Comparative Analysis of Intraocular Lens Power Calculation Formulas (Kane, Barrett Universal II, Hill–Radial Basis Function, and Ladas Super Formula): Which One Is More Accurate?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design and Participants
2.3. Power Analysis
2.4. Exclusion Criteria
- -
- History of ocular trauma.
- -
- Previous ocular surgeries.
- -
- AL measurements < 21 mm or >26 mm.
- -
- Corneal or vitreous opacities.
- -
- Dry eye syndrome.
- -
- Retinal pathologies.
- -
- Glaucoma, or nystagmus.
- -
- Participants who did not return for follow-up.
2.5. Surgical Procedure
2.6. ARGOS
2.7. Examined Variables
- -
- Gender;
- -
- Age of the participants;
- -
- AL;
- -
- ACD;
- -
- LT;
- -
- WTW;
- -
- K (flat and steep);
- -
- SE.
2.8. Groups
- -
- Group 1: The Kane formula used in this study was accessed from the latest version of the website.
- -
- Group 2: The Hill–RBF formula used in this study was accessed from the latest version of the website.
- -
- Group 3: The most current version of the BU II formula registered in the Argos device was used on the scheduled date of surgery.
- -
- Group 4: The LSF used in this study was accessed from the latest version of the website [9].
2.9. Ethics
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
IOL | Intraocular Lens |
AL | Axial Length |
ACD | Anterior Chamber Depth |
SS-OCT | Swept-Source Optical Coherence Tomography |
BU II | Barrett Universal II |
HILL-RBF | Hill–Radial Basis Function |
LSF | Ladas Super Formula |
SE | Spherical Equivalent |
EDOF | Extended Depth of Focus |
WTW | White-to-White |
CCT | Central Corneal Thickness |
K | Keratometry |
References
- Stopyra, W.; Langenbucher, A.; Grzybowski, A. Intraocular lens power calculation formulas—A systematic review. Ophthalmol. Ther. 2023, 12, 2881–2902. [Google Scholar] [PubMed]
- Scholtz, S.; Cayless, A.; Langenbucher, A. Calculating the human eye—Basics on biometry. In Cataract Surgery, Pearls and Techniques; Springer: Berlin/Heidelberg, Germany, 2021; pp. 87–114. [Google Scholar]
- Rocha-de-Lossada, C.; Colmenero-Reina, E.; Flikier, D.; Castro-Alonso, F.-J.; Rodriguez-Raton, A.; García-Madrona, J.-L.; Peraza-Nieves, J.; Sánchez-González, J.-M. Intraocular lens power calculation formula accuracy: Comparison of 12 formulas for a trifocal hydrophilic intraocular lens. Eur. J. Ophthalmol. 2021, 31, 2981–2988. [Google Scholar] [PubMed]
- Kane, J.X. Kane Formula BT. In Intraocular Lens Calculations; Aramberri, J., Hoffer, K.J., Olsen, T., Savini, G., Shammas, H.J., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 689–694. [Google Scholar] [CrossRef]
- Barrett, G.D. Barrett Formulas: Strategies to Improve IOL Power Prediction BT. In Intraocular Lens Calculations; Aramberri, J., Hoffer, K.J., Olsen, T., Savini, G., Shammas, H.J., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 577–592. [Google Scholar] [CrossRef]
- Tsessler, M.; Cohen, S.; Wang, L.; Koch, D.D.; Zadok, D.; Abulafia, A. Evaluating the prediction accuracy of the Hill-RBF 3.0 formula using a heteroscedastic statistical method. J. Cataract. Refract. Surg. 2022, 48, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ladas, J.; Devgan, U.; Jun, A.; Siddiqui, A. Ladas Super Formula: Origin and Evolution with AI BT. In Intraocular Lens Calculations; Aramberri, J., Hoffer, K.J., Olsen, T., Savini, G., Shammas, H.J., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 695–703. [Google Scholar] [CrossRef]
