Spirit Interim Analysis: A Multicenter Prospective Observational Study of Outpatients with CKD and Decreased eGFR to Assess Therapeutic Algorithms, Disease Management and Quality of Life in Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Objectives
2.2. Study Population and Eligibility Criteria
2.3. Data Source
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. CKD History and Comorbidities
3.3. Laboratory Assessments and Physician’s Findings
3.4. Health Related Patient Reported Quality of Life (QoL)
3.5. Treatment Patterns Across CKD Stages
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Stafylas, P.; Sarafidis, P.; Tychala, C.; Pella, E.; Karaiskou, M.; Valsami, R.; Stergiou, G.; Boletis, I. The clinical and economic burden of chronic kidney disease in Greece. Nephrol. Dial. Transplant. 2023, 38, gfad063c_5632. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef]
- Fox, C.S.; Larson, M.G.; Leip, E.P.; Culleton, B.; Wilson, P.W.F.; Levy, D. Predictors of new-onset kidney disease in a community-based population. JAMA 2004, 291, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Coresh, J.; Astor, B.C.; Greene, T.; Eknoyan, G.; Levey, A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 2003, 41, 1–12. [Google Scholar] [CrossRef]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.M.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Rossing, P.; Caramori, M.L.; Chan, J.C.; Heerspink, H.J.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef]
- Collins, A.J.; Foley, R.N.; Chavers, B.; Gilbertson, D.; Herzog, C.; Johansen, K.; Kasiske, B.; Kutner, N.; Liu, J.; Peter, W.S.; et al. United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States. Am. J. Kidney Dis. 2012, 59, A7. [Google Scholar] [CrossRef]
- Bello, A.K.; Alrukhaimi, M.; Ashuntantang, G.E.; Basnet, S.; Rotter, R.C.; Douthat, W.G.; Kazancioglu, R.; Köttgen, A.; Nangaku, M.; Powe, N.R.; et al. Complications of chronic kidney disease: Current state, knowledge gaps, and strategy for action. Kidney Int. Suppl. 2017, 7, 122–129. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Appel, L.J.; Grams, M.E.; Gutekunst, L.; McCullough, P.A.; Palmer, B.F.; Pitt, B.; Sica, D.A.; Townsend, R.R. Potassium Homeostasis in Health and Disease: A Scientific Workshop Cosponsored by the National Kidney Foundation and the American Society of Hypertension. Am. J. Kidney Dis. 2017, 70, 844–858. [Google Scholar] [CrossRef] [PubMed]
- Bandak, G.; Sang, Y.; Gasparini, A.; Chang, A.R.; Ballew, S.H.; Evans, M.; Arnlov, J.; Lund, L.H.; Inker, L.A.; Coresh, J.; et al. Hyperkalemia After Initiating Renin-Angiotensin System Blockade: The Stockholm Creatinine Measurements (SCREAM) Project. J. Am. Heart Assoc. 2017, 6, e005428. [Google Scholar] [CrossRef] [PubMed]
