Outcomes of Acute Kidney Injury Among Hospitalized Patients with Sepsis and Acute Myeloid Leukemia: A National Inpatient Sample Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Data Source and Patient Selection
2.1.2. Outcome Assessed
2.1.3. Statistical Analysis
3. Results
3.1. Patient and Hospital Characteristics
3.2. Factors Associated with AKI
3.3. In-Hospital Outcomes
3.4. Discussion
3.5. Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Kouchkovsky, I.; Abdul-Hay, M. Acute myeloid leukemia: A comprehensive review and 2016 update. Blood Cancer J. 2016, 6, e441. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Andersson, T.M.; Rachet, B.; Björkholm, M.; Lambert, P.C. Survival and cure of acute myeloid leukaemia in England, 1971-2006: A population-based study. Br. J. Haematol. 2013, 162, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Malik, I.A.; Cardenas-Turanzas, M.; Gaeta, S.; Borthakur, G.; Price, K.; Cortes, J.; Nates, J.L. Sepsis and Acute Myeloid Leukemia: A Population-Level Study of Comparative Outcomes of Patients Discharged From Texas Hospitals. Clin. Lymphoma Myeloma Leuk. 2017, 17, e27–e32. [Google Scholar] [CrossRef]
- May, H.P.; Barreto, E.F.; Mara, K.C.; McCullough, K.B.; Patnaik, M.S.; Leung, N.; Habermann, T.M. Risk for Significant Kidney Function Decline After Acute Kidney Injury in Adults With Hematologic Malignancy. Kidney Int. Rep. 2021, 6, 1050–1057. [Google Scholar] [CrossRef]
- Shum, H.-P.; Kong, H.H.-Y.; Chan, K.-C.; Yan, W.-W.; Chan, T.M. Septic acute kidney injury in critically ill patients—A single-center study on its incidence, clinical characteristics, and outcome predictors. Ren. Fail. 2016, 38, 706–716. [Google Scholar] [CrossRef]
- Calças Marques, R.; Reis, M.; Pimenta, G.; Sala, I.; Chuva, T.; Coelho, I.; Ferreira, H.; Paiva, A.; Costa, J.M. Severe Acute Kidney Injury in Hospitalized Cancer Patients: Epidemiology and Predictive Model of Renal Replacement Therapy and In-Hospital Mortality. Cancers 2024, 16, 561. [Google Scholar] [CrossRef]
- Lahoti, A.; Kantarjian, H.; Salahudeen, A.K.; Ravandi, F.; Cortes, J.E.; Faderl, S.; O’Brien, S.; Wierda, W.; Mattiuzzi, G.N. Predictors and outcome of acute kidney injury in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome. Cancer 2010, 116, 4063–4068. [Google Scholar] [CrossRef]
- Ballo, O.; Eladly, F.; Büttner, S.; Stratmann, J.A.; Rudolf, S.; Brunnberg, U.; Kreisel, E.-M.; Steffen, B.; Wagner, S.; Finkelmeier, F.; et al. Acute kidney injury adversely affects the clinical course of acute myeloid leukemia patients undergoing induction chemotherapy. Ann. Hematol. 2021, 100, 1159–1167. [Google Scholar] [CrossRef]
- Gupta, S.; Gudsoorkar, P.; Jhaveri, K.D. Acute Kidney Injury in Critically Ill Patients with Cancer. Clin. J. Am. Soc. Nephrol. 2022, 17, 1385–1398. [Google Scholar] [CrossRef]
- HCUP National Inpatient Sample (NIS); Healthcare Cost and Utilization Project (HCUP). Agency for Healthcare Research and Quality. 2012. Available online: www.hcup-us.ahrq.gov/nisoverview.jsp (accessed on 12 April 2024).
- International Classification of Diseases, Tenth Revision, Clinical Modification. Available online: https://www.cdc.gov/nchs/icd/icd-10-cm/index.html (accessed on 12 April 2024).
