Physical Activity, Physical Fitness and Energy Intake Predict All-Cause Mortality and Age at Death in Extinct Cohorts of Middle-Aged Men Followed-Up for 61 Years
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Introduction
Appendix A.2. Material
Appendix A.3. Computation of Fitness Score
Appendix A.4. Comments
References
- Powell, K.E.; Paffenbarger, R.S., Jr. Workshop on epidemiologic and public health aspects of physical activity and exercise: A summary. Public. Health Rep. 1985, 100, 118–126. [Google Scholar]
- Warburton, D.E.R.; Nicol, C.W.; Bredin, S.S.D. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar]
- Menotti, A.; Puddu, P.E. How the Seven Countries Study contributed to the launch and development of cardiovascular epidemiology in Italy. A historical perspective. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 368–383. [Google Scholar] [PubMed]
- Seccareccia, F.; Menotti, A. Physical activity, physical fitness and mortality in a sample of middle-aged men followed-up for 25 years. J. Sports Med. Phys. Fit. 1992, 28, 335–341. [Google Scholar]
- Menotti, A.; Puddu, P.E.; Geleijnse, J.M.; Kafatos, A.; Tolonen, H. Physical activity and physical fitness in prediction of all-cause mortality and age at death in European extinct cohorts of middle-aged men followed for 60 years. Eur. J. Prev. Cardiol. 2024, 31, 1441–1448. [Google Scholar] [PubMed]
- Puddu, P.E.; Kafatos, A.; Tolonen, H.; Geleijnse, J.M.; Menotti, A. Occupational physical activity and fitness in predicting cardiovascular mortality among European cohorts of middle-aged men: A 60-year follow-up in the Seven Countries Study. Hearts 2024, 5, 259–274. [Google Scholar] [CrossRef]
- Rose, G.; Blackburn, H. Cardiovascular Survey Methods; World Health Organization: Geneva, Switzerland, 1968; pp. 1–188. [Google Scholar]
- Hemsfield, S.B.; MacManus, C.; Smith, J.; Stevens, V.; Nixon, D.W. Anthropometric measurement of muscle mass: Revised equations for calculating bone-free arm muscle area. Am. J. Clin. Nutr. 1982, 36, 680–690. [Google Scholar] [CrossRef]
- Fidanza, F.; Versiglioni, N. Tabelle di Composizione Degli Alimenti; Food Composition Tables; Idelson: Napoli, Italy, 1981. [Google Scholar]
- Anderson, J.T.; Keys, A. Cholesterol in serum and lipoprotein fractions: Its measurement and stability. Clin. Chem. 1956, 2, 145–159. [Google Scholar]
- Robine, J.M. Age at death, the return of an old metrics whose impact is growing. Aging Clin. Exper. Res. 2018, 30, 1147–1149. [Google Scholar]
- Menotti, A.; Puddu, V. Ten-year mortality from coronary heart disease among 172,000 men classified by occupational physical activity. Scand. J. Work. Environ. Health 1979, 5, 100–108. [Google Scholar]
- Macera, C.A.; Ham, S.A.; Jones, D.A.; Kimsey, C.D.; Ainsworth, B.E.; Neff, L.J. Limitations on the use of a single screening question to measure sedentary behavior. Am. J. Public. Health 2001, 91, 2010–2012. [Google Scholar]
