The Role of Bioelectrical Impedance Analysis in Predicting Secondary Surgical Interventions for Lymphedema
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
- Age between 18 and 65 years.
- A confirmed diagnosis of LEL based on medical history, physical examination, BIA, and indocyanine green (ICG) lymphography.
- Edema refractory to 6 months of supervised conventional compression therapy using a pressure garment
- No prior surgical treatment for LEL.
- Initial multiple LVAs performed on both legs.
- At least one preoperative and two postoperative measurements of limb circumference and BIA, performed on the same day.
- Regular follow-ups preoperatively (at 3 and 6 months).
- A minimum of one year has elapsed since the initial LVA.
- Unilateral LVA procedures.
- Severe cases requiring primary VLNT or combined surgeries.
- Cases where the interval between surgeries was insufficient to allow for two postoperative measurements.
2.2. Tape Measuring
2.3. Segmental Multifrequency BIA
2.4. LVA
2.5. Data Collection
2.6. Statistical Analyses
- Patients who underwent a single surgery with no subsequent procedures.
- Patients who required additional surgeries.
3. Results
3.1. Patient Characteristics
3.2. Logistic Regression and ROC-AUC for Predicting the Need for a Second Surgery
- Right leg ECW/TBW (BIA).
- Model Fit: Significant (χ2 = 17, p = 0.0006, R2 = 0.30).
- Significant Predictors: ECW/TBW (p = 0.021), age (p = 0.0025), and BMI (p = 0.043).
- ROC-AUC: 0.86 (good discrimination) (Figure 1a).
- Right leg circumferential sum (tape measuring).
- Model Fit: Significant (χ2 = 10, p = 0.015, R2 = 0.18).
- Significant Predictor: age (p = 0.0093). The circumferential sum was not significant (p = 0.46).
- ROC-AUC: 0.77 (acceptable discrimination) (Figure 1b).
- Left leg ECW/TBW (BIA).
- Model Fit: Significant (χ2 = 17, p = 0.0007, R2 = 0.29).
- Significant Predictors: ECW/TBW (p = 0.037), age (p = 0.0045), and BMI (p = 0.042).
- ROC-AUC: 0.86 (good discrimination) (Figure 2a).
- Left leg circumferential sum (tape measuring).
- Model Fit: Significant (χ2 = 10, p = 0.017, R2 = 0.18).
- Significant Predictor: age (p = 0.013). The circumferential sum was not significant (p = 0.60).
- ROC-AUC: 0.78 (good discrimination) (Figure 2b).
3.3. ROC-AUC Comparisons
- Right leg AUC difference: 0.090 (p = 0.10)
- Left leg AUC difference: 0.084 (p = 0.051)
- The ROC-AUC values of models incorporating ECW/TBW were consistently higher than those using circumferential sum, though statistical significance was not achieved (Table 3).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gould, D.J.; Mehrara, B.J.; Neligan, P.; Cheng, M.H.; Patel, K.M. Lymph node transplantation for the treatment of lymphedema. J. Surg. Oncol. 2018, 118, 736–742. [Google Scholar] [PubMed]
- Grada, A.A.; Phillips, T.J. Lymphedema: Pathophysiology and clinical manifestations. J. Am. Acad. Dermatol. 2017, 77, 1009–1020. [Google Scholar] [PubMed]
- Yamamoto, T.; Yamamoto, N.; Yoshimatsu, H.; Narushima, M.; Koshima, I. Factors Associated with Lymphosclerosis: An Analysis on 962 Lymphatic Vessels. Plast. Reconstr. Surg. 2017, 140, 734–741. [Google Scholar]
- O’Brien, B.M.; Chait, L.A.; Hurwitz, P.J. Microlymphatic surgery. Orthop. Clin. N. Am. 1977, 8, 405–424. [Google Scholar]