- Moore, B.J.; White, S.; Washington, R.; Coenen, N.; Elixhauser, A. Identifying increased risk of readmission and in-hospital mortality using hospital administrative data: The AHRQ Elixhauser Comorbidity Index. Med. Care 2017, 55, 698–705. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata Statistical Software 18; StataCorp LLC.: College Station, TX, USA, 2023. [Google Scholar]
- Yang, Y.; Dong, J.; Chen, X.; Chen, R.; Wang, H. Incidence, risk factors and clinical outcomes of septic acute renal injury in cancer patients with sepsis admitted to the ICU: A retrospective study. Front. Med. 2022, 9, 1015735. [Google Scholar] [CrossRef]
- Benoit, D.D.; Hoste, E.A.; Depuydt, P.O.; Offner, F.C.; Lameire, N.H.; Vandewoude, K.H.; Dhondt, A.W.; Noens, L.A.; Decruyenaere, J.M. Outcome in critically ill medical patients treated with renal replacement therapy for acute renal failure: Comparison between patients with and those without haematological malignancies. Nephrol. Dial. Transplant. 2005, 20, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Bewersdorf, J.P.; Zeidan, A.M. Hyperleukocytosis and Leukostasis in Acute Myeloid Leukemia: Can a Better Understanding of the Underlying Molecular Pathophysiology Lead to Novel Treatments? Cells 2020, 9, 2310. [Google Scholar] [CrossRef]
- Luciano, R.L.; Brewster, U.C. Kidney involvement in leukemia and lymphoma. Adv. Chronic Kidney Dis. 2014, 21, 27–35. [Google Scholar] [CrossRef]
- Grams, M.E.; Matsushita, K.; Sang, Y.; Estrella, M.M.; Foster, M.C.; Tin, A.; Kao, W.H.; Coresh, J. Explaining the racial difference in AKI incidence. J. Am. Soc. Nephrol. 2014, 25, 1834–1841. [Google Scholar] [CrossRef]
- Ammad Ud Din, M.; Saeed, H.; Shahzad, M.; Liaqat, H.; Sweet, K. The impact of mild-to-moderate chronic kidney disease on hospitalization outcomes in patients with acute myeloid leukemia. Leuk. Lymphoma 2023, 64, 1040–1044. [Google Scholar] [CrossRef]
- Chandramohan, D.; Rajasekaran, R.; Konda, R.; Pujari, A.; Avula, S.; Bell, M.; Palleti, S.K.; Deotare, A.; Naik, R.; Bali, A.; et al. Cardiac Magnetic Resonance Imaging Findings in Patients With Chronic Kidney Disease and End-Stage Kidney Disease: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e51672. [Google Scholar] [CrossRef]
- Wu, V.-C.; Huang, T.-M.; Lai, C.-F.; Shiao, C.-C.; Lin, Y.-F.; Chu, T.-S.; Wu, P.-C.; Chao, C.-T.; Wang, J.-Y.; Kao, T.-W.; et al. Acute-on-chronic kidney injury at hospital discharge is associated with long-term dialysis and mortality. Kidney Int. 2011, 80, 1222–1230. [Google Scholar] [CrossRef]
- Sakhuja, A.; Kumar, G.; Gupta, S.; Mittal, T.; Taneja, A.; Nanchal, R.S. Acute kidney injury requiring dialysis in severe sepsis. Am. J. Respir. Crit. Care Med. 2015, 192, 951–957. [Google Scholar]
- Lahoti, A.; Nates, J.L.; Wakefield, C.D.; Price, K.J.; Salahudeen, A.K. Costs and outcomes of acute kidney injury in critically ill patients with cancer. J. Support. Oncol. 2011, 9, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Chandramohan, D.; García, J.J.C.; Kata, M.; Naik, R.; Bali, A.; Shaik, B.F.; Arora, H.; Avula, S. Acute Kidney Injury. Adv. Ren. Dis. Dial. 2023, 2–18. [Google Scholar] [CrossRef]
