Cardiometabolic Markers in Algerian Obese Subjects with and Without Type 2 Diabetes: Adipocytokine Imbalance as a Risk Factor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessment of Cardiometabolic Risk and Insulin Resistance
2.3. Measurement of Anthropometric Criteria
2.4. Serum Samples Analysis
2.5. Statistical Analyses
3. Results
3.1. Anthropometric Measurements
3.2. Metabolic Parameters
3.3. Adipocytokine Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef] [PubMed]
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022, 43, 716–799. [Google Scholar] [CrossRef] [PubMed]
- Koskinas, K.C.; Van Craenenbroeck, E.M.; Antoniades, C.; Blüher, M.; Gorter, T.M.; Hanssen, H.; Marx, N.; McDonagh, T.A.; Mingrone, G.; Rosengren, A.; et al. Obesity and cardiovascular disease: An ESC clinical consensus statement. Eur. J. Health 2024, 45, 4063–4098. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.-E.; Tchernof, A.; Després, J.-P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef]
- Saad, M.A.; Masood, S.N.; Bache, N.A.; Odhaib, S.A.; Belkhadir, J.; Shegem, N. Accessibility and Availability of Insulin: A Survey by International Diabetes Federation-Middle East and North Africa Region (IDF-MENA) Member Associations. J. Diabetol. 2022, 13, S73–S80. [Google Scholar] [CrossRef]
- Belhadj, M.; Arbouche, Z.; Brouri, M.; Malek, R.; Semrouni, M.; Zekri, S.; Nadir, D.; Abrouk, S. BAROMÈTRE Algérie: Enquête nationale sur la prise en charge des personnes diabétiques. Méd. Mal. Métab. 2019, 13, 188–194. [Google Scholar] [CrossRef]
- Cui, L.; Chen, T.; Li, Z.; Yu, Z.; Liu, X.; Li, J.; Guo, Y.; Xu, D.; Wang, X. Association between dietary related factors and central obesity among married women: China Health and Nutrition Survey. Appetite 2022, 168, 105785. [Google Scholar] [CrossRef]
- Bounihi, A.; Saidi, H.; Bouazza, A.; Benbaibeche, H.; Azzouz, M.; Koceir, E.A. Dietary diversity as a risk factor for obesity in algerian patients with type 2 diabetes Mellitus. Healthcare 2021, 9, 1229. [Google Scholar] [CrossRef]
- Zorena, K.; Jachimowicz-Duda, O.; Ślęzak, D.; Robakowska, M.; Mrugacz, M. Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int. J. Mol. Sci. 2020, 21, 3570. [Google Scholar]
- Sun, J.; Gao, Y.; Yao, T.; Huang, Y.; He, Z.; Kong, X.; Yu, K.-j.; Wang, R.-t.; Guo, H.; Yan, J.; et al. Adiponectin potentiates the acute effects of leptin in arcuate Pomc neurons. Mol. Metab. 2016, 5, 882–891. [Google Scholar] [CrossRef]
- Li, C.; Li, Q.; Li, J.; Zhang, N.; Li, Y.; Li, Y.; Li, H.; Yan, F.; Kang, X.; Liu, X.; et al. Expression and localization of adiponectin and its receptors (AdipoR1 and AdipoR2) in the hypothalamic-pituitary-ovarian axis of laying hens. Theriogenology 2021, 159, 35–44. [Google Scholar] [CrossRef]
- Bungau, S.; Behl, T.; Tit, D.M.; Banica, F.; Bratu, O.G.; Diaconu, C.C.; Nistor-Cseppento, C.D.; Bustea, C.; Aron, R.A.C.; Vesa, C.M.; et al. Interactions between leptin and insulin resistance in patients with prediabetes, with and without NAFLD. Exp. Ther. Med. 2020, 20, 197. [Google Scholar] [CrossRef] [PubMed]