- Rafique, Z.; Weir, M.R.; Onuigbo, M.; Pitt, B.; Lafayette, R.; Butler, J.; Lopes, M.; Farnum, C.; Peacock, W.F. Expert Panel Recommendations for the Identification and Management of Hyperkalemia and Role of Patiromer in Patients with Chronic Kidney Disease and Heart Failure. J. Manag. Care Spéc. Pharm. 2017, 23, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Rosano, G.M.C.; Tamargo, J.; Kjeldsen, K.P.; Lainscak, M.; Agewall, S.; Anker, S.D.; Ceconi, C.; Coats, A.J.S.; Drexel, H.; Filippatos, G.; et al. Expert consensus document on the management of hyperkalaemia in patients with cardiovascular disease treated with renin angiotensin aldosterone system inhibitors: Coordinated by the Working Group on Cardiovascular Pharmacotherapy of the European Society of Cardiology. Eur. Heart J. Cardiovasc. Pharmacother. 2018, 4, 180–188. [Google Scholar] [CrossRef]
- AlSahow, A.; AbdulShafy, M.; Al-Ghamdi, S.; AlJoburi, H.; AlMogbel, O.; Al-Rowaie, F.; Attallah, N.; Bader, F.; Hussein, H.; Hassan, M.; et al. Prevalence and management of hyperkalemia in chronic kidney disease and heart failure patients in the Gulf Cooperation Council (GCC). J. Clin. Hypertens. 2023, 25, 251–258. [Google Scholar] [CrossRef]
- Larivée, N.L.; Michaud, J.B.; More, K.M.; Wilson, J.-A.; Tennankore, K.K. Hyperkalemia: Prevalence, Predictors and Emerging Treatments. Cardiol. Ther. 2022, 12, 35–63. [Google Scholar] [CrossRef]
- Machado-Duque, M.E.; Gaviria-Mendoza, A.; Valladales-Restrepo, L.F.; Franco, J.S.; Forero, M.d.R.; Vizcaya, D.; E Machado-Alba, J. Treatment patterns of antidiabetic and kidney protective therapies among patients with type 2 diabetes mellitus and chronic kidney disease in Colombia. The KDICO descriptive study. Diabetol. Metab. Syndr. 2023, 15, 150. [Google Scholar] [CrossRef]
- Iyer, N.; Li, Q.; Shah, S.; Ganz, M.; Tan, T.D.; Gamble, C.; Mehanna, S.; Bakris, G. Glucose-lowering treatment patterns in patients with diabetic kidney disease. Am. J. Manag. Care 2022, 28, e301–e307. [Google Scholar] [CrossRef]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H.; Knoll, G.A.; Muntner, P.; Pecoits-Filho, R.; Sarnak, M.J.; et al. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Q.; Wang, Y.; Wang, J.; Zhang, L.; Zhao, M. Utilization of antihypertensive drugs among chronic kidney disease patients: Results from the Chinese cohort study of chronic kidney disease (C-STRIDE). J. Clin. Hypertens. 2020, 22, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Jesky, M.D.; Dutton, M.; Dasgupta, I.; Yadav, P.; Ng, K.P.; Fenton, A.; Kyte, D.; Ferro, C.J.; Calvert, M.; Cockwell, P.; et al. Health-Related Quality of Life Impacts Mortality but Not Progression to End-Stage Renal Disease in Pre-Dialysis Chronic Kidney Disease: A Prospective Observational Study. PLoS ONE 2016, 11, e0165675. [Google Scholar] [CrossRef] [PubMed]
- Kefale, B.; Alebachew, M.; Tadesse, Y.; Engidawork, E. Quality of life and its predictors among patients with chronic kidney disease: A hospital-based cross sectional study. PLoS ONE 2019, 14, e0212184. [Google Scholar] [CrossRef]
- Floria, I.; Kontele, I.; Grammatikopoulou, M.G.; Sergentanis, T.N.; Vassilakou, T. Quality of Life of Hemodialysis Patients in Greece: Associations with Socio-Economic, Anthropometric and Nutritional Factors. Int. J. Environ. Res. Public Health 2022, 19, 15389. [Google Scholar] [CrossRef]