- Chandramohan, D.; Konda, R.; Pujari, A.; Avula, S.; Palleti, S.K.; Jena, N.; Naik, R.; Bali, A. Acute kidney injury after robot-assisted laparoscopic prostatectomy: A meta-analysis. Int. J. Med. Robot. Comput. Assist. Surgery 2024, 20, e2630. [Google Scholar] [CrossRef] [PubMed]
- Alkhouli, M.; Alqahtani, F.; Alhajji, M.; Berzingi, C.O.; Sohail, M.R. Clinical and Economic Burden of Hospitalizations for Infective Endocarditis in the United States. Mayo Clin. Proc. 2020, 95, 858–866. [Google Scholar] [CrossRef]
Characteristics | Sepsis in AML Without AKI, n = 226,480 | Sepsis and AML with AKI, n = 61,955 (21.4%) | p-Value | |
---|---|---|---|---|
Age in years, Mean ± SD | 60.4 ± 16.8 | 66.15 ± 14.47 | <0.001 | |
Age groups | <0.001 | |||
18–44 yrs | 39,535 (17.6) | 5415 (8.7) | ||
45–59 yrs | 50,925 (22.6) | 10,715 (17.3) | ||
60–74 yrs | 88,420 (39.1) | 27,365 (44.2) | ||
75 yrs or older | 46,580 (20.7) | 18,460 (29.8) | ||
Gender | <0.001 | |||
Female | 106,915 (47.2) | 22,910 (36.9) | ||
Male | 119,565 (52.8) | 39,045 (63.1) | ||
Race | <0.001 | |||
White | 158,825 (70.1) | 43,605 (70.3) | ||
African American | 20,965 (9.2) | 7455 (12) | ||
Hispanic | 212,75 (9.4) | 4270 (6.8) | ||
Median household income for patient’s zip code | 0.632 | |||
Quartile 1 | 51,370 (22.6) | 14,000 (22.5) | ||
Quartile 2 | 55,715 (24.7) | 15,100 (24.4) | ||
Quartile 3 | 57,715 (25.4) | 15,630 (25.3) | ||
Quartile 4 | 57,840 (25.6) | 16,225 (26.2) | ||
Hospital region | 0.001 | |||
Northeast | 44,660 (19.8) | 13,050 (21) | ||
Midwest | 51,095 (22.5) | 14,570 (23.6) | ||
South | 83,830 (37) | 22,310 (36) | ||
West | 46,895 (20.7) | 12,025 (19.4) | ||
Hospital size | 0.408 | |||
Small | 26,895 (11.9) | 7605 (12.3) | ||
Medium | 45,030 (19.9) | 12,055 (19.4) | ||
Large | 154,555 (68.2) | 42,295 (68.3) | ||
Hospital location and teaching status | <0.001 | |||
Rural | 7075 (3.2) | 1475 (2.3) | ||
Urban non-teaching | 22,505 (9.9) | 6540 (10.6) | ||
Urban teaching | 196,900 (86.9) | 53,940 (87.1) | ||
Medical Insurance | <0.001 | |||
Medicare | 107,380 (47.4) | 37,215 (60) | ||
Medicaid | 28,700 (12.7) | 5415 (8.7) | ||
Private | 78,385 (34.6) | 16,580 (26.8) | ||
No insurance | 4495 (1.9) | 935 (1.5) | ||
Elixhauser comorbidity Index | <0.001 | |||
0 | 22,320 (9.8) | 905 (1.4) | ||
1 | 39,205 (17.3) | 3480 (5.6) | ||
2 | 47,160 (20.8) | 7345 (11.8) | ||
3–4 | 43,195 (19.1) | 22,435 (36.2) | ||
≥5 | 74,600 (33) | 27,790 (36.7) | ||
Microorganism | ||||
Staphylococcus | 3975 (1.7) | 1740 (2.8) | <0.001 | |
Streptococcus | 3845 (1.6) | 1045 (1.6) | 0.629 | |
Enterococcus | 3455 (1.5) | 1605 (2.5) | 0.001 | |
Gram-negative | 14,215 (6.2) | 5280 (8.5) | 0.002 | |
AML status | ||||
AML not in remission | 153,500 (67.6) | 44,920 (72.4) | <0.001 | |
AML in relapse | 32,465 (14.3) | 9140 (14.5) | 0.241 | |