- Khanh, D.V.; Choi, Y.-H.; Moh, S.H.; Kinyua, A.W.; Kim, K.W. Leptin and insulin signaling in dopaminergic neurons: Relationship between energy balance and reward system. Front. Psychol. 2014, 5, 846. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, D.; Vatner, D.F.; Goedeke, L.; Hirabara, S.M.; Zhang, Y.; Perry, R.J.; Shulman, G.I. Mechanisms by which adiponectin reverses high fat diet-induced insulin resistance in mice. Proc. Nati. Acad. Sci. USA 2020, 117, 32584–32593. [Google Scholar] [CrossRef] [PubMed]
- Codoñer-Franch, P.; Alonso-Iglesias, E. Resistin: Insulin resistance to malignancy. Clin. Chim. Acta 2015, 438, 46–54. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, S.; Cho, H.; Kim, J.H.; Choi, H. Adipokine human Resistin promotes obesity-associated inflammatory intervertebral disc degeneration via pro-inflammatory cytokine cascade activation. Sci. Rep. 2022, 12, 8936. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Gómez-Ambrosi, J.J.A. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 2018, 7, 57–62. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gómez-Ambrosi, J. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation. Nutrients 2019, 11, 454. [Google Scholar] [CrossRef]
- Gaskin, C.J.; Cooper, K.; Stephens, L.D.; Peeters, A.; Salmon, J.; Porter, J.J. Clinical practice guidelines for the management of overweight and obesity published internationally: A scoping review. Obes. Rev. 2024, 25, e13700. [Google Scholar] [CrossRef]
- Barkas, F.; Sener, Y.Z.; Golforoush, P.A.; Kheirkhah, A.; Rodriguez-Sanchez, E.; Novak, J.; Apellaniz-Ruiz, M.; Akyea, R.K.; Bianconi, V.; Ceasovschih, A.J. Advancements in risk stratification and management strategies in primary cardiovascular prevention. Atherosclerosis 2024, 395, 117579. [Google Scholar] [CrossRef]
- Bonora, E.; Targher, G.; Alberiche, M.; Bonadonna, R.C.; Saggiani, F.; Zenere, M.B.; Monauni, T.; Muggeo, M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: Studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 2000, 23, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Nwagha, U.; Ikekpeazu, E.; Ejezie, F.; Neboh, E.; Maduka, I. Atherogenic index of plasma as useful predictor of cardiovascular risk among postmenopausal women in Enugu, Nigeria. Afr. J. Health Sci. 2010, 10, 3. [Google Scholar]
- WHO Expert Consultation. Annex A: Current uses of waist circumferences and waist–hip ratios, and recommended cut-off points. In Proceedings of the Waist Circumference Waist–Hip Ratio: Report A WHO Expert Consult, Geneva, Switzerland, 8–11 December 2008; pp. 27–31. [Google Scholar]
- Deurenberg, P.; Weststrate, J.A.; Seidell, J.C. Body mass index as a measure of body fatness: Age-and sex-specific prediction formulas. Br. J. Nutr. 1991, 65, 105–114. [Google Scholar] [CrossRef]
- Moussavi Javardi, M.S.; Madani, Z.; Movahedi, A.; Karandish, M.; Abbasi, B. The correlation between dietary fat quality indices and lipid profile with Atherogenic index of plasma in obese and non-obese volunteers: A cross-sectional descriptive-analytic case-control study. Lipids Health Dis. 2020, 19, 213. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Abington, UK, 2013. [Google Scholar] [CrossRef]