- O’Brien, B.M.; Sykes, P.; Threlfall, G.N.; Browning, F.S. Microlymphaticovenous anastomoses for obstructive lymphedema. Plast. Reconstr. Surg. 1977, 60, 197–211. [Google Scholar]
- Koshima, I.; Nanba, Y.; Tsutsui, T.; Takahashi, Y.; Itoh, S.; Fujitsu, M. Minimal invasive lymphaticovenular anastomosis under local anesthesia for leg lymphedema: Is it effective for stage III and IV? Ann. Plast. Surg. 2004, 53, 261–266. [Google Scholar]
- Drobot, D.; Zeltzer, A.A. Surgical treatment of breast cancer related lymphedema-the combined approach: A literature review. Gland Surg. 2023, 12, 1746–1759. [Google Scholar]
- Ward, L.C.; Bunce, I.H.; Cornish, B.H.; Mirolo, B.R.; Thomas, B.J.; Jones, L.C. Multi-frequency bioelectrical impedance augments the diagnosis and management of lymphoedema in post-mastectomy patients. Eur. J. Clin. Investig. 1992, 22, 751–754. [Google Scholar]
- Ward, L.C.; Dylke, E.; Czerniec, S.; Isenring, E.; Kilbreath, S.L. Confirmation of the reference impedance ratios used for assessment of breast cancer-related lymphedema by bioelectrical impedance spectroscopy. Lymphat. Res. Biol. 2011, 9, 47–51. [Google Scholar]
- Fu, M.R.; Cleland, C.M.; Guth, A.A.; Kayal, M.; Haber, J.; Cartwright, F.; Kleinman, R.; Kang, Y.; Scagliola, J.; Axelrod, D. L-dex ratio in detecting breast cancer-related lymphedema: Reliability, sensitivity, and specificity. Lymphology 2013, 46, 85–96. [Google Scholar]
- Gaw, R.; Box, R.; Cornish, B. Bioimpedance in the assessment of unilateral lymphedema of a limb: The optimal frequency. Lymphat. Res. Biol. 2011, 9, 93–99. [Google Scholar] [PubMed]
- Yasunaga, Y.; Yanagisawa, D.; Ohata, E.; Matsuo, K.; Yuzuriha, S. Bioelectrical Impedance Analysis of Water Reduction in Lower-Limb Lymphedema by Lymphaticovenular Anastomosis. J. Reconstr. Microsurg. 2019, 35, 306–314. [Google Scholar] [PubMed]
- Liu, S.; Zhao, Q.; Ren, X.; Cui, Y.; Yang, H.; Wang, S.; Liu, M.; Wang, S. Determination of Bioelectrical Impedance Thresholds for Early Detection of Breast Cancer-related Lymphedema. Int. J. Med. Sci. 2021, 18, 2990–2996. [Google Scholar]
- Hayes, S.; Cornish, B.; Newman, B. Comparison of methods to diagnose lymphoedema among breast cancer survivors: 6-month follow-up. Breast Cancer Res. Treat. 2005, 89, 221–226. [Google Scholar] [PubMed]
- Ferro, A.P.; Ferreira, V.T.K.; Rezende, M.S.; de Souza, T.R.; Almeida, A.M.; Guirro, R.R.J.; Guirro, E.C.O. Intra- and Inter-Rater Reliability of Bioimpedance in the Evaluation of Lymphedema Secondary to Treatment of Breast Cancer. Lymphat. Res. Biol. 2018, 16, 282–286. [Google Scholar]
- Armer, J.M.; Stewart, B.R. Post-breast cancer lymphedema: Incidence increases from 12 to 30 to 60 months. Lymphology 2010, 43, 118–127. [Google Scholar]
- Chang, D.W. Combined Approach to Surgical Treatment of Lymphedema. Lymphat. Res. Biol. 2021, 19, 23–24. [Google Scholar]
- Koshima, I.; Narushima, M.; Mihara, M.; Yamamoto, T.; Hara, H.; Ohshima, A.; Kikuchi, K.; Todokoro, K.; Seki, Y.; Iida, T.; et al. Lymphadiposal Flaps and Lymphaticovenular Anastomoses for Severe Leg Edema: Functional Reconstruction for Lymph Drainage System. J. Reconstr. Microsurg. 2016, 32, 50–55. [Google Scholar]