- Pereira, A.; Popovic, M.M.; Ahmed, Y.; Lloyd, J.C.; El-Defrawy, S.; Gorfinkel, J.; Schlenker, M.B. A comparative analysis of 12 intraocular lens power formulas. Int. Ophthalmol. 2021, 41, 4137–4150. [Google Scholar] [CrossRef] [PubMed]
- Moshirfar, M.; Sulit, C.A.; Brown, A.H.; Irwin, C.; Ronquillo, Y.C.; Hoopes, P.C. Comparing the accuracy of the Kane, Barrett universal II, hill-radial basis function, Emmetropia Verifying optical, and Ladas super formula Intraocular lens power calculation formulas. Clin. Ophthalmol. 2023, 17, 2643–2652. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, G.; Kemeny-Beke, A.; Modis, L., Jr. Comparison of accuracy of different intraocular lens power calculation methods using artificial intelligence. Eur. J. Ophthalmol. 2022, 32, 235–241. [Google Scholar] [PubMed]
- Stopyra, W.; Voytsekhivskyy, O.; Grzybowski, A. Accuracy of 7 Artificial Intelligence-Based Intraocular Lens Power Calculation Formulas in Extremely Long Caucasian Eyes. Am. J. Ophthalmol. 2025, 271, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Stopyra, W.; Cooke, D.L.; Grzybowski, A. A review of intraocular lens power calculation formulas based on artificial intelligence. J. Clin. Med. 2024, 13, 498. [Google Scholar] [CrossRef] [PubMed]
- Lou, W.; Zhou, W.; Wu, M.; Jin, H. A New Intraocular Lens Power Formula Integrating an Artificial Intelligence-Powered Estimation for Effective Lens Position Based on Chinese Eyes. Transl. Vis. Sci. Technol. 2024, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Melles, R.B.; Holladay, J.T.; Chang, W.J. Accuracy of intraocular lens calculation formulas. Ophthalmology 2018, 125, 169–178. [Google Scholar] [PubMed]
- Kane, J.X.; Connell, B.; Yip, H.; McAlister, J.C.; Beckingsale, P.; Snibson, G.R.; Chan, E. Accuracy of Intraocular Lens Power Formulas Modified for Patients with Keratoconus. Ophthalmology 2020, 127, 1037–1042. [Google Scholar] [PubMed]
- Hill, W.E.; Haehnle, J. Hill-RBF: Improving IOL Power Selection by Artificial Intelligence. In Intraocular Lens Calculations; Springer: Cham, Switzerland, 2024; pp. 637–648. [Google Scholar]
- Mieno, H.; Hieda, O.; Ikeda, T.; Hayashi, S.; Hashida, M.; Urabe, K.; Sotozono, C. Accuracy of the Barrett Universal II formula integrated into a commercially available optical biometer when using a preloaded single-piece intraocular lens. Indian J. Ophthalmol. 2021, 69, 2298–2302. [Google Scholar] [PubMed]
- Ladas, J.G.; Jun, A.S.; Devgan, U. Origin of Multiple Formula Use to Calculate Intraocular Lens Power-Reply. JAMA Ophthalmol. 2016, 134, 848–849. [Google Scholar] [PubMed]
- Carmona-González, D.; Castillo-Gómez, A.; Palomino-Bautista, C.; Romero-Domínguez, M.; Gutiérrez-Moreno, M.Á. Comparison of the accuracy of 11 intraocular lens power calculation formulas. Eur. J. Ophthalmol. 2021, 31, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.C.M. Optics of Intraocular Lenses BT. In Albert and Jakobiec’s Principles and Practice of Ophthalmology; Albert, D., Miller, J., Azar, D., Young, L.H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–47. [Google Scholar] [CrossRef]
- Cummings, A.B. Artificial Intelligence in Cataract Surgery BT. In Innovation in Cataract Surgery; Pardianto, G., Tassignon, M.-J., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 85–101. [Google Scholar] [CrossRef]
- Zhou, Y.; Dai, M.; Sun, L.; Tang, X.; Zhou, L.; Tang, Z.; Jiang, J.; Xia, X. The accuracy of intraocular lens power calculation formulas based on artificial intelligence in highly myopic eyes: A systematic review and network meta-analysis. Front. Public Health 2023, 11, 1279718. [Google Scholar] [CrossRef] [PubMed]