- Ainsworth, B.E.; Bassett, D.R., Jr.; Strath, S.J.; Swartz, A.M.; O’Brien, W.L.; Thompson, R.W.; Jones, D.A.; Macera, C.A.; Kimsey, C.D. Comparison of three methods for measuring the time spent in physical activity. Med. Sci. Sports Exerc. 2000, 32, S457–S464. [Google Scholar] [CrossRef] [PubMed]
- Davidson, T.; Vainshelboim, B.; Kokkinos, P.; Myers, J.; Ross, R. Cardiorespiratory fitness versus physical activity as predictors of all-cause mortality in men. Am. Heart J. 2018, 196, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Kaykha, A.; George, S.; Abella, J.; Zaheer, N.; Lear, S.; Yamazaki, T.; Froelicher, V. Fitness versus physical activity patterns in predicting mortality in men. Am. J. Med. 2004, 117, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; McAuley, P.; Carl, J.; Lavie, C.J.; Despres, J.P.; Arena, R.; Kokkinos, P. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: Their independent and interwoven importance to health status. Prog. Cardiovasc. Dis. 2015, 57, 306–314. [Google Scholar]
- Villeneuve, P.J.; Morrison, H.I.; Craig, C.L.; Schaubel, D.E. Physical activity, physical fitness and risk of dying. Epidemiology 1998, 9, 626–631. [Google Scholar]
- DeFina, L.F.; Haskell, W.L.; Willis, B.L.; Barlow, C.E.; Finley, C.E.; Levine, B.D.; Cooper, K.H. Physical activity versus cardiorespiratory fitness: Two (partly) distinct components of cardiovascular health? Prog. Cardiovasc. Dis. 2015, 57, 324–329. [Google Scholar]
- Sandvik, L.; Erikssen, J.; Thaulow, E.; Erikssen, G.; Mundal, R.; Rodahl, K. Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men. N. Engl. J. Med. 1993, 328, 533–537. [Google Scholar]
- Blair, S.N.; Kampert, J.B.; Kohl, H.W., 3rd; Barlow, C.E.; Macera, C.A.; Paffenbarger, R.S., Jr.; Gibbons, L.W. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA 1996, 276, 205–210. [Google Scholar]
- Kodama, S.; Saito, K.; Tanaka, S.; Maki, M.; Yachi, Y.; Asumu, M.; Sugawara, A.; Totsuka, K.; Shimano, H.; Ohashi, Y.; et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA 2009, 301, 2024–2035. [Google Scholar]
- Cheng, Y.J.; Macera, C.A.; Addy, C.L.; Sy, F.S.; Wieland, D.; Blair, S.N. Effects of physical activity on exercise tests and respiratory function. Br. J. Sports Med. 2003, 37, 521–528. [Google Scholar] [PubMed]
- Weinmayr, G.; Schulz, H.; Klenk, J.; Denkinger, M.; Duran-Tauleria, E.; Koenig, W.; Dallmeier, D.; Rothenbacher, D.; ActiFE Study Group. Association of lung function with overall mortality is independent of inflammatory, cardiac, and functional biomarkers in older adults: The ActiFE-study. Sci. Rep. 2020, 10, 11862. [Google Scholar]
- Lopez-Jaramillo, P.; Lopez-Lopez, J.P.; Tole, M.C.; Cohen, D.D. Increasing muscular strength to improve cardiometabolic risk factors. Clin. Investig. Arterioscler. 2023, 35, 144–154. [Google Scholar]
