Development and Validation of an MRI-Based Brain Volumetry Model Predicting Poor Psychomotor Outcomes in Preterm Neonates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Neurodevelopmental Outcomes and Demographics
2.3. MRI Protocols
2.4. Image Processing and Analysis
2.5. Machine Learning and Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Prediction Model Performances
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NDI | neurodevelopmental impairments |
TEA | term-equivalent age |
MRI | magnetic resonance imaging |
DTI | diffusion tensor imaging |
BSID-II | Bayley Scales of Infant and Toddler Development, Second Edition |
K-BSID-II | Korean-Bayley Scales of Infant and Toddler Development |
PDI | psychomotor developmental index |
MDI | mental developmental index |
PVL | periventricular leukomalacia |
IVH | intraventricular hemorrhage |
CA | corrected age |
FA | fractional anisotropy |
PLIC | posterior limb of the internal capsule |
AUROC | area under the receiver operating curve |
CI | confidence interval |
IQR | interquartile range |
VLBWIs | very low birth weight infants |
FA | fractional anisotropy |
PLIC | posterior limb of the internal capsule |
NEC | necrotizing enterocolitis |
HC | head circumference |
AUPRC | area under the precision recall curve |
SD | standard deviation |
NICU | neonatal intensive care unit |
ELBWIs | extremely low birth weight infants |
Appendix A
AUROC (95% Confidence Interval) | Accuracy | Sensitivity | Precision | F1 Score | |
---|---|---|---|---|---|
PDI predictor | |||||
Model 1 | 0.73 (0.56–0.90) | 69.0 | 53.8 | 50.0 | 0.52 |
Model 2 | 0.84 (0.71–0.98) | 83.8 | 84.6 | 55.0 | 0.67 |
Model 3 | 0.93 (0.85–1.00) | 85.7 | 53.8 | 100.0 | 0.70 |
MDI predictor | |||||
Model 1 | 0.71 (0.54–0.62) | 61.9 | 71.4 | 60.0 | 0.65 |
Model 2 | 0.75 (0.59–0.91) | 73.8 | 76.2 | 72.7 | 0.74 |
Model 3 | 0.78 (0.63–0.92) | 69.0 | 81.0 | 65.4 | 0.72 |
References
- Torchin, H.; Morgan, A.S.; Ancel, P.Y. International comparisons of neurodevelopmental outcomes in infants born very preterm. Semin. Fetal Neonatal Med. 2020, 25, 101109. [Google Scholar] [CrossRef] [PubMed]
- Spittle, A.; Orton, J.; Anderson, P.J.; Boyd, R.; Doyle, L.W. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst. Rev. 2015, 2015, CD005495. [Google Scholar] [CrossRef]
- Song, I.G. Neurodevelopmental outcomes of preterm infants. Clin. Exp. Pediatr. 2022, 66, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Lemyre, B.; Daboval, T.; Barrowman, N.; Moore, G.P. A meta-analysis of neurodevelopmental outcomes at 4–10 years in children born at 22–25 weeks gestation. Acta Paediatr. 2019, 108, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Woodward, L.J.; Anderson, P.J.; Austin, N.C.; Howard, K.; Inder, T.E. Neonatal mri to predict neurodevelopmental outcomes in preterm infants. N. Engl. J. Med. 2006, 355, 685–694. [Google Scholar] [CrossRef]
- Woodward, L.J.; Edgin, J.O.; Thompson, D.; Inder, T.E. Object working memory deficits predicted by early brain injury and development in the preterm infant. Brain 2005, 128, 2578–2587. [Google Scholar] [CrossRef]
- Anderson, P.J.; Cheong, J.L.; Thompson, D.K. The predictive validity of neonatal mri for neurodevelopmental outcome in very preterm children. Semin. Perinatol. 2015, 39, 147–158. [Google Scholar] [CrossRef]