- Benbaibeche, H.; Haffaf, E.M.; Kacimi, G.; Oudjit, B.; Khan, N.A.; Koceïr, E.A. Implication of corticotropic hormone axis in eating behaviour pattern in obese and type 2 diabetic participants. Br. J. Nutr. 2015, 113, 1237–1243. [Google Scholar] [CrossRef]
- Ouhaibi-Djellouli, H.; Houti, L.; Hamani-Medjaoui, I.; Larjam-Hetraf, A.S.; Mediene-Benchekor, S. Mediterranean diet and food consumption in an urban adult population of Northwest Algeria. Nor. Afr. J. Food Nutr. Res. 2020, 4, S109–S115. [Google Scholar] [CrossRef]
- Eguaras, S.; Toledo, E.; Hernández-Hernández, A.; Cervantes, S.; Martínez-González, M.A. Better adherence to the Mediterranean diet could mitigate the adverse consequences of obesity on cardiovascular disease: The SUN prospective cohort. Nutirents 2015, 7, 9154–9162. [Google Scholar] [CrossRef]
- De Matteis, C.; Crudele, L.; Battaglia, S.; Loconte, T.; Rotondo, A.; Ferrulli, R.; Gadaleta, R.M.; Piazzolla, G.; Suppressa, P.; Sabbà, C. Identification of a novel score for adherence to the mediterranean diet that is inversely associated with visceral adiposity and cardiovascular risk: The Chrono Med Diet Score (CMDS). Nutirents 2023, 15, 1910. [Google Scholar] [CrossRef]
- Sayeed, M.; Gautam, S.; Verma, D.P.; Afshan, T.; Kumari, T.; Srivastava, A.K.; Ghosh, J.K. A collagen domain–derived short adiponectin peptide activates APPL1 and AMPK signaling pathways and improves glucose and fatty acid metabolisms. J. Biol. Chem. 2018, 293, 13509–13523. [Google Scholar] [CrossRef]
- Mir, M.M.; Mir, R.; Alghamdi, M.A.A.; Wani, J.I.; Sabah, Z.U.; Jeelani, M.; Marakala, V.; Sohail, S.K.; O’haj, M.; Alharthi, M.H. Differential Association of Selected Adipocytokines, Adiponectin, Leptin, Resistin, Visfatin and Chemerin, with the Pathogenesis and Progression of Type 2 Diabetes Mellitus (T2DM) in the Asir Region of Saudi Arabia: A Case Control Study. J. Pers. Med. 2022, 12, 735. [Google Scholar] [CrossRef]
- Gariballa, S.; Alkaabi, J.; Yasin, J.; Al Essa, A. Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC. Endocr. Dis. 2019, 19, 55. [Google Scholar] [CrossRef]
- Qi, G.-M.; Jia, L.-X.; Li, Y.-L.; Li, H.-H.; Du, J. Adiponectin Suppresses Angiotensin II-Induced Inflammation and Cardiac Fibrosis through Activation of Macrophage Autophagy. Endocrinology 2014, 155, 2254–2265. [Google Scholar] [CrossRef]
- Lindsay, R.S.; Funahashi, T.; Hanson, R.L.; Matsuzawa, Y.; Tanaka, S.; Tataranni, P.A.; Knowler, W.C.; Krakoff, J. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 2002, 360, 57–58. [Google Scholar] [CrossRef]
- Tilija Pun, N.; Park, P.-H. Role of p62 in the suppression of inflammatory cytokine production by adiponectin in macrophages: Involvement of autophagy and p21/Nrf2 axis. Sci. Rep. 2017, 7, 393. [Google Scholar] [CrossRef]
- Chang, E.; Choi, J.M.; Kim, W.J.; Rhee, E.J.; Oh, K.W.; Lee, W.Y.; Park, S.E.; Park, S.W.; Park, C.Y. Restoration of adiponectin expression via the ERK pathway in TNFα-treated 3T3-L1 adipocytes. Mol. Med. Rep. 2014, 10, 905–910. [Google Scholar] [CrossRef]
- Borer, K.T. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight. World. J. Diabetes 2014, 5, 606–629. [Google Scholar] [CrossRef]