- Chen, I.-R.; Wang, S.-M.; Liang, C.-C.; Kuo, H.-L.; Chang, C.-T.; Liu, J.-H.; Lin, H.-H.; Wang, I.-K.; Yang, Y.-F.; Chou, C.-Y.; et al. Association of walking with survival and RRT among patients with CKD stages 3-5. Clin. J. Am. Soc. Nephrol. 2014, 9, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Sasaki, T.; Yamamoto, S.; Hayashi, H.; Ako, S.; Tanaka, Y. Effects of exercise on kidney and physical function in patients with non-dialysis chronic kidney disease: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 18195. [Google Scholar] [CrossRef]
- Robinson-Cohen, C.; Littman, A.J.; Duncan, G.E.; Weiss, N.S.; Sachs, M.C.; Ruzinski, J.; Kundzins, J.; Rock, D.; de Boer, I.H.; Ikizler, T.A.; et al. Physical activity and change in estimated GFR among persons with CKD. J. Am. Soc. Nephrol. 2014, 25, 399–406. [Google Scholar] [CrossRef]
- Villanego, F.; Naranjo, J.; Vigara, L.A.; Cazorla, J.M.; Montero, M.E.; García, T.; Torrado, J.; Mazuecos, A. Impact of physical exercise in patients with chronic kidney disease: Sistematic review and meta-analysis. Nefrologia 2020, 40, 237–252. [Google Scholar] [CrossRef]
- Lee, S.; Kang, S.; Joo, Y.S.; Lee, C.; Nam, K.H.; Yun, H.-R.; Park, J.T.; Chang, T.I.; Yoo, T.-H.; Kim, S.W.; et al. Smoking, Smoking Cessation, and Progression of Chronic Kidney Disease: Results From KNOW-CKD Study. Nicotine Tob. Res. 2021, 23, 92–98. [Google Scholar] [CrossRef]
- Roehm, B.; Simoni, J.; Pruszynski, J.; Wesson, D.E. Cigarette Smoking Attenuates Kidney Protection by Angiotensin-Converting Enzyme Inhibition in Nondiabetic Chronic Kidney Disease. Am. J. Nephrol. 2017, 46, 260–267. [Google Scholar] [CrossRef]
- Bundy, J.D.; Bazzano, L.A.; Xie, D.; Cohan, J.; Dolata, J.; Fink, J.C.; Hsu, C.-Y.; Jamerson, K.; Lash, J.; Makos, G.; et al. Self-Reported Tobacco, Alcohol, and Illicit Drug Use and Progression of Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2018, 13, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Joo, Y.S.; Koh, H.; Nam, K.H.; Lee, S.; Kim, J.; Lee, C.; Yun, H.-R.; Park, J.T.; Kang, E.W.; Chang, T.I.; et al. Alcohol Consumption and Progression of Chronic Kidney Disease: Results from the Korean Cohort Study for Outcome in Patients with Chronic Kidney Disease. Mayo Clin. Proc. 2020, 95, 293–305. [Google Scholar] [CrossRef]
- Gatwood, J.; Chisholm-Burns, M.; Davis, R.; Thomas, F.; Potukuchi, P.; Hung, A.; Kovesdy, C.P. Evidence of chronic kidney disease in veterans with incident diabetes mellitus. PLoS ONE 2018, 13, e0192712. [Google Scholar] [CrossRef] [PubMed]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D.R. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, S.E. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018, 129, 95–99. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Alicic, R.Z.; Duru, O.K.; Jones, C.R.; Daratha, K.B.; Nicholas, S.B.; McPherson, S.M.; Neumiller, J.J.; Bell, D.S.; Mangione, C.M.; et al. Clinical Characteristics of and Risk Factors for Chronic Kidney Disease Among Adults and Children: An Analysis of the CURE-CKD Registry. JAMA Netw. Open 2019, 2, e1918169. [Google Scholar] [CrossRef]
Primary objective |
|
Secondary objectives |
|
|
|
Inclusion Criteria Patients need to meet all of the following criteria to be included in the study: |