- Ştefănescu-Dima, A.Ş.; Mănescu, M.R.; Bălăşoiu, A.T.; Bălăşoiu, M.; Mocanu, C.L.; Stanca, H.T.; Nicolcescu, M.F.M. Behavior pattern of early-stage ocular surface squamous cell carcinoma in non-HIV patients. Rom. J. Morphol. Embryol. Rev. Roum. Morphol. Embryol. 2019, 60, 455–461. [Google Scholar]
n | Min | Max | Mean ± SD | |
---|---|---|---|---|
Age | 210 | 39 | 91 | 63.44 ± 11.62 |
AL | 21.13 | 25.77 | 23.2818 ± 0.83 | |
K1 | 39.99 | 48.33 | 43.5660 ± 1.45 | |
K2 | 40.50 | 48.89 | 44.2356 ± 1.52 | |
ACD | 2.52 | 4.11 | 3.2176 ± 0.33 | |
LT | 3.45 | 5.53 | 4.5334 ± 0.37 | |
WTW | 10.80 | 12.93 | 11.9417 ± 0.37 |
n | % | |
---|---|---|
ALCON * | 129 | 61.1 |
Monofocal ** | 58 | 44.9 |
EDOF ** | 23 | 17.8 |
Trifocal ** | 48 | 37.3 |
ZEISS * | 44 | 20.8 |
Monofocal ** | 28 | 36.6 |
Multifocal ** | 16 | 63.4 |
Mean ± SD | ||||
---|---|---|---|---|
Kane | 21.71 ± 2.16 | |||
Hill–RBF | 21.65 ± 2.10 | |||
BU—II | 21.68 ± 2.11 | |||
LSF | 21.85 ± 2.12 | |||
Within-Subjects Effect | Mauchly’s W | Approx. Chi-Square | df | Sig. |
Formula | 0.936 | 13.759 | 5 | 0.017 |
Greenhouse–Geisser | df | Mean Square | F | Sig. |
2.88 | 1.81 | 37.14 | 0.000 (4 > 3, 2, 1) |
Kane | Hill–RBF | BU-II | LSF | ||
---|---|---|---|---|---|
Kane | Pearson Correlation | 1 | 0.991 (**) | 0.988 (**) | 0.990 (**) |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | ||
Hill_RBF | Pearson Correlation | 0.991 (**) | 1 | 0.991 (**) | 0.991 (**) |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | ||
BU II | Pearson Correlation | 0.988 (**) | 0.991 (**) | 1 | 0.988 (**) |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | ||
LSF | Pearson Correlation | 0.990 (**) | 0.991 (**) | 0.988 (**) | 1 |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 |
n | Mean ± SD | Std. Error | t | df | p | |
---|---|---|---|---|---|---|
First Control | 210 | 0.13 ± 0.48 | 0.03 | −0.4 | 418 | 0.6 |
Second Control | 210 | 0.14 ± 0.49 | 0.03 |
n | ±1 D | ±0.50 D | |
---|---|---|---|
First Control | 210 | %96.7 | %89.6 |
Second Control | 210 | %96.2 | %89.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasar, I.-I.; Yasar, S.; Al Barri, L.; Darabus, D.-M.; Tîrziu, A.-T.; Munteanu, M.; Stanca, H.T. Comparative Analysis of Intraocular Lens Power Calculation Formulas (Kane, Barrett Universal II, Hill–Radial Basis Function, and Ladas Super Formula): Which One Is More Accurate? J. Clin. Med. 2025, 14, 2443. https://doi.org/10.3390/jcm14072443
Yasar I-I, Yasar S, Al Barri L, Darabus D-M, Tîrziu A-T, Munteanu M, Stanca HT. Comparative Analysis of Intraocular Lens Power Calculation Formulas (Kane, Barrett Universal II, Hill–Radial Basis Function, and Ladas Super Formula): Which One Is More Accurate? Journal of Clinical Medicine. 2025; 14(7):2443. https://doi.org/10.3390/jcm14072443
Chicago/Turabian StyleYasar, Ionela-Iasmina, Servet Yasar, Leila Al Barri, Diana-Maria Darabus, Andreea-Talida Tîrziu, Mihnea Munteanu, and Horia Tudor Stanca. 2025. "Comparative Analysis of Intraocular Lens Power Calculation Formulas (Kane, Barrett Universal II, Hill–Radial Basis Function, and Ladas Super Formula): Which One Is More Accurate?" Journal of Clinical Medicine 14, no. 7: 2443. https://doi.org/10.3390/jcm14072443
APA StyleYasar, I.-I., Yasar, S., Al Barri, L., Darabus, D.-M., Tîrziu, A.-T., Munteanu, M., & Stanca, H. T. (2025). Comparative Analysis of Intraocular Lens Power Calculation Formulas (Kane, Barrett Universal II, Hill–Radial Basis Function, and Ladas Super Formula): Which One Is More Accurate? Journal of Clinical Medicine, 14(7), 2443. https://doi.org/10.3390/jcm14072443