- Rademaker, K.J.; Uiterwaal, C.S.; Beek, F.J.; van Haastert, I.C.; Lieftink, A.F.; Groenendaal, F.; Grobbee, D.E.; de Vries, L.S. Neonatal cranial ultrasound versus mri and neurodevelopmental outcome at school age in children born preterm. Arch. Dis. Child. Fetal Neonatal Ed. 2005, 90, F489–F493. [Google Scholar] [CrossRef]
- Inder, T.E.; Wells, S.J.; Mogridge, N.B.; Spencer, C.; Volpe, J.J. Defining the nature of the cerebral abnormalities in the premature infant: A qualitative magnetic resonance imaging study. J. Pediatr. 2003, 143, 171–179. [Google Scholar] [CrossRef]
- Woodward, L.J.; Mogridge, N.; Wells, S.W.; Inder, T.E. Can neurobehavioral examination predict the presence of cerebral injury in the very low birth weight infant? J. Dev. Behav. Pediatr. 2004, 25, 326–334. [Google Scholar] [CrossRef]
- Martinez-Biarge, M.; Groenendaal, F.; Kersbergen, K.J.; Benders, M.J.N.L.; Foti, F.; van Haastert, I.C.; Cowan, F.M.; de Vries, L.S. Neurodevelopmental outcomes in preterm infants with white matter injury using a new mri classification. Neonatology 2019, 116, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Kidokoro, H.; Anderson, P.J.; Doyle, L.W.; Woodward, L.J.; Neil, J.J.; Inder, T.E. Brain injury and altered brain growth in preterm infants: Predictors and prognosis. Pediatrics 2014, 134, e444–e453. [Google Scholar] [CrossRef] [PubMed]
- Sylvestre, A.; Desmarais, C.; Meyer, F.; Bairati, I.; Leblond, J. Prediction of the outcome of children who had a language delay at age 2 when they are aged 4: Still a challenge. Int. J. Speech Lang. Pathol. 2018, 20, 731–744. [Google Scholar] [CrossRef]
- Othman, A. Child developmental delays and disorders: Speech and language delay. FP Essent. 2021, 510, 17–21. [Google Scholar] [PubMed]
- Rogers, E.E.; Hintz, S.R. Early neurodevelopmental outcomes of extremely preterm infants. Semin. Perinatol. 2016, 40, 497–509. [Google Scholar] [CrossRef]
- Noritz, G.H.; Murphy, N.A.; Neuromotor Screening Expert, P. Motor delays: Early identification and evaluation. Pediatrics 2013, 131, e2016–e2027. [Google Scholar] [CrossRef]
- Brown, K.A.; Parikh, S.; Patel, D.R. Understanding basic concepts of developmental diagnosis in children. Transl. Pediatr. 2020, 9, S9–S22. [Google Scholar] [CrossRef]
- Li, X.; Kang, Y.; Tang, H. The effects of early rehabilitation in high-risk infants with brain injury: A systematic review and meta-analysis. Transl. Pediatr. 2021, 10, 2467–2478. [Google Scholar] [CrossRef]
- Valavani, E.; Blesa, M.; Galdi, P.; Sullivan, G.; Dean, B.; Cruickshank, H.; Sitko-Rudnicka, M.; Bastin, M.E.; Chin, R.F.M.; MacIntyre, D.J.; et al. Language function following preterm birth: Prediction using machine learning. Pediatr. Res. 2022, 92, 480–489. [Google Scholar] [CrossRef]
- Selvanathan, T.; Guo, T.; Ufkes, S.; Chau, V.; Branson, H.; Synnes, A.; Ly, L.G.; Kelly, E.N.; Grunau, R.E.; Miller, S.P. Size and location of preterm brain injury and associations with neurodevelopmental outcomes. Neurology 2024, 102, e209264. [Google Scholar] [CrossRef]
- Abernethy, L.J.; Cooke, R.W.; Foulder-Hughes, L. Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm. Pediatr. Res. 2004, 55, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Abernethy, L.J.; Palaniappan, M.; Cooke, R.W.I. Quantitative magnetic resonance imaging of the brain in survivors of very low birth weight. Arch. Dis. Child. 2002, 87, 279–283. [Google Scholar] [CrossRef]