- Inoue, M.; Maehata, E.; Yano, M.; Taniyama, M.; Suzuki, S. Correlation between the adiponectin-leptin ratio and parameters of insulin resistance in patients with type 2 diabetes. Metab. Clin. Exp. 2005, 54, 281–286. [Google Scholar] [CrossRef]
- Frithioff-Bøjsøe, C.; Lund, M.A.; Lausten-Thomsen, U.; Hedley, P.L.; Pedersen, O.; Christiansen, M.; Baker, J.L.; Hansen, T.; Holm, J.C. Leptin, adiponectin, and their ratio as markers of insulin resistance and cardiometabolic risk in childhood obesity. Pediatr. Diabetes 2020, 21, 194–202. [Google Scholar] [CrossRef]
- Monteiro, L.B.; Prodonoff, J.S.; Favero de Aguiar, C.; Correa-da-Silva, F.; Castoldi, A.; Bakker, N.V.T.; Davanzo, G.G.; Castelucci, B.; Pereira, J.A.D.S.; Curtis, J.; et al. Leptin Signaling Suppression in Macrophages Improves Immunometabolic Outcomes in Obesity. Diabetes 2022, 71, 1546–1561. [Google Scholar] [CrossRef]
- Lira, F.S.; Rosa, J.C.; Pimentel, G.D.; Seelaender, M.; Damaso, A.R.; Oyama, L.M.; do Nascimento, C.O. Both adiponectin and interleukin-10 inhibit LPS-induced activation of the NF-κB pathway in 3T3-L1 adipocytes. Cytokine 2012, 57, 98–106. [Google Scholar] [CrossRef]
- Bokarewa, M.; Nagaev, I.; Dahlberg, L.; Smith, U.; Tarkowski, A. Resistin, an adipokine with potent proinflammatory properties. J. Immunol. 2005, 174, 5789–5795. [Google Scholar] [CrossRef]
- Münzberg, H.; Morrison, C.D. Structure, production and signaling of leptin. Metabolism 2015, 64, 13–23. [Google Scholar] [CrossRef]
- Mattu, H.S.; Randeva, H.S. Role of adipokines in cardiovascular. J. Endocrinol. 2013, 216, T17–T36. [Google Scholar] [CrossRef]
- Antonopoulos, A.S.; Margaritis, M.; Verheule, S.; Recalde, A.; Sanna, F.; Herdman, L.; Psarros, C.; Nasrallah, H.; Coutinho, P.; Akoumianakis, I. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-γ/adiponectin signalling. Cir. Res. 2016, 118, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-C.; Hsiao, K.-Y.; Chen, I.; Chang, Y.-C.; Wang, S.-H.; Wu, K.-H. Serum leptin is associated with cardiometabolic risk and predicts metabolic syndrome in Taiwanese adults. Cardiovasc. Diabetol. 2011, 10, 1–8. [Google Scholar] [CrossRef]
- Dobiasova, M. AIP—Atherogenic index of plasma as a significant predictor of cardiovascular risk: From research to practice. Vnitr. Lek. 2006, 52, 64–71. [Google Scholar]
- Hamzeh, B.; Pasdar, Y.; Mirzaei, N.; Faramani, R.S.; Najafi, F.; Shakiba, E.; Darbandi, M. Visceral adiposity index and atherogenic index of plasma as useful predictors of risk of cardiovascular diseases: Evidence from a cohort study in Iran. Lipids. Health Dis. 2021, 20, 82. [Google Scholar] [CrossRef]
- Kouli, G.-M.; Panagiotakos, D.B.; Kyrou, I.; Georgousopoulou, E.N.; Chrysohoou, C.; Tsigos, C.; Tousoulis, D.; Pitsavos, C. Visceral adiposity index and 10-year cardiovascular disease incidence: The ATTICA study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 881–889. [Google Scholar] [CrossRef]
- Nusrianto, R.; Ayundini, G.; Kristanti, M.; Astrella, C.; Amalina, N.; Riyadina, W.; Tahapary, D.L.; Soewondo, P. Visceral adiposity index and lipid accumulation product as a predictor of type 2 diabetes mellitus: The Bogor cohort study of non-communicable diseases risk factors. Diabetes. Res. Clin. Pract. 2019, 155, 107798. [Google Scholar] [CrossRef]