|
|
|
|
Exclusion criteria Patients need to meet none of the following criteria to be included in the study: |
|
|
|
|
|
|
|
|
G3a n = 64 (37.9%) | G3b n = 67 (39.6%) | G4 n = 38 (22.5%) | Total n = 169 (100.0%) | |
---|---|---|---|---|
Age (years) | ||||
n | 64 | 67 | 38 | 169 |
Mean (SD) | 67.2 (12.1) | 69.8 (12.7) | 70.5 (14.1) | 69.0 (12.8) |
Gender, n (%) | ||||
Male | 52 (81.3) | 51 (76.1) | 18 (47.4) | 121 (71.6) |
Race, n (%) | ||||
White/Caucasian | 62 (96.9) | 65 (97.0) | 36 (94.7) | 163 (96.5) |
Asian | 1 (1.6) | - | - | 1 (0.6) |
Black | - | - | 1 (2.6) | 1 (0.6) |
Other | 1 (1.6) | 2 (3.0) | 1 (2.6) | 4 (2.4) |
BMI [1] (kg/m2) | ||||
n | 64 | 67 | 38 | 169 |
Mean (SD) | 28.5 (4.2) | 28.1 (4.7) | 28.2 (5.8) | 28.2 (4.8) |
Comorbidities [1],[2], n (%) | ||||
Arterial Hypertension | 45 (70.3) | 46 (68.7) | 30 (78.9) | 121 (71.6) |
Diabetes Mellitus Type 2 | 21 (32.8) | 22 (32.8) | 14 (36.8) | 57 (33.7) |
Coronary Artery Disease | 11 (17.2) | 15 (22.4) | 5 (13.2) | 31 (18.3) |
Depression | 2 (3.1) | 2 (2.9) | 1 (2.6) | 5 (2.9) |
Dyslipidemia | 21 (32.8) | 21 (31.3) | 7 (18.4) | 49 (28.9) |
Hyperlipidemia | 7 (10.9) | 6 (8.9) | 2 (5.3) | 15 (8.9) |
Hypothyroidism | 4 (6.3) | 7 (10.4) | 6 (15.8) | 17 (10.1) |
Hyperuricemia | 10 (15.6) | 8 (11.9) | 5 (13.2) | 23 (13.6) |
Atrial Fibrillation | 2 (3.1) | 7 (10.4) | 5 (13.2) | 14 (8.3) |
Heart Failure | 1 (1.6) | 2 (2.9) | 1 (2.6) | 4 (2.4) |
Osteoporosis | 2 (3.1) | 1 (1.5) | 1 (2.6) | 4 (2.4) |
Missing | 6 (9.4) | 7 (10.4) | 5 (13.2) | 18 (10.7) |
Hemoglobin (g/dL) | ||||
n | 59 | 51 | 30 | 140 |
Mean (SD) | 13.1 (1.73) | 12.7 (2.36) | 11.5 (1.49) | 12.6 (2.01) |
Missing | 5.0 | 16.0 | 8.0 | 29.0 |
Hematocrit (%) | ||||
n | 59 | 51 | 30 | 140 |
Mean (SD) | 39.8 (4.79) | 38.6 (6.71) | 35.5 (4.45) | 38.4 (5.70) |
RBC (106/μL) | ||||
n | 45 | 42 | 28 | 115 |
Mean (SD) | 4.6 (0.67) | 4.2 (0.70) | 4.0 (0.45) | 4.3 (0.68) |
Missing | 19.0 | 25.0 | 10.0 | 54.0 |
MCV (μm3) | ||||
n | 51 | 47 | 29 | 127 |
Mean (SD) | 88.1 (6.27) | 89.6 (7.32) | 87.1 (6.39) | 88.4 (6.72) |
Missing | 13.0 | 20.0 | 9.0 | 42.0 |
WBC (103/μL) | ||||
n | 58 | 51 | 30 | 139 |
Mean (SD) | 7.8 (7.90) | 8.2 (2.70) | 7.3 (1.85) | 7.8 (5.45) |
Missing | 6.0 | 16.0 | 8.0 | 30.0 |
Platelets (103/μL) | ||||
n | 59 | 50 | 30 | 139 |
Mean (SD) | 248.4 (64.00) | 249.4 (72.30) | 247.0 (72.76) | 248.4 (68.49) |
Missing | 5.0 | 17.0 | 8.0 | 30.0 |
G3a n = 64 (37.9%) | G3b n = 67 (39.6%) | G4 n = 38 (22.5%) | Total n = 169 (100.0%) | |
---|---|---|---|---|
Health Questionnaire (EQ-5D-5L) | ||||
Health Score (VAS Scale) | 63 (98.4) | 67 (100.0) | 37 (97.4) | 167 (98.8) |
Mean (SD) | 74.6 (18.9) | 70.4 (18.8) | 70.5 (15.8) | 72.0 (18.3) |
Kidney Disease and Quality of Life (KDQOL-SF) | ||||
Health Rate (Scale) | 62 (96.9) | 67 (100.0) | 37 (97.4) | 166 (99.4) |
Mean (SD) | 7.0 (1.7) | 6.7 (2.0) | 6.5 (1.7) | 6.7 (1.8) |
G3a n = 64 (37.9%) | G3b n = 67 (39.6%) | G4 n = 38 (22.5%) | Total n = 169 (100.0%) | |
---|---|---|---|---|
Antibiotics [1], [3], n (%) | 2 (3.1) | 2 (2.9) | 2 (5.3) | 6 (3.6) |