AML in remission | 41,405 (18.1) | 8175 (13.1) | <0.001 | |
Comorbidities | ||||
Arterial hypertension | 95,585 (42.2) | 23,190 (37.4) | <0.001 | |
Diabetes mellitus | 32,445 (14.3) | 8480 (13.8) | 0.056 | |
Diabetes mellitus with complications | 12,035 (5.3) | 8435 (13.6) | <0.001 | |
Hyperlipidemia | 63,045 (27.8) | 20,280 (32.7) | <0.001 | |
Congestive Heart Failure | 28,545 (12.6) | 16,525 (26.6) | <0.001 | |
Peripheral vascular disease | 10,330 (4.6) | 3915 (6.3) | <0.001 | |
Coronary artery disease | 31,365 (13.8) | 12,115 (19.5) | <0.001 | |
Cardiac arrhythmias | 46,645 (20.6) | 20,710 (33.4) | <0.001 | |
Cerebrovascular disease | 8235 (3.6) | 4310 (6.9) | <0.001 | |
Chronic kidney disease | 19,824 (8.7) | 19,230 (31) | <0.001 | |
Chronic obstructive pulmonary disease | 35,015 (15.4) | 10,750 (17.3) | <0.001 | |
Moderate/severe liver disease | 1420 (0.6) | 1145 (1.8) | <0.001 | |
Rheumatological disorders | 5930 (2.6) | 1715 (2.7) | 0.401 | |
Anemia | 7525 (3.3) | 2725 (4.4) | <0.001 | |
Dementia | 3765 (1.6) | 1655 (2.7) | <0.001 | |
Obesity | 21,990 (9.7) | 6910 (11.1) | <0.001 | |
Smoking | 19,060 (8.4) | 4020 (6.4) | <0.001 | |
Other factors | ||||
Tumor lysis | 3220 (1.4) | 6915 (11.1) | <0.001 | |
Disposition | <0.001 | |||
Discharge home | 139,640 (61.6) | 21,450 (34.6) | ||
Discharge to HHC | 16,290 (7.2) | 14,075 (22.7) | ||
Discharge to SNF, ICF, LTACH | 48,405 (21.3) | 9075 (14.6) | ||
LOS, mean ± SD | 10.8 ± 13.1 | 15.41 ± 18 | <0.001 |
Variable | Multivariable Adjusted OR (95% CI) | p-Value | |
---|---|---|---|
Age | 1.01 (1.0–1.01) | <0.001 | |
Sex | Female | 0.64 (0.61–0.67) | <0.001 |
Race (reference, White) | |||
Black | 1.41 (1.30–1.52) | <0.001 | |
Hispanic | 0.98 (0.89–1.07) | <0.001 | |
Median household income for patient’s zip code % (reference, quartile 1) | |||
Quartile 2 | 1.038 (0.97–1.10) | 0.262 | |
Quartile 3 | 1.039 (0.970–1.112) | 0.270 | |
Quartile 4 | 1.04 (0.973–1.118) | 0.232 | |
Elixhauser comorbidity index (reference, 0) | |||
1 | 2.0 (1.74–2.50) | <0.001 | |
2 | 3.46 (2.91–4.12) | <0.001 | |
3–4 | 6.56 (5.54–7.78) | <0.001 | |
≥5 | 13.72 (11.55–16.29) | <0.001 | |
Region (reference, Northeast) | |||
Midwest | 0.90 (0.83–0.98) | 0.014 | |
South | 0.89 (0.83–0.96) | 0.004 | |
West | 0.90 (0.83–0.97) | 0.014 | |
Hospital bed size (reference, small) | |||
Medium hospital | 0.96 (0.88–1.05) | 0.402 | |
Large hospital | 1.10 (1.02–1.19) | 0.009 | |
Hospital location and teaching status (reference, rural hospital non-academic) | |||
Urban non-teaching | 1.45 (1.23–1.69) | <0.001 | |
Urban teaching | 1.58 (1.37–1.89) | <0.001 | |
Insurance (reference, Medicare) | |||
Medicaid | 0.97 (0.88–1.07) | 0.628 | |
Private | 1.03 (0.97–1.09) | 0.322 | |
No insurance | 1.07 (0.90–1.29) | 0.408 | |
Organism | |||
Staphylococcus | 1.52 (1.31–1.75) | <0.001 | |
Streptococcus | 1.22 (1.02–1.46) | 0.027 | |
Enterococcus | 1.55 (1.34–1.81) | <0.001 | |
Gram-negative | 1.32 (1.21–1.44) | <0.001 | |
Comorbidities | |||
Arterial hypertension | 0.52 (0.50–0.55) | <0.001 | |