- Xia, M.F.; Lin, H.D.; Chen, L.Y.; Wu, L.; Ma, H.; Li, Q.; Aleteng, Q.; Chen, Y.; Sun, Y.X.; Hu, Y.J.; et al. Association of visceral adiposity and its longitudinal increase with the risk of diabetes in Chinese adults: A prospective cohort study. Diabetes Metab. Res. Rev. 2018, 34, e3048. [Google Scholar] [CrossRef]
- Wei, J.; Liu, X.; Xue, H.; Wang, Y.; Shi, Z. Comparisons of visceral adiposity index, body shape index, body mass index and waist circumference and their associations with diabetes mellitus in adults. Nutrients 2019, 11, 1580. [Google Scholar] [CrossRef]
- Wung, C.-H.; Lee, M.-Y.; Wu, P.-Y.; Huang, J.-C.; Chen, S.-C. Obesity-related indices are associated with peripheral artery occlusive disease in patients with type 2 diabetes mellitus. J. Pers. Med. 2021, 11, 533. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, S.; Kang, X.; Liu, Y.; Xu, Z.; Li, Z.; Wang, J.; Miao, X.; Liu, X.; Li, X.; et al. Association of visceral adiposity index with incident nephropathy and retinopathy: A cohort study in the diabetic population. Cardiovasc. Diabetol. 2022, 21, 32. [Google Scholar] [CrossRef]
- Vega, G.L.; Grundy, S.M. Metabolic risk susceptibility in men is partially related to adiponectin/leptin ratio. J. Obes. 2013, 2013, 409679. [Google Scholar] [CrossRef]
- Wyczalkowska-Tomasik, A.; Czarkowska-Paczek, B.; Zielenkiewicz, M.; Paczek, L.J. Inflammatory markers change with age, but do not fall beyond reported normal ranges. Arch. Immunol. Ther. Exp. 2016, 64, 249–254. [Google Scholar] [CrossRef]
- Murray, E.T.; Hardy, R.; Hughes, A.; Wills, A.; Sattar, N.; Deanfield, J.; Kuh, D.; Whincup, P. Overweight across the life course and adipokines, inflammatory and endothelial markers at age 60-64 years: Evidence from the 1946 birth cohort. Int. J. Obes. 2015, 39, 1010–1018. [Google Scholar] [CrossRef]
- Christou, G.; Kiortsis, D. Adiponectin and lipoprotein metabolism. Obes. Rev. 2013, 14, 939–949. [Google Scholar] [CrossRef]
- Xie, M.; Xiong, Z.; Yin, S.; Xiong, J.; Li, X.; Jin, L.; Zhang, F.; Chen, H.; Lan, P.; Lian, L. Adiponectin alleviates intestinal fibrosis by enhancing AMP-activated protein kinase phosphorylation. Dig. Dis. Sci. 2022, 67, 2232–2243. [Google Scholar] [CrossRef]
- Awazawa, M.; Ueki, K.; Inabe, K.; Yamauchi, T.; Kubota, N.; Kaneko, K.; Kobayashi, M.; Iwane, A.; Sasako, T.; Okazaki, Y. Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell. Metab. 2011, 13, 401–412. [Google Scholar] [CrossRef]
- Dramé, M.; Godaert, L. The obesity paradox and mortality in older adults: A systematic review. Nutruents 2023, 15, 1780. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Müller, M.J. Diagnosis of obesity based on body composition-associated health risks—Time for a change in paradigm. Obes. Rev. 2021, 22, e13190. [Google Scholar] [CrossRef]
- Seino, S.; Kitamura, A.; Abe, T.; Taniguchi, Y.; Yokoyama, Y.; Amano, H.; Nishi, M.; Nofuji, Y.; Narita, M.; Ikeuchi, T. Dose-response relationships between body composition indices and all-cause mortality in older Japanese adults. J. Am. Med. Dir. Assoc. 2020, 21, 726–733.e4. [Google Scholar] [CrossRef]
