Assessing Parkinson’s Rest Tremor from the Wrist with Accelerometry and Gyroscope Signals in Patients with Deep Brain Stimulation: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Clinical Assessments and Data Collection
2.3. Device Descriptions
2.4. Measurement Protocol
2.5. Signal Preprocessing and Feature Extraction
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skorvanek, M.; Martinez-Martin, P.; Kovacs, N.; Zezula, I.; Rodriguez-Violante, M.; Corvol, J.-C.; Taba, P.; Seppi, K.; Levin, O.; Schrag, A.; et al. Relationship between the MDS-UPDRS and Quality of Life: A Large Multicenter Study of 3206 Patients. Park. Relat. Disord. 2018, 52, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Moreau, C.; Rouaud, T.; Grabli, D.; Benatru, I.; Remy, P.; Marques, A.-R.; Drapier, S.; Mariani, L.-L.; Roze, E.; Devos, D.; et al. Overview on Wearable Sensors for the Management of Parkinson’s Disease. npj Park. Dis. 2023, 9, 153. [Google Scholar] [CrossRef]
- Haubenberger, D.; Abbruzzese, G.; Bain, P.G.; Bajaj, N.; Benito-León, J.; Bhatia, K.P.; Deuschl, G.; Forjaz, M.J.; Hallett, M.; Louis, E.D.; et al. Transducer-Based Evaluation of Tremor: Transducers for Assessing Tremor. Mov. Disord. 2016, 31, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef]
- Richards, M.; Marder, K.; Cote, L.; Mayeux, R. Interrater Reliability of the Unified Parkinson’s Disease Rating Scale Motor Examination. Mov. Disord. 1994, 9, 89–91. [Google Scholar] [CrossRef]
- Elble, R.J. Tremor Amplitude Is Logarithmically Related to 4- and 5-Point Tremor Rating Scales. Brain 2006, 129, 2660–2666. [Google Scholar] [CrossRef]
- Tam, W.; Alajlani, M.; Abd-alrazaq, A. An Exploration of Wearable Device Features Used in UK Hospital Parkinson Disease Care: Scoping Review. J. Med. Internet Res. 2023, 25, e42950. [Google Scholar] [CrossRef] [PubMed]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A Randomized Trial of Deep-Brain Stimulation for Parkinson’s Disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef]
- Kremer, N.I.; Pauwels, R.W.J.; Pozzi, N.G.; Lange, F.; Roothans, J.; Volkmann, J.; Reich, M.M. Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions. JCM 2021, 10, 3468. [Google Scholar] [CrossRef]
- Pulliam, C.L.; Heldman, D.A.; Orcutt, T.H.; Mera, T.O.; Giuffrida, J.P.; Vitek, J.L. Motion Sensor Strategies for Automated Optimization of Deep Brain Stimulation in Parkinson’s Disease. Park. Relat. Disord. 2015, 21, 378–382. [Google Scholar] [CrossRef]
- Wenzel, G.R.; Roediger, J.; Brücke, C.; Marcelino, A.L.D.A.; Gülke, E.; Pötter-Nerger, M.; Scholtes, H.; Wynants, K.; Juárez Paz, L.M.; Kühn, A.A. CLOVER-DBS: Algorithm-Guided Deep Brain Stimulation-Programming Based on External Sensor Feedback Evaluated in a Prospective, Randomized, Crossover, Double-Blind, Two-Center Study. JPD 2021, 11, 1887–1899. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Krikmann, Ü.; Taba, P.; Lai, T.; Asser, T. Validation of an Estonian Version of the Parkinson’s Disease Questionnaire (PDQ-39). Health Qual Life Outcomes 2008, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Van Der Linden, C.; Berger, T.; Brandt, G.A.; Strelow, J.N.; Jergas, H.; Baldermann, J.C.; Visser-Vandewalle, V.; Fink, G.R.; Barbe, M.T.; Petry-Schmelzer, J.N.; et al. Accelerometric Classification of Resting and Postural Tremor Amplitude. Sensors 2023, 23, 8621. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.; Arjunan, S.P.; Peter, J.; Perju-Dumbrava, L.; Ding, C.; Eller, M.; Raghav, S.; Kempster, P.; Motin, M.A.; Radcliffe, P.J.; et al. Wearable Accelerometer and Gyroscope Sensors for Estimating the Severity of Essential Tremor. IEEE J. Transl. Eng. Health Med. 2024, 12, 194–203. [Google Scholar] [CrossRef]
