Single View Techniques for Modelling Coronary Pressures Losses. Comment on Tsigkas et al. Rapid and Precise Computation of Fractional Flow Reserve from Routine Two-Dimensional Coronary Angiograms Based on Fluid Mechanics: The Pilot FFR2D Study. J. Clin. Med. 2024, 13, 3831
Author Contributions
Funding
Conflicts of Interest
References
- Tsigkas, G.G.; Bourantas, G.C.; Moulias, A.; Karamasis, G.V.; Bekiris, F.V.; Davlouros, P.; Katsanos, K. Rapid and Precise Computation of Fractional Flow Reserve from Routine Two-Dimensional Coronary Angiograms Based on Fluid Mechanics: The Pilot FFR2D Study. J. Clin. Med. 2024, 13, 3831. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.D.; Ryan, D.; Morton, A.C.; Lycett, R.; Lawford, P.V.; Hose, D.R.; Gunn, J.P. Virtual fractional flow reserve from coronary angiography: Modeling the significance of coronary lesions: Results from the VIRTU-1 (VIRTUal Fractional Flow Reserve From Coronary Angiography) study. JACC Cardiovasc. Interv. 2013, 6, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Ghobrial, M.; Haley, H.; Gosling, R.; Taylor, D.J.; Richardson, J.; Morgan, K.; Barmby, D.; Iqbal, J.; Krishnamurthy, A.; Singh, R.; et al. Modelled impact of virtual fractional flow reserve in patients undergoing coronary angiography (VIRTU-4). Heart 2024, 110, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Newman, T.; Borker, R.; Aubiniere-Robb, L.; Hendrickson, J.; Choudhury, D.; Halliday, I.; Fenner, J.; Narracott, A.; Hose, D.R.; Gosling, R.; et al. Rapid virtual fractional flow reserve using 3D computational fluid dynamics. Eur. Heart J. Digit. Health 2023, 4, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Tu, S.; Ding, D.; Chang, Y.; Li, C.; Wijns, W.; Xu, B. Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: A novel method based on bifurcation fractal law. Catheter. Cardiovasc. Interv. 2021, 97, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 1926, 12, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Kassab, G.S. Scaling laws of vascular trees: Of form and function. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H894–H903. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.J.; Saxton, H.; Halliday, I.; Newman, T.; Hose, D.R.; Kassab, G.S.; Gunn, J.P.; Morris, P.D. Systematic review and meta-analysis of Murray’s law in the coronary arterial circulation. Am. J. Physiol. Circ. Physiol. 2024, 327, H182–H190. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.J.; Feher, J.; Czechowicz, K.; Halliday, I.; Hose, D.; Gosling, R.; Aubiniere-Robb, L.; van’t Veer, M.; Keulards, D.C.J.; Tonino, P.; et al. Validation of a novel numerical model to predict regionalized blood flow in the coronary arteries. Eur. Heart J. Digit. Health 2023, 4, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.J.; Feher, J.; Halliday, I.; Hose, D.R.; Gosling, R.; Aubiniere-Robb, L.; Veer, M.v.; Keulards, D.; Tonino, P.A.L.; Rochette, M.; et al. Refining Our Understanding of the Flow Through Coronary Artery Branches; Revisiting Murray’s Law in Human Epicardial Coronary Arteries. Front. Physiol. 2022, 13, 871912. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, D.J.; Newman, T.; Gunn, J.; Morris, P.D. Single View Techniques for Modelling Coronary Pressures Losses. Comment on Tsigkas et al. Rapid and Precise Computation of Fractional Flow Reserve from Routine Two-Dimensional Coronary Angiograms Based on Fluid Mechanics: The Pilot FFR2D Study. J. Clin. Med. 2024, 13, 3831. J. Clin. Med. 2025, 14, 1958. https://doi.org/10.3390/jcm14061958
Taylor DJ, Newman T, Gunn J, Morris PD. Single View Techniques for Modelling Coronary Pressures Losses. Comment on Tsigkas et al. Rapid and Precise Computation of Fractional Flow Reserve from Routine Two-Dimensional Coronary Angiograms Based on Fluid Mechanics: The Pilot FFR2D Study. J. Clin. Med. 2024, 13, 3831. Journal of Clinical Medicine. 2025; 14(6):1958. https://doi.org/10.3390/jcm14061958
Chicago/Turabian StyleTaylor, Daniel J., Tom Newman, Julian Gunn, and Paul D. Morris. 2025. "Single View Techniques for Modelling Coronary Pressures Losses. Comment on Tsigkas et al. Rapid and Precise Computation of Fractional Flow Reserve from Routine Two-Dimensional Coronary Angiograms Based on Fluid Mechanics: The Pilot FFR2D Study. J. Clin. Med. 2024, 13, 3831" Journal of Clinical Medicine 14, no. 6: 1958. https://doi.org/10.3390/jcm14061958
APA StyleTaylor, D. J., Newman, T., Gunn, J., & Morris, P. D. (2025). Single View Techniques for Modelling Coronary Pressures Losses. Comment on Tsigkas et al. Rapid and Precise Computation of Fractional Flow Reserve from Routine Two-Dimensional Coronary Angiograms Based on Fluid Mechanics: The Pilot FFR2D Study. J. Clin. Med. 2024, 13, 3831. Journal of Clinical Medicine, 14(6), 1958. https://doi.org/10.3390/jcm14061958