P/Groups | Control (n = 100) | Obesity (n = 100) | Diabetes (n = 100) | |
---|---|---|---|---|
With Obesity (n = 40) | Without Obesity (n = 60) | |||
BMI (kg/m2) | 22 (3) W | 34 (2) W *** | 33.7 (2.96) W *** | 24.3 (3.2) W * |
21 (2) M | 32 (2) M ** | 33.6 (1.9) M ** | 26.9 (1.8) M * | |
WC (cm) | 77.3 (2.2) W | 107 (7.1) W *** | 109 (9.8) W *** | 87.7 (9.6) W ** |
81.3 (5.1) M | 110 (3.2) M *** | 112 (4.9) M *** | 99.1 (6.1) M *** | |
WHR | 0.83 (0.03) W | 1.03 (0.02) W *** | 1.02 (0.05) W ** | 0.93 (0.01) W *** |
0.86 (0.01) M | 1.09 (0.01) M *** | 1.04 (0.06) M *** | 0.97 (0.01) M *** | |
BF (%) | 6.5 (0.9) W | 26.2 (3.5) W *** | 27 (2.4) W *** | 17.2 (1.3) W *** |
2.2 (0.6) M | 18.7 (2.3) M *** | 26.2 (3.5) M *** | 21.2 (2.6) M *** | |
VAI | 3.7 (2.02) | 6.02 (4.7) ** | 7.1 (1.3) ** | 6.32 (3.9) ** |
P/Groups | Control (n = 100) | Obesity (n = 100) | Diabetes (n = 100) | |
---|---|---|---|---|
With Obesity (n = 40) | Without Obesity (n = 60) | |||
Glycaemia (mmol/L) | 4.6 (1.5) | 5.3 (1.6) | 7.5 (0.5) ** | 7.2 (0.4) ** |
Insulinemia (pmol/L) | 8.8 (1.7) | 42.8 (4.7) *** | 46.1 (8.2) | 43.5 (5.9) |
HOMA | 1.9(0.07) | 10.4 (1.3) *** | 15.83 (3.86) *** | 11.32 (1.3) *** |
HbA1C (%) | 4.5 (1.5) | 5.1 (2.6) | 6.5 (1.2) | 5.4 (1.1) |
Triglycerides (mmol/L) | 1.6 (0.2) | 3.7 (0.5) *** | 3.9 (0.4) *** | 3.2 (0.2) *** |
Cholesterol (mmol/L) | 3.9 (0.18) | 4.9 (0.8) * | 4.8 (0.7) *** | 4.4 (0.8) * |
HDL (mmol/L) | 1.5 (0.08) W | 1.23 (0.04) W * | 1.2(0.12) W * | 1.4 (0.15) W * |
1.2 (0.04) M | 0.92 (0.04) M ** | 1.2(0.07) M * | 1 (0.1) M * | |
LDL (mmol/L) | 2.4 (0.54) | 3 (0.8) * | 3.1 (0.3) * | 2.8 (0.22) * |
Hs-CRP (mg/L) | 3.5 (1.2) | 5.6 (0.1) ** | 6.4 (0.3) ** | 4.8 (0.2) ** |
SBP (mm Hg) | 121 (12) | 137 (3) * | 138 (4) ** | 135 (3) ** |
DBP (mm Hg) | 73 (5) | 82 (5) | 84 (2) ** | 83 (3) ** |
AIP | 0.1 | 0.5 *** | 0.48 ** | 0.33 ** |
Groups | Obesity (n = 100) | Diabetes (n = 100) | |
---|---|---|---|
With Obesity (n = 40) | Without Obesity (n = 60) | ||
VAI | |||
WHR | 0.2 * | 0.2 * | 0.4 * |
TG | 0.9 *** | 0.9 *** | 0.5 ** |
HDL | −0.6 *** | −0.6 | −0.8 *** |
Insulin | 0.5 * | 0.2 * | 0.2 * |
AIP | 0.8 *** | 0.81 * | 0.9 *** |
ALR | |||
WHR | −0.3 * | −0.12 | −0.2 * |
TG | −0.1 | −0.3 * | −0.4 * |
HDL | 0.1 | 0.3 * | 0.2 * |
Insulin | −0.2 * | −0.3 * | −0.3 * |
AIP | −0.1 | −0.2 * | −0.5 * |
VAI | −0.2 * | −0.3 * | −0.4 * |
P/Groups | Control (n = 100) | Obesity (n = 100) | Diabetes (n = 100) | |
---|---|---|---|---|
With Obesity (n = 40) | Without Obesity (n = 60) | |||
TNF-α (pg/mL) | ||||
Model 1 | ||||
OR (95%CI) p | 1 | 1.267 (0.850; 1.887) 0.04 | 1.298 (0.871; 1.935) 0.01 | 1.234 (0.833; 1.828) 1.234 |
Model 2 | ||||
OR (95%CI) p | 1 | 1.249 (0.846; 1.844) 0.04 | 1.273 (0.862; 1.881) 0.02 | 1.226 (0.835; 1.802) 0.298 |
Model 3 | ||||
OR (95%CI) p | 1 | 1.341 (0.890; 2.021) 0.01 | 1.376 (0.912; 2.075) 0.02 | 1.310 (0.873; 1.966) 0.192 |
IL-6 (pg/mL) | ||||
Model 1 | ||||
OR (95%CI) p | 1 | 1.236 (1.000; 1.527) 0.04 | 1.209 (0.974; 1.501) 0.04 | 1.120 (0.918; 1.367) 0.04 |