- Salarian, A.; Russmann, H.; Wider, C.; Burkhard, P.R.; Vingerhoets, F.J.G.; Aminian, K. Quantification of Tremor and Bradykinesia in Parkinson’s Disease Using a Novel Ambulatory Monitoring System. IEEE Trans. Biomed. Eng. 2007, 54, 313–322. [Google Scholar] [CrossRef]
- López-Blanco, R.; Velasco, M.A.; Méndez-Guerrero, A.; Romero, J.P.; Del Castillo, M.D.; Serrano, J.I.; Rocon, E.; Benito-León, J. Smartwatch for the Analysis of Rest Tremor in Patients with Parkinson’s Disease. J. Neurol. Sci. 2019, 401, 37–42. [Google Scholar] [CrossRef]
- Giuffrida, J.P.; Riley, D.E.; Maddux, B.N.; Heldman, D.A. Clinically Deployable Kinesia™ Technology for Automated Tremor Assessment. Mov. Disord. 2009, 24, 723–730. [Google Scholar] [CrossRef]
- Smid, A.; Elting, J.W.J.; Van Dijk, J.M.C.; Otten, B.; Oterdoom, D.L.M.; Tamasi, K.; Heida, T.; Van Laar, T.; Drost, G. Intraoperative Quantification of MDS-UPDRS Tremor Measurements Using 3D Accelerometry: A Pilot Study. J. Clin. Med. 2022, 11, 2275. [Google Scholar] [CrossRef]
- Elble, R.J.; Ondo, W. Tremor Rating Scales and Laboratory Tools for Assessing Tremor. J. Neurol. Sci. 2022, 435, 120202. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, P.; Lueth, T. Quantitative Assessment of Parkinsonian Tremor Based on an Inertial Measurement Unit. Sensors 2015, 15, 25055–25071. [Google Scholar] [CrossRef]
- Elble, R.J.; Hellriegel, H.; Raethjen, J.; Deuschl, G. Assessment of Head Tremor with Accelerometers Versus Gyroscopic Transducers. Mov. Disord. Clin. Pract. 2017, 4, 205–211. [Google Scholar] [CrossRef]
- Gironell, A.; Pascual-Sedano, B.; Aracil, I.; Marín-Lahoz, J.; Pagonabarraga, J.; Kulisevsky, J. Tremor Types in Parkinson Disease: A Descriptive Study Using a New Classification. Park. Dis. 2018, 2018, 4327597. [Google Scholar] [CrossRef]
- O’Day, J.; Lee, M.; Seagers, K.; Hoffman, S.; Jih-Schiff, A.; Kidziński, Ł.; Delp, S.; Bronte-Stewart, H. Assessing Inertial Measurement Unit Locations for Freezing of Gait Detection and Patient Preference. J. NeuroEng. Rehabil. 2022, 19, 20. [Google Scholar] [CrossRef] [PubMed]
- Angelini, L.; Terranova, R.; Lazzeri, G.; Van Den Berg, K.R.E.; Dirkx, M.F.; Paparella, G. The Role of Laboratory Investigations in the Classification of Tremors. Neurol. Sci. 2023, 44, 4183–4192. [Google Scholar] [CrossRef]
- Van Brummelen, E.M.J.; Ziagkos, D.; De Boon, W.M.I.; Hart, E.P.; Doll, R.J.; Huttunen, T.; Kolehmainen, P.; Groeneveld, G.J. Quantification of Tremor Using Consumer Product Accelerometry Is Feasible in Patients with Essential Tremor and Parkinson’s Disease: A Comparative Study. J. Clin. Mov. Disord. 2020, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Di Biase, L.; Brittain, J.-S.; Shah, S.A.; Pedrosa, D.J.; Cagnan, H.; Mathy, A.; Chen, C.C.; Martín-Rodríguez, J.F.; Mir, P.; Timmerman, L.; et al. Tremor Stability Index: A New Tool for Differential Diagnosis in Tremor Syndromes. Brain 2017, 140, 1977–1986. [Google Scholar] [CrossRef] [PubMed]
- Vial, F.; Kassavetis, P.; Merchant, S.; Haubenberger, D.; Hallett, M. How to Do an Electrophysiological Study of Tremor. Clin. Neurophysiol. Pract. 2019, 4, 134–142. [Google Scholar] [CrossRef]
- Espay, A.J.; Hausdorff, J.M.; Sánchez-Ferro, Á.; Klucken, J.; Merola, A.; Bonato, P.; Paul, S.S.; Horak, F.B.; Vizcarra, J.A.; Mestre, T.A.; et al. A Roadmap for Implementation of Patient-centered Digital Outcome Measures in Parkinson’s Disease Obtained Using Mobile Health Technologies. Mov. Disord. 2019, 34, 657–663. [Google Scholar] [CrossRef]
- Thorp, J.E.; Adamczyk, P.G.; Ploeg, H.-L.; Pickett, K.A. Monitoring Motor Symptoms During Activities of Daily Living in Individuals With Parkinson’s Disease. Front. Neurol. 2018, 9, 1036. [Google Scholar] [CrossRef]