- Ramachandran, S.; Chew, K.Y.; Tan, B.K.; Kuo, Y.R. Current operative management and therapeutic algorithm of lymphedema in the lower extremities. Asian J. Surg. 2021, 44, 46–53. [Google Scholar]
- Coroneos, C.J.; Wong, F.C.; DeSnyder, S.M.; Shaitelman, S.F.; Schaverien, M.V. Correlation of L-Dex Bioimpedance Spectroscopy with Limb Volume and Lymphatic Function in Lymphedema. Lymphat. Res. Biol. 2019, 17, 301–307. [Google Scholar]
- Kim, W.J.; Jo, G.Y.; Park, J.H.; Do, H.K. Feasibility of segmental bioelectrical impedance analysis for mild- to moderate-degree breast cancer-related lymphedema: Correlation with circumferential volume measurement and phase angle. Medicine 2021, 100, e23722. [Google Scholar] [PubMed]
- McLaughlin, S.A.; Staley, A.C.; Vicini, F.; Thiruchelvam, P.; Hutchison, N.A.; Mendez, J.; MacNeill, F.; Rockson, S.G.; DeSnyder, S.M.; Klimberg, S.; et al. Considerations for Clinicians in the Diagnosis, Prevention, and Treatment of Breast Cancer-Related Lymphedema: Recommendations from a Multidisciplinary Expert ASBrS Panel: Part 1: Definitions, Assessments, Education, and Future Directions. Ann. Surg. Oncol. 2017, 24, 2818–2826. [Google Scholar]
- Tidhar, D.; Armer, J.M.; Deutscher, D.; Shyu, C.R.; Azuri, J.; Madsen, R. Measurement Issues in Anthropometric Measures of Limb Volume Change in Persons at Risk for and Living with Lymphedema: A Reliability Study. J. Pers. Med. 2015, 5, 341–353. [Google Scholar] [CrossRef]
- Kayıran, O.; De La Cruz, C.; Tane, K.; Soran, A. Lymphedema: From diagnosis to treatment. Turk. J. Surg. 2017, 33, 51–57. [Google Scholar] [PubMed]
- Qin, E.S.; Bowen, M.J.; James, S.L.; Chen, W.F. Multi-segment bioimpedance can assess patients with bilateral lymphedema. J. Plast. Reconstr. Aesthet. Surg. 2020, 73, 328–336. [Google Scholar]
- Ridner, S.H.; Dietrich, M.S.; Deng, J.; Bonner, C.M.; Kidd, N. Bioelectrical impedance for detecting upper limb lymphedema in nonlaboratory settings. Lymphat. Res. Biol. 2009, 7, 11–15. [Google Scholar]
- Suehiro, K.; Yamamoto, S.; Honda, S.; Morikage, N.; Harada, E.; Takemoto, Y.; Nagano, H.; Hamano, K. Perioperative variations in indices derived from noninvasive assessments to detect postmastectomy lymphedema. J. Vasc. Surg. Venous Lymphat. Disord. 2019, 7, 562–569. [Google Scholar] [PubMed]
- Yasunaga, Y.; Kinjo, Y.; Kondoh, S.; Yanagisawa, D.; Yuzuriha, S.; Kondoh, S. Screening for Breast Cancer-Related Lymphedema Development Using Extracellular Water Ratio. Lymphat. Res. Biol. 2023, 21, 447–455. [Google Scholar]
- Kim, L.; Jeon, J.Y.; Sung, I.Y.; Jeong, S.Y.; Do, J.H.; Kim, H.J. Prediction of treatment outcome with bioimpedance measurements in breast cancer related lymphedema patients. Ann. Rehabil. Med. 2011, 35, 687–693. [Google Scholar]
- Yasunaga, Y.; Yanagisawa, D.; Nakajima, Y.; Mimura, S.; Kobayashi, M.; Yuzuriha, S.; Kondoh, S. Water Reductive Effect of Lymphaticovenular Anastomosis on Upper-Limb Lymphedema: Bioelectrical Impedance Analysis and Comparison with Lower-Limb Lymphedema. J. Reconstr. Microsurg. 2020, 36, 660–666. [Google Scholar]
- Yoshida, S.; Koshima, I.; Imai, H.; Uchiki, T.; Sasaki, A.; Fujioka, Y.; Nagamatsu, S.; Yokota, K.; Harima, M.; Yamashita, S.; et al. Characteristics and outcomes of lymphaticovenular anastomosis in older patients with bilateral involvement versus younger patients with unilateral involvement in lower extremity lymphedema. J. Vasc. Surg. Venous Lymphat. Disord. 2020, 8, 646–657. [Google Scholar] [PubMed]