- Cillekens, B.; Huysmans, M.A.; Holtermann, A.; van Mechelen, W.; Straker, L.; Krause, N.; van der Beek, A.J.; Coenen, P. Physical activity at work may not be health enhancing. A systematic review with meta-analysis on the association between occupational physical activity and cardiovascular disease mortality covering 23 studies with 655892 participants. Scand. J. Work Environ. Health 2022, 48, 86–98. [Google Scholar] [CrossRef] [PubMed]
Variable | ||
---|---|---|
Physical activity class | N | % (SE) |
Low | 166 | 9.7 (0.7) |
Intermediate | 378 | 22.1 (1.0) |
High | 1168 | 68.2 (1.1) |
Fitness variables | Mean | SD |
Arm circumference, mm | 268.6 | 23.6 |
Heart rate, beats/min | 71.3 | 12.9 |
Vital capacity, L/m2 | 1.65 | 0.24 |
Calories | ||
Daily intake | 3112 | 647 |
Calories, tertile 1 | 2463 | 346 |
Calories, tertile 2 | 3108 | 131 |
Calories, tertile 3 | 3766 | 517 |
Confounding variables | ||
Age, years | 49.1 | 5.1 |
Cigarette, N/day | 8.7 | 9.5 |
Body mass index, kg/m2 | 25.2 | 3.7 |
Systolic blood pressure, mmHg | 143.6 | 21.0 |
Serum cholesterol, mmol/L | 5.21 | 1.06 |
Variable | Mean (SD) | Mean (SD) |
---|---|---|
Class | Phyac low | Fitscore low |
N | 166 | 571 |
Energy, Kcal/day | 2816 (618) | 2919 (614) |
Class | Phyac intermediate | Fitscore intermediate |
N | 378 | 570 |
Energy, Kcal/day | 2962 (602) | 3164 (650) |
Class | Phyac high | Fitscore high |
N | 1168 | 571 |
Energy, Kcal/day | 3203 (643) | 3254 (629) |
ANOVA across classes | p < 0.0001 | p < 0.0001 |
Variable | Mean (SD) | Mean (SD) | Mean (SD) |
---|---|---|---|
Phyac low N = 166 | Fitscore low N = 571 | Calories low N = 571 | |
Arm circumference | 259.4 (5.2) | 255.6 (23.3) | 264.8 (25.5) |
Heart rate | 77.4 (14.8) | 81.3 (13.4) | 73.8 (14.0) |
Vital capacity | 1.59 (0.27) | 1.45 (0.21) | 1.58 (0.25) |
Phyac intermediate N = 378 | Fitscore intermediate N = 570 | Calories intermediate N = 570 | |
Arm circumference | 268.1 (25.6) | 268.0 (19.9) | 268.6 (21.6) |
Heart rate | 74.3 (13.5) | 69.2 (9.2) | 70.8 (12.1) |
Vital capacity | 1.61 (0.25) | 1.65 (0.15) | 1.66 (0.23) |
Phyac high N = 1168 | Fitscore high N = 571 | Calories high N = 570 | |
Arm circumference | 270.0 (22.1) | 282.0 (19.7) | 272.2 (22.9) |
Heart rate | 69.5 (11.9) | 63.4 (8.2) | 69.3 (12.1) |
Vital capacity | 1.67 (0.21) | 1.84 (0.18) | 1.70 (0.22) |
ANOVA | |||
Arm circumference | <0.0001 | <0.0001 | <0.0001 |
Heart rate | <0.0001 | <0.0001 | <0.0001 |
Vital capacity | <0.0001 | <0.0001 | <0.0001 |
Coefficient | p Value | Hazard Ratio | 95% CI | ||
---|---|---|---|---|---|
COX model (1) predicting all-cause mortality with Phyac only | |||||
Phyac 1 | Reference | ---- | ---- | ---- | |
Phyac 2 | −0.1948 | 0.0383 | 0.82 | 0.68 | 0.99 |
Phyac 3 | −0.2740 | 0.0004 | 0.76 | 0.64 | 0.90 |
COX model (2) predicting all-cause mortality with Phyac and Fitscore | |||||
Phyac 1 | Reference | ----- | ----- | ----- | |
Phyac 2 | −0.1872 | 0.0465 | 0.83 | 0.69 | 1.00 |
Phyac 3 | −0.2226 | 0.0089 | 0.80 | 0.68 | 0.95 |
Fitscore 1 | Reference | ----- | ----- | ----- | |