- Dominey, T.; Kehagia, A.A.; Gorst, T.; Pearson, E.; Murphy, F.; King, E.; Carroll, C. Introducing the Parkinson’s KinetiGraph into Routine Parkinson’s Disease Care: A 3-Year Single Centre Experience. J. Park. Dis. 2020, 10, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Kantartjis, M.; Severson, J.; Dorsey, R.; Adams, J.L.; Kangarloo, T.; Kostrzebski, M.A.; Best, A.; Merickel, M.; Amato, D.; et al. Wearable Sensor-Based Assessments for Remotely Screening Early-Stage Parkinson’s Disease. Sensors 2024, 24, 5637. [Google Scholar] [CrossRef] [PubMed]
Tremor Grade | Visual Assessment |
---|---|
0: Normal | No tremor |
1: Slight | <1 cm in maximal amplitude |
2: Mild | ≥1 cm but <3 cm in maximal amplitude |
3: Moderate | ≥3 cm but <10 cm in maximal amplitude |
4: Severe | ≥10 cm in maximal amplitude |
Variable | Value | |
---|---|---|
Men (%) | 15 (83.3) | |
Age (SD) | 59.5 (7.3) | |
Age at diagnosis (SD) | 47.9 (6.1) | |
Years from PD diagnosis (IQR) | 9.5 (10.3) | |
Years to motor fluctuations (SD) | 7.2 (3.8) | |
Years to dyskinesias (SD) * | 9.4 (4.8) | |
Years to DBS operation (SD) | 9.8 (4.9) | |
Levodopa daily dose, mg (SD) | 694.4 (301.9) | |
Modified Hoehn–Yahr scale (IQR) | DBS-on/Dopa-on | 1.5 (1.1) |
Modified Hoehn–Yahr scale (IQR) | DBS-off/Dopa-off | 2 (1.1) |
PDQ-39SI (SD) | 40 (16.8) | |
MoCa (SD) | 27.1 (1.3) | |
MDS-UPDRS I (SD) | 10.2 (5.8) | |
MDS-UPDRS II (SD) | 14.5 (5.8) | |
MDS-UPDRS III (SD) | DBS-on/Dopa-on | 16.9 (13.4) |
DBS-on/Dopa-off | 24.5 (20.0) | |
DBS-off/Dopa-on | 40.8 (17.5) | |
DBS-off/Dopa-off | 56.7 (23.1) | |
MDS-UPDRS item 3.17 (IQR) | DBS-on/Dopa-off | 0 (1) |
DBS-off/Dopa-off | 3 (1) |
Patient | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBS-off | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 1 | 3 | 2 | 2 | 3 | 2 | 3 | 3 | 3 | 4 | 4 |
DBS-on | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 2 |
TS | α (95% CI) | β (95% CI) | r | R2 |
---|---|---|---|---|
AUC-a | 1.304 (1.180, 1.429) | 0.611 (0.355, 0.866) | 0.964 | 0.930 |
AUC-g | 1.281 (1.104, 1.459) | −1.401 (−1.764, −1.037) | 0.929 | 0.864 |
ACC | 0.579 (0.528, 0.630) | 0.289 (0.185, 0.393) | 0.970 | 0.940 |
AV | 0.663 (0.581, 0.745) | −0.829 (−0.997, −0.661) | 0.942 | 0.888 |
RMS-a | 0.579 (0.526, 0.631) | 0.398 (0.291, 0.505) | 0.968 | 0.937 |
RMS-g | 0.696 (0.622, 0.771) | −0.725 (−0.877, −0.573) | 0.956 | 0.914 |
AMP | 0.557 (0.474, 0.640) | −1.728 (−1.898, −1.558) | 0.919 | 0.845 |
Feature | ICC | 95% Confidence Interval | |
---|---|---|---|
Lower | Upper | ||
AUC-a | 0.986 | 0.975 | 0.992 |
AUC-g | 0.983 | 0.971 | 0.991 |
ACC | 0.921 | 0.868 | 0.956 |
AV | 0.906 | 0.844 | 0.947 |
RMS-a | 0.919 | 0.863 | 0.955 |
RMS-g | 0.901 | 0.837 | 0.945 |
AMP | 0.903 | 0.840 | 0.946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keba, M.; Bachmann, M.; Lass, J.; Rätsep, T. Assessing Parkinson’s Rest Tremor from the Wrist with Accelerometry and Gyroscope Signals in Patients with Deep Brain Stimulation: An Observational Study. J. Clin. Med. 2025, 14, 2073. https://doi.org/10.3390/jcm14062073
Keba M, Bachmann M, Lass J, Rätsep T. Assessing Parkinson’s Rest Tremor from the Wrist with Accelerometry and Gyroscope Signals in Patients with Deep Brain Stimulation: An Observational Study. Journal of Clinical Medicine. 2025; 14(6):2073. https://doi.org/10.3390/jcm14062073
Chicago/Turabian StyleKeba, Martin, Maie Bachmann, Jaanus Lass, and Tõnu Rätsep. 2025. "Assessing Parkinson’s Rest Tremor from the Wrist with Accelerometry and Gyroscope Signals in Patients with Deep Brain Stimulation: An Observational Study" Journal of Clinical Medicine 14, no. 6: 2073. https://doi.org/10.3390/jcm14062073
APA StyleKeba, M., Bachmann, M., Lass, J., & Rätsep, T. (2025). Assessing Parkinson’s Rest Tremor from the Wrist with Accelerometry and Gyroscope Signals in Patients with Deep Brain Stimulation: An Observational Study. Journal of Clinical Medicine, 14(6), 2073. https://doi.org/10.3390/jcm14062073