- Guliyeva, G.; Huayllani, M.T.; Boczar, D.; Avila, F.R.; Forte, A.J. Correlation of older age with severity of lymphedema in breast cancer survivors: A systematic review. Breast Dis. 2021, 40, 191–197. [Google Scholar] [PubMed]
- Donahue, P.M.C.; MacKenzie, A.; Filipovic, A.; Koelmeyer, L. Advances in the prevention and treatment of breast cancer-related lymphedema. Breast Cancer Res. Treat. 2023, 200, 1–14. [Google Scholar] [PubMed]
- de Godoy, J.M.; de Godoy, M.F.; Valente, A.; Camacho, E.L.; Paiva, E.V. Lymphoscintigraphic evaluation in patients after erysipelas. Lymphology 2000, 33, 177–180. [Google Scholar]
Characteristics | Value | |
---|---|---|
Number of patients | 48 | |
Number of surgeries | Single (%) | 14 (29.2) |
Multiple (additional) (%) | 34 (70.8) | |
Sex | Male (%) | 8 (16.6) |
Female (%) | 40 (83.3) | |
Age (years) | Average (range) | 53.2 (32–65) |
BMI | Average (range) | 24.7 (16.9–53.5) |
ISL stage | I (%) | 12 (25) |
II (%) | 30 (62.5) | |
Late II (%) | 6 (12.5) | |
III (%) | 1 (2.0) | |
Etiology of lymphedema | Primary (%) | 20 (41.7) |
Uterine cervical cancer (%) | 14 (29.2) | |
Uterine corpus cancer (%) | 9 (18.8) | |
Ovarian cancer (%) | 1 (2.0) | |
Other malignancy (%) | 4 (8.3) |
Predictor | Estimates | p | |
---|---|---|---|
Right leg ECW/TBW (BIA) | ECW/TBW | 96 | 0.021 |
age | −0.21 | 0.0025 | |
BMI | −0.12 | 0.043 | |
Right leg circumferential sum (tape measuring) | Circumferential sum | 0.02 | 0.46 |
age | −0.12 | 0.0093 | |
BMI | −0.12 | 0.15 | |
Left leg ECW/TBW (BIA) | ECW/TBW | 97 | 0.037 |
age | −0.17 | 0.0003 | |
BMI | −0.13 | 0.034 | |
Left leg circumferential sum (tape measuring) | Circumferential sum | 0.017 | 0.60 |
age | −0.11 | 0.013 | |
BMI | −0.11 | 0.22 |
Predictor | AUC | 95% CI | AUC Diff. | SE (Diff.) | p |
---|---|---|---|---|---|
Right leg ECW/TBW | 0.86 | 0.72–0.94 | |||
Right leg circumference sum | 0.77 | 0.60–0.88 | 0.090 | 0.055 | 0.10 |
Left leg ECW/TW | 0.86 | 0.71–0.94 | |||
Left leg circumference sum | 0.78 | 0.61–0.88 | 0.084 | 0.043 | 0.051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otsuka, W.; Yoshida, S.; Taketomi, N.; Orihashi, Y.; Koshima, I. The Role of Bioelectrical Impedance Analysis in Predicting Secondary Surgical Interventions for Lymphedema. J. Clin. Med. 2025, 14, 2151. https://doi.org/10.3390/jcm14072151
Otsuka W, Yoshida S, Taketomi N, Orihashi Y, Koshima I. The Role of Bioelectrical Impedance Analysis in Predicting Secondary Surgical Interventions for Lymphedema. Journal of Clinical Medicine. 2025; 14(7):2151. https://doi.org/10.3390/jcm14072151
Chicago/Turabian StyleOtsuka, Wataru, Shuhei Yoshida, Nanami Taketomi, Yasushi Orihashi, and Isao Koshima. 2025. "The Role of Bioelectrical Impedance Analysis in Predicting Secondary Surgical Interventions for Lymphedema" Journal of Clinical Medicine 14, no. 7: 2151. https://doi.org/10.3390/jcm14072151
APA StyleOtsuka, W., Yoshida, S., Taketomi, N., Orihashi, Y., & Koshima, I. (2025). The Role of Bioelectrical Impedance Analysis in Predicting Secondary Surgical Interventions for Lymphedema. Journal of Clinical Medicine, 14(7), 2151. https://doi.org/10.3390/jcm14072151