Fitscore 2 | −0.2286 | 0.0002 | 0.80 | 0.71 | 0.90 |
Fitscore 3 | −0.2616 | 0.0001 | 0.77 | 0.68 | 0.87 |
COX model (3) predicting all-cause mortality with Phyac, Fitscore, and Calories | |||||
Phyac 1 | Reference | ----- | ----- | ----- | |
Phyac 2 | −0.1731 | 0.0658 | 0.84 | 0.70 | 1.01 |
Phyac 3 | −0.1830 | 0.0342 | 0.83 | 0.70 | 0.99 |
Fitscore 1 | Reference | ----- | ----- | ----- | |
Fitscore 2 | −0.2010 | 0.0012 | 0.82 | 0.72 | 0.92 |
Fitscore 3 | −0.2428 | 0.0002 | 0.78 | 0.70 | 0.89 |
Calories 1 | Reference | ----- | ----- | ----- | |
Calories 2 | −0.2394 | 0.0001 | 0.79 | 0.70 | 0.89 |
Calories 3 | −0.1998 | 0.0023 | 0.82 | 0.72 | 0.93 |
Coefficient | p Value | 95% CI | ||
---|---|---|---|---|
MLR Model (1) Predicting Age at Death with Phyac Only; R2 = 0.0964 | ||||
Phyac 1 | Reference | ----- | ----- | |
Phyac 2 | 2.4898 | 0.0154 | 0.48 | 4.50 |
Phyac 3 | 3.2097 | 0.0005 | 1.41 | 5.00 |
MLR model (2) predicting age at death with Phyac and Fitscore; R2 = 0.1093 | ||||
Phyac 1 | Reference | ----- | ----- | |
Phyac 2 | 2.3688 | 0.0202 | 0.37 | 4.37 |
Phyac 3 | 2.5104 | 0.0064 | 0.71 | 4.31 |
Fitscore 1 | Reference | ----- | ----- | |
Fitscore 2 | 2.5132 | 0.0002 | 1.15 | 3.76 |
Fitscore 3 | 3.5287 | 0.0001 | 2.15 | 4.91 |
MLR model (3) predicting age at death with Phyac, Fitscore, and Calories; R2 = 0.1165 | ||||
Phyac 1 | Reference | ----- | ----- | |
Phyac 2 | 2.1578 | 0.0339 | 0.17 | 4.15 |
Phyac 3 | 1.9303 | 0.0381 | 0.11 | 3.75 |
Fitscore 1 | Reference | ----- | ----- | |
Fitscore 2 | 2.1554 | 0.0012 | 0.85 | 3.46 |
Fitscore 3 | 3.2317 | 0.0001 | 1.85 | 4.61 |
Calories 1 | Reference | ----- | ----- | |
Calories 2 | 2.2916 | 0.0005 | 0.99 | 3.59 |
Calories 3 | 2.4836 | 0.0004 | 1.10 | 3.87 |
Variable | Coefficient | p Value | Delta | Effect | 95% Cl | |
---|---|---|---|---|---|---|
Intercept | 95.0153 | <0.0001 | ---- | ---- | ---- | |
Age, years | 0.1942 | 0.0009 | 5 | 0.97 | 0.40 | 1.54 |
High socio-economic status, 1-0 | 2.0930 | 0.0284 | 1 | 2.09 | 0.22 | 3.96 |
Father early death, 1-0 | −1.4110 | 0.0274 | 1 | −1.41 | −2.66 | −0.16 |
Moher early death, 1-0 | −1.8418 | 0.0045 | 1 | −1.84 | −3.11 | −0.57 |
Family CVD, 1-0 | −0.2628 | 0.6250 | 1 | −0.26 | −1.32 | 0.79 |
Married, 1-0 | 1.7756 | 0.0478 | 1 | 1.78 | 0.02 | 3.53 |
Smoker, 1-0 | reference | ---- | ---- | ---- | ---- | |
Ex smoker, 1-0 | 1.3260 | 0.0955 | 1 | 1.33 | −0.23 | 2.88 |
Never smoker, 1-0 | 2.9395 | <0.0001 | 1 | 2.94 | 1.70 | 4.18 |
Body mass index, kg/m2 | −0.4072 | 0.0053 | 3.7 | −1.51 | −2.57 | −0.45 |
Trunk/height, ratio | −0.0640 | 0.7250 | 1.5 | −0.10 | −0.63 | 0.44 |
Shoulder pelvis shape, ratio | −7.4007 | 0.0409 | 0.1 | −0.74 | −1.45 | −0.03 |
Laterality/linearity index, ratio | −0.2384 | 0.1501 | 1.8 | −0.43 | −1.01 | 0.15 |
Subscapular skinfold, mm | 0.2544 | 0.0009 | 6 | 1.53 | 0.62 | 2.43 |
Systolic blood pressure, mmHg | −0.1113 | <0.0001 | 20 | −2.23 | −2.78 | −1.67 |
Serum cholesterol, mg/dl | −0.0232 | 0.0006 | 40 | −0.93 | −1.46 | −0.40 |