Antidiabetic [1], [3], n (%) | 27 (42.2) | 25 (37.3) | 13 (34.2) | 65 (38.5) |
Metformin [2] | 15 (55.6) | 4 (16.0) | 2 (15.4) | 21 (32.3) |
DPP4 inhibitor [2] | 9 (33.3) | 10 (40.0) | 6 (46.2) | 25 (38.5) |
SGLT2 inhibitor [2], [4] | 5 (18.5) | 8 (32.0) | 1 (7.7) | 14 (21.5) |
GLP-1 analogue [2] | 6 (22.2) | 4 (16.0) | - | 10 (15.4) |
Other [2] | - | - | 10 (76.9) | 10 (15.4) |
Antihypertensive [1], [3], n (%) | 46 (71.9) | 53 (79.1) | 34 (89.5) | 133 (78.7) |
Adrenergic receptor antagonist [2] | 10 (21.7) | 14 (26.4) | 14 (41.2) | 38 (28.6) |
Calcium channel blocker [2] | 24 (52.2) | 36 (67.9) | 23 (67.6) | 83 (62.4) |
Angiotensin II receptor antagonist [2] | 36 (78.3) | 22 (41.5) | 6 (17.6) | 64 (48.1) |
Diuretic [2] | 16 (34.8) | 9 (16.9) | 11 (32.4) | 36 (27.1) |
ACE inhibitor [2] | 6 (13.0) | 6 (11.3) | 2 (5.9) | 14 (10.5) |
Other [2] | 10 (21.7) | 11 (20.8) | 10 (29.4) | 31 (23.3) |
Antiplatelet [1], [3], n (%) | 17 (26.6) | 19 (28.4) | 5 (13.2) | 41 (24.3) |
Lipid-lowering agents [1], [3], n (%) | 43 (67.2) | 41 (61.2) | 13 (34.2) | 97 (57.4) |
Immune suppressants/immunom odulators/NSAIDS [1], [3], n (%) | 1 (1.6) | 4 (5.9) | - | 5 (2.9) |
Other medications [1], [3], n (%) | 14 (21.9) | 23 (34.3) | 11 (28.9) | 48 (26.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petras, D.; Marinaki, S.; Panagoutsos, S.; Stefanidis, I.; Stylianou, K.; Ntounousi, E.; Lionaki, S.; Tzanakis, I.; Griveas, I.; Xidakis, D.; et al. Spirit Interim Analysis: A Multicenter Prospective Observational Study of Outpatients with CKD and Decreased eGFR to Assess Therapeutic Algorithms, Disease Management and Quality of Life in Greece. J. Clin. Med. 2025, 14, 2079. https://doi.org/10.3390/jcm14062079
Petras D, Marinaki S, Panagoutsos S, Stefanidis I, Stylianou K, Ntounousi E, Lionaki S, Tzanakis I, Griveas I, Xidakis D, et al. Spirit Interim Analysis: A Multicenter Prospective Observational Study of Outpatients with CKD and Decreased eGFR to Assess Therapeutic Algorithms, Disease Management and Quality of Life in Greece. Journal of Clinical Medicine. 2025; 14(6):2079. https://doi.org/10.3390/jcm14062079
Chicago/Turabian StylePetras, Dimitrios, Smaragdi Marinaki, Stylianos Panagoutsos, Ioannis Stefanidis, Kostantinos Stylianou, Evangelia Ntounousi, Sofia Lionaki, Ioannis Tzanakis, Ioannis Griveas, Dimitrios Xidakis, and et al. 2025. "Spirit Interim Analysis: A Multicenter Prospective Observational Study of Outpatients with CKD and Decreased eGFR to Assess Therapeutic Algorithms, Disease Management and Quality of Life in Greece" Journal of Clinical Medicine 14, no. 6: 2079. https://doi.org/10.3390/jcm14062079
APA StylePetras, D., Marinaki, S., Panagoutsos, S., Stefanidis, I., Stylianou, K., Ntounousi, E., Lionaki, S., Tzanakis, I., Griveas, I., Xidakis, D., Theodoropoulou, E., Gourlis, D., Andreadellis, A., Goumenos, D., & Liakopoulos, V. (2025). Spirit Interim Analysis: A Multicenter Prospective Observational Study of Outpatients with CKD and Decreased eGFR to Assess Therapeutic Algorithms, Disease Management and Quality of Life in Greece. Journal of Clinical Medicine, 14(6), 2079. https://doi.org/10.3390/jcm14062079