Diabetes mellitus | 0.60 (0.56–0.64) | <0.001 | |
Diabetes mellitus with complications | 1.42 (1.31–1.53) | <0.001 | |
Hyperlipidemia | 0.78 (0.74–0.82) | <0.001 | |
Congestive heart failure | 1.26 (1.18–1.33) | <0.001 | |
Peripheral vascular disease | 0.73 (0.66–0.80) | <0.001 | |
Coronary artery disease | 0.82 (0.77–0.87) | <0.001 | |
Cardiac arrhythmias | 1.04 (0.99–1.10) | 0.108 | |
Cerebrovascular disease | 1.42 (1.29–1.57) | <0.001 | |
Chronic kidney disease | 2.60 (2.45–2.77) | <0.001 | |
Chronic obstructive pulmonary disease | 0.66 (0.62–0.70) | <0.001 | |
Moderate/severe liver disease | 1.99 (1.64–2.40) | <0.001 | |
Rheumatological disorders | 0.71 (0.62–0.81) | <0.001 | |
Anemia | 0.82 (0.73–0.91) | <0.001 | |
Dementia | 1.02 (0.88–1.17) | 0.785 | |
Obesity | 0.79 (0.73–0.85) | <0.001 | |
Smoker | 0.68 (0.62–0.75) | <0.001 | |
Other factors | |||
Tumor lysis | 6.61 (5.95–7.35) | <0.001 |
Outcomes | AKI in Sepsis and AML, N | Multivariable Adjusted OR (95% CI) | p-Value |
---|---|---|---|
Length of stay (days) | 15.41 ± 18 | 3.31 (2.94–3.68) | <0.001 |
Fluid and electrolyte disorders | 36,335 (58.6%) | 2.29 (2.18–2.41) | <0.001 |
Septic shock | 11,575 (18.6%) | 6.31 (5.77–6.90) | <0.001 |
Vasopressor requirement | 34,995 (56.4%) | 5.0 (4.32–5.85) | <0.001 |
Mechanical ventilation | 9485 (15.3%) | 5.29 (4.79–5.79) | <0.001 |
Mechanical ventilation >96 h | 3800 (6.1%) | 6.39 (5.44–7.51) | <0.001 |
All-cause mortality | 14,100 (22.7%) | 3.87 (3.60–4.16) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garapati, H.N.; Chandramohan, D.; Lapsiwala, B.; Nangia, U.; Patel, D.; Singh, P.; Avula, S.; Chauhan, A.; Jena, N.; Simhadri, P.K. Outcomes of Acute Kidney Injury Among Hospitalized Patients with Sepsis and Acute Myeloid Leukemia: A National Inpatient Sample Analysis. J. Clin. Med. 2025, 14, 2243. https://doi.org/10.3390/jcm14072243
Garapati HN, Chandramohan D, Lapsiwala B, Nangia U, Patel D, Singh P, Avula S, Chauhan A, Jena N, Simhadri PK. Outcomes of Acute Kidney Injury Among Hospitalized Patients with Sepsis and Acute Myeloid Leukemia: A National Inpatient Sample Analysis. Journal of Clinical Medicine. 2025; 14(7):2243. https://doi.org/10.3390/jcm14072243
Chicago/Turabian StyleGarapati, Hari Naga, Deepak Chandramohan, Boney Lapsiwala, Udit Nangia, Devansh Patel, Prabhat Singh, Sreekant Avula, Aditya Chauhan, Nihar Jena, and Prathap Kumar Simhadri. 2025. "Outcomes of Acute Kidney Injury Among Hospitalized Patients with Sepsis and Acute Myeloid Leukemia: A National Inpatient Sample Analysis" Journal of Clinical Medicine 14, no. 7: 2243. https://doi.org/10.3390/jcm14072243
APA StyleGarapati, H. N., Chandramohan, D., Lapsiwala, B., Nangia, U., Patel, D., Singh, P., Avula, S., Chauhan, A., Jena, N., & Simhadri, P. K. (2025). Outcomes of Acute Kidney Injury Among Hospitalized Patients with Sepsis and Acute Myeloid Leukemia: A National Inpatient Sample Analysis. Journal of Clinical Medicine, 14(7), 2243. https://doi.org/10.3390/jcm14072243