- Nagy, Z.; Westerberg, H.; Skare, S.; Andersson, J.L.; Lilja, A.; Flodmark, O.; Fernell, E.; Holmberg, K.; Bohm, B.; Forssberg, H.; et al. Preterm children have disturbances of white matter at 11 years of age as shown by diffusion tensor imaging. Pediatr. Res. 2003, 54, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Pannek, K.; Scheck, S.M.; Colditz, P.B.; Boyd, R.N.; Rose, S.E. Magnetic resonance diffusion tractography of the preterm infant brain: A systematic review. Dev. Med. Child. Neurol. 2014, 56, 113–124. [Google Scholar] [CrossRef]
- Kimpton, J.A.; Batalle, D.; Barnett, M.L.; Hughes, E.J.; Chew, A.T.M.; Falconer, S.; Tournier, J.D.; Alexander, D.; Zhang, H.; Edwards, A.D.; et al. Diffusion magnetic resonance imaging assessment of regional white matter maturation in preterm neonates. Neuroradiology 2021, 63, 573–583. [Google Scholar] [CrossRef]
- Papile, L.-A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1,500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Zollei, L.; Iglesias, J.E.; Ou, Y.; Grant, P.E.; Fischl, B. Infant freesurfer: An automated segmentation and surface extraction pipeline for t1-weighted neuroimaging data of infants 0–2 years. Neuroimage 2020, 218, 116946. [Google Scholar] [CrossRef]
- Bosanquet, M.; Copeland, L.; Ware, R.; Boyd, R. A systematic review of tests to predict cerebral palsy in young children. Dev. Med. Child. Neurol. 2013, 55, 418–426. [Google Scholar] [CrossRef]
- Banihani, R.; Seesahai, J.; Asztalos, E.; Terrien Church, P. Neuroimaging at term equivalent age: Is there value for the preterm infant? A narrative summary. Children 2021, 8, 227. [Google Scholar] [CrossRef]
- Slaughter, L.A.; Bonfante-Mejia, E.; Hintz, S.R.; Dvorchik, I.; Parikh, N.A. Early conventional mri for prediction of neurodevelopmental impairment in extremely-low-birth-weight infants. Neonatology 2016, 110, 47–54. [Google Scholar] [CrossRef]
- Thoresen, M.; Jary, S.; Walløe, L.; Karlsson, M.; Martinez-Biarge, M.; Chakkarapani, E.; Cowan, F.M. Mri combined with early clinical variables are excellent outcome predictors for newborn infants undergoing therapeutic hypothermia after perinatal asphyxia. EClinicalMedicine 2021, 36, 100885. [Google Scholar] [CrossRef]
- Keunen, K.; Kersbergen, K.J.; Groenendaal, F.; Isgum, I.; de Vries, L.S.; Benders, M.J. Brain tissue volumes in preterm infants: Prematurity, perinatal risk factors and neurodevelopmental outcome: A systematic review. J. Matern. Fetal Neonatal Med. 2012, 25 (Suppl. 1), 89–100. [Google Scholar] [CrossRef]
- Bjuland, K.J.; Rimol, L.M.; Lohaugen, G.C.; Skranes, J. Brain volumes and cognitive function in very-low-birth-weight (vlbw) young adults. Eur. J. Paediatr. Neurol. 2014, 18, 578–590. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.; Kelly, C.E.; Adamson, C.; Beare, R.; Zannino, D.; Chen, J.; Murray, A.L.; Loh, W.Y.; Matthews, L.G.; Warfield, S.K.; et al. Changes in neonatal regional brain volume associated with preterm birth and perinatal factors. Neuroimage 2019, 185, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Nam, Y.; Shin, T.; Choi, J.W.; Lee, J.H.; Jung, D.E.; Lim, J.; Kim, H.G. Brain mri radiomics analysis may predict poor psychomotor outcome in preterm neonates. Eur. Radiol. 2021, 31, 6147–6155. [Google Scholar] [CrossRef] [PubMed]