Urine protein, 1-0 | −1.4725 | 0.14091 | 1 | −1.47 | −3.43 | 0.49 |
Urine glucose, 1-0 | 0.0651 | 0.9906 | 1 | 0.07 | −10.73 | 10.86 |
Corneal arcus, 1-0 | −1.9679 | 0.0110 | 1 | −1.97 | −2.79 | −0.36 |
Xanthelasma 1-0 | −4.6000 | 0.0323 | 1 | −4.60 | −4.40 | −0.20 |
Major CVD, 1-0 | −3.3550 | 0.0089 | 1 | −3.36 | −5.87 | −084 |
Cancer, 1-0 | −20.0279 | <0.0001 | 1 | −20.03 | −29.46 | −10.60 |
Diabetes, 1-0 | −2.2521 | 0.6760 | 1 | −2.25 | 12.81 | 8.31 |
Chronic bronchitis, 1-0 | −2.8434 | 0.0088 | 1 | −2.84 | −4.97 | −0.72 |
Silent ECG abnormalities, 1-0 (*) | −1.1593 | 0.3772 | 1 | −1.16 | −3.79 | 1.47 |
Positive exercise ECG, 1-0 (*) | −1.7726 | 0.3161 | 1 | −1.77 | −5.24 | 1.69 |
Low physical activity, 1-0 | reference | ---- | ---- | ---- | ---- | |
Moderate physical activity, 1-0 | 1.5849 | 0.1180 | 1 | 1.58 | −0.40 | 3.57 |
High physical activity | 2.2821 | 0.0202 | 1 | 2.28 | 0.36 | 4.21 |
Low Fitscore, 1-0 | reference | ---- | ---- | ---- | ---- | |
Intermediate Fitscore, 1-0 | 2.3545 | 0.0019 | 1 | 2.35 | 0.87 | 3.84 |
High Fitscore, 1-0 | 3.3821 | 0.0004 | 1 | 3.38 | 1.53 | 5.23 |
Low Calories, 1-0 | reference | ---- | ---- | ---- | ---- | |
Intermediate Calories, 1-0 | 1.8547 | 0.0047 | 1 | 2.14 | 0.57 | 3.14 |
High Calories, 1-0 | 2.1389 | 0.0023 | 1 | 2.14 | 0.77 | 3.51 |
Variables excluded from the model and reasons for exclusion | ||||||
Arm circumference | Component of Fitscore | |||||
Heart rate | Component of Fitscore | |||||
Vital capacity | Component of Fitscore | |||||
Tricipital skinfold | Used to clean arm circumference from subcutaneous fat | |||||
Forced expiratory volume | Collinearity problems with vital capacity | |||||
Dietary score (3 classes) | Collinearity problems with Calories |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menotti, A.; Puddu, P.E. Physical Activity, Physical Fitness and Energy Intake Predict All-Cause Mortality and Age at Death in Extinct Cohorts of Middle-Aged Men Followed-Up for 61 Years. J. Clin. Med. 2025, 14, 2178. https://doi.org/10.3390/jcm14072178
Menotti A, Puddu PE. Physical Activity, Physical Fitness and Energy Intake Predict All-Cause Mortality and Age at Death in Extinct Cohorts of Middle-Aged Men Followed-Up for 61 Years. Journal of Clinical Medicine. 2025; 14(7):2178. https://doi.org/10.3390/jcm14072178
Chicago/Turabian StyleMenotti, Alessandro, and Paolo Emilio Puddu. 2025. "Physical Activity, Physical Fitness and Energy Intake Predict All-Cause Mortality and Age at Death in Extinct Cohorts of Middle-Aged Men Followed-Up for 61 Years" Journal of Clinical Medicine 14, no. 7: 2178. https://doi.org/10.3390/jcm14072178
APA StyleMenotti, A., & Puddu, P. E. (2025). Physical Activity, Physical Fitness and Energy Intake Predict All-Cause Mortality and Age at Death in Extinct Cohorts of Middle-Aged Men Followed-Up for 61 Years. Journal of Clinical Medicine, 14(7), 2178. https://doi.org/10.3390/jcm14072178