 14.3 + 2.2 | 0.452 |
Platelets (103/µL) a | 242 (190–301) | 230 (190–293) | 0.189 |
WBC (103/µL) a | 6.9 (4.8–10) | 7.4 (5.5–10) | 0.112 |
Neutrophil (103/µL) a | 3.9 (2–7.4) | 4.2 (3–6.9) | 0.010 |
Lymphocyte (103/µL) a | 2.5 (2.1–3) | 2 (1.4–2.8) | 0.034 |
NLR a | 1.4 (07–3) | 2.1 (1.2–3.7) | <0.001 |
PLR a | 92 (69–122) | 110 (73–172) | <0.001 |
GLR a | 34.7 (28.2–42.4) | 63.7 (49.4–78.1) | <0.001 |
hs-CRP a | 2.88 (1.1–6.3) | 4 (2.5–7.3) | <0.001 |
Saphenous Vein Graft Stenosis | |||
---|---|---|---|
Non-Existent (n = 437) | Existent (n = 341) | p Value | |
Distal Anastomosis Area | |||
Left anterior descending coronary artery (n, %) | 437 (100) | 341 (100) | |
Left circumflex coronary artery (n, %) | 411 (94.2) | 315 (92.4) | 0.316 |
Right coronary artery (n, %) | 420 (96.1) | 311 (92.3) | 0.752 |
Left internal mammary artery usage (n %) | 435 (99.5) | 338 (99.1) | 0.891 |
Number of saphenous vein grafts (n) | 2.27 | 2.43 | 0.02 |
Average time after bypass (years) | 8.1 + 1.3 | 7.02 + 1.4 | <0.001 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p Value | Odds Ratio | 95% CI | p Value | |
DM | 1.693 | 1.218–2.352 | 0.002 | 1.700 | 1.189–2.431 | 0.004 |
Glucose | 1.012 | 1.009–1.016 | <0.001 | |||
Lymphocyte | 1.169 | 1.009–1.355 | 0.037 | |||
GLR | 1.018 | 1.012–1.024 | <0.001 | 1.031 | 1.023–1.040 | <0.001 |
NLR | 1.119 | 1.053–1.188 | <0.001 | |||
PLR | 1.007 | 1.005–1.010 | <0.001 | |||
CRP | 1.037 | 1.005–1.070 | 0.023 | 1.035 | 1.000–1.072 | 0.048 |
Average time after bypass (years) | 1.460 | 1.303–1.635 | <0.001 | 1.422 | 1.249–1.619 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuncay, A.; Yilmaz, Y.; Baran, O.; Kelesoglu, S. Inflammatory Markers and Saphenous Vein Graft Stenosis: Insights into the Use of Glucose-to-Lymphocyte Ratio as a Prognostic Marker. J. Clin. Med. 2025, 14, 2634. https://doi.org/10.3390/jcm14082634
Tuncay A, Yilmaz Y, Baran O, Kelesoglu S. Inflammatory Markers and Saphenous Vein Graft Stenosis: Insights into the Use of Glucose-to-Lymphocyte Ratio as a Prognostic Marker. Journal of Clinical Medicine. 2025; 14(8):2634. https://doi.org/10.3390/jcm14082634
Chicago/Turabian StyleTuncay, Aydin, Yucel Yilmaz, Oguzhan Baran, and Saban Kelesoglu. 2025. "Inflammatory Markers and Saphenous Vein Graft Stenosis: Insights into the Use of Glucose-to-Lymphocyte Ratio as a Prognostic Marker" Journal of Clinical Medicine 14, no. 8: 2634. https://doi.org/10.3390/jcm14082634
APA StyleTuncay, A., Yilmaz, Y., Baran, O., & Kelesoglu, S. (2025). Inflammatory Markers and Saphenous Vein Graft Stenosis: Insights into the Use of Glucose-to-Lymphocyte Ratio as a Prognostic Marker. Journal of Clinical Medicine, 14(8), 2634. https://doi.org/10.3390/jcm14082634