- Romberg, J.; Wilke, M.; Allgaier, C.; Nagele, T.; Engel, C.; Poets, C.F.; Franz, A. Mri-based brain volumes of preterm infants at term: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 520–526. [Google Scholar] [CrossRef]
- Kamino, D.; Studholme, C.; Liu, M.; Chau, V.; Miller, S.P.; Synnes, A.; Rogers, E.E.; Barkovich, A.J.; Ferriero, D.M.; Brant, R.; et al. Postnatal polyunsaturated fatty acids associated with larger preterm brain tissue volumes and better outcomes. Pediatr. Res. 2018, 83, 93–101. [Google Scholar] [CrossRef]
- Moeskops, P.; Benders, M.J.; Kersbergen, K.J.; Groenendaal, F.; de Vries, L.S.; Viergever, M.A.; Isgum, I. Development of cortical morphology evaluated with longitudinal mr brain images of preterm infants. PLoS ONE 2015, 10, e0131552. [Google Scholar] [CrossRef]
- Vasu, V.; Durighel, G.; Thomas, E.L.; Malamateniou, C.; Bell, J.D.; Rutherford, M.A.; Modi, N. Preterm nutritional intake and mri phenotype at term age: A prospective observational study. BMJ Open 2014, 4, e005390. [Google Scholar] [CrossRef]
- Linsell, L.; Malouf, R.; Morris, J.; Kurinczuk, J.J.; Marlow, N. Prognostic factors for poor cognitive development in children born very preterm or with very low birth weight: A systematic review. JAMA Pediatr. 2015, 169, 1162–1172. [Google Scholar] [CrossRef]
- Richter, L.; Fetit, A.E. Accurate segmentation of neonatal brain mri with deep learning. Front. Neuroinform. 2022, 16, 1006532. [Google Scholar] [CrossRef] [PubMed]
Clinical Variables (n = 150) | Median [IQR] or n (%) |
---|---|
Gestational weeks at birth | 28.7 [26.8; 30.1] |
Birth weight | 1005.0 [832.5; 1275.0] |
Male sex | 78 (52.0%) |
Inborn | 138 (92.0%) |
Intraventricular hemorrhage grade 3 and 4 | 7 (4.7%) |
Cystic periventricular leukomalacia | 11 (7.3%) |
Clinical seizure | 7 (4.7%) |
Retinopathy of prematurity | 27 (18.0%) |
Surgical necrotizing enterocolitis | 3 (2.0%) |
Head circumference below 10th percentile at discharge | 46 (30.7%) |
Developmental Outcomes (n = 150) | n (%) |
---|---|
MDI < 85 | 77 (51.3%) |
PDI < 85 | 49 (32.7%) |
MDI and PDI, both < 85 | 42 (28.0%) |
Any one of MDI or PDI < 85 | 84 (56.0%) |
Deafness requiring hearing aids | 3 (2.0%) |
Cerebral palsy at 2 years old | 11 (7.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Han, J.; Song, I.G.; Eun, H.S.; Park, M.S.; Sohn, B.; Shin, J.E. Development and Validation of an MRI-Based Brain Volumetry Model Predicting Poor Psychomotor Outcomes in Preterm Neonates. J. Clin. Med. 2025, 14, 1996. https://doi.org/10.3390/jcm14061996
Park J, Han J, Song IG, Eun HS, Park MS, Sohn B, Shin JE. Development and Validation of an MRI-Based Brain Volumetry Model Predicting Poor Psychomotor Outcomes in Preterm Neonates. Journal of Clinical Medicine. 2025; 14(6):1996. https://doi.org/10.3390/jcm14061996
Chicago/Turabian StylePark, Joonsik, Jungho Han, In Gyu Song, Ho Seon Eun, Min Soo Park, Beomseok Sohn, and Jeong Eun Shin. 2025. "Development and Validation of an MRI-Based Brain Volumetry Model Predicting Poor Psychomotor Outcomes in Preterm Neonates" Journal of Clinical Medicine 14, no. 6: 1996. https://doi.org/10.3390/jcm14061996
APA StylePark, J., Han, J., Song, I. G., Eun, H. S., Park, M. S., Sohn, B., & Shin, J. E. (2025). Development and Validation of an MRI-Based Brain Volumetry Model Predicting Poor Psychomotor Outcomes in Preterm Neonates. Journal of Clinical Medicine, 14(6), 1996. https://doi.org/10.3390/jcm14061996