Model 2 | ||||
OR (95%CI) p | 1 | 1.254 (1.005; 1.564) 0.045 | 1.236 (0.986; 1.551) 0.03 | 1.110 (0.901; 1.367) 0.02 |
Model 3 | ||||
OR (95%CI) p | 1 | 1.259 (0.998; 1.589) 0.032 | 1.233 (0.973; 1.563) 0.043 | 1.145 (0.917; 1.430) 0.231 |
Leptin (ng/mL) | ||||
Model 1 | ||||
OR (95%CI) p | 1 | 1.279 (1.111; 1.472) ˂0.001 | 1.282 (1.112; 1.478) ˂0.001 | 1.169 (1.018; 1.342) 0.027 |
Model 2 | ||||
OR (95%CI) p | 1 | 1.466 (1.201; 1.788) ˂0.001 | 1.440 (1.178; 1.759) ˂0.001 | 1.298 (1.069; 1.576) 0.008 |
Model 3 | ||||
OR (95%CI) p | 1 | 1.602 (1.232; 2.082) ˂0.001 | 1.571 (1.207; 2.044) ˂0.001 | 1.415 (1.092; 1.834) 0.009 |
Adiponectin (µg/mL) | ||||
Model 1 | ||||
OR (95%CI) p | 1 | 0.638 (0.507; 0.803) ˂0.001 | 0.751 (0.593; 0.951) 0.017 | 0.809 (0.697; 0.940) 0.006 |
Model 2 | ||||
OR (95%CI) p | 1 | 0.619 (0.484; 0.791) ˂0.001 | 0.707 (0.541; 0.923) 0.011 | 0.813 (0.699; 0.944) 0.007 |
Model 3 | ||||
OR (95%CI) p | 1 | 0.622 (0.489; 0.791) ˂0.001 | 0.712 (0.553; 0.916) 0.008 | 0.754 (0.630; 0.903) 0.002 |
Resistin (ng/mL) | ||||
Model 1 | ||||
OR (95%CI) p | 1 | 4.856 (1.738; 13.569) 0.003 | 3.879 (1.371; 10.974) 0.011 | 3.592 (1.323; 9.757) 0.012 |
Model 2 | ||||
OR (95%CI) p | 1 | 5.123 (1.822; 14.406) 0.002 | 4.036 (1.420; 11.472) 0.009 | 3.609 (1.326; 9.820) 0.012 |
Model 3 | ||||
OR (95%CI) p | 1 | 17.602 (2.395; 129.392) 0.005 | 14.178 (1.916; 104.893) 0.009 | 13.216 (1.824; 95.785) 0.011 |
ALR | ||||
Model 1 | ||||
OR (95%CI) p | 1 | 0.013 (0.002; 0.090) ˂0.001 | 0.044 (0.006; 0.323) 0.002 | 0.831 (0.621; 1.113) 0.215 |
Model 2 | ||||
OR (95%CI) p | 1 | 0.007 (0.001; 0.058) ˂0.001 | 0.043 (0.005; 0.345) 0.003 | 0.784 (0.570; 1.079) 0.136 |
Model 3 | ||||
OR (95%CI) p | 1 | 0.006 (0.001; 0.048) ˂0.001 | 0.035 (0.004; 0.290) 0.002 | 2.237 (0.626; 7.993) 0.215 |
P/Groups | Control (n = 100) | Obesity (n = 100) | Diabetes (n = 100) | |
---|---|---|---|---|
With Obesity (n = 40) | Without Obesity (n = 60) | |||
TNF-α (pg/mL) | 6 (1.8) | 8.4 (0.7) ** | 9.8 (3) ** | 6.3 (2.2) * |
IL-6 (pg/mL) | 7.6 (1.4) | 12.8 (1.9) *** | 10.3 (1.4) ** | 9.1(1.3) ** |
Leptin (ng/mL) | 5.5 (1.9) W | 31.3 (3.3) W *** | 41.4 (7) W *** | 12.4 (3) W *** |
4.6 (1.2) M | 13.1 (3.2) M *** | 20 (9.1) W *** | 5.7 (1.1) M * | |
Adiponectin (µg/mL) | 8 (1.1) W | 3.8 (0.4) W ** | 5.1 (0.2) W ** | 5.8 (1.4) M * |
6 (1.2) M | 1.8 (0.3) M *** | 3.2 (0.8) M *** | 4.1 (0.6) M * | |
Resistin (ng/mL) | 3.8 (0.6) W | 6.1 (0.9) W * | 5.5 (0.7) W ** | 4.1 (0.4) W ** |
3.2 (0.8) M | 6.8 (0.7) M *** | 6.7 (1.4) M ** | 5.01 (0.3) M ** | |
ALR | 1.1 (0.6) W | 0.1 (0.02) W *** | 0.07 (0.02) W *** | 0.5 (0.3) W ** |
1.8 (0.6) M | 0.2 (0.08) M *** | 0.23 (0.1) M *** | 1 (0.1) M * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benbaibeche, H.; Bounihi, A.; Saidi, H.; Koceir, E.A.; Khan, N.A. Cardiometabolic Markers in Algerian Obese Subjects with and Without Type 2 Diabetes: Adipocytokine Imbalance as a Risk Factor. J. Clin. Med. 2025, 14, 1770. https://doi.org/10.3390/jcm14051770
Benbaibeche H, Bounihi A, Saidi H, Koceir EA, Khan NA. Cardiometabolic Markers in Algerian Obese Subjects with and Without Type 2 Diabetes: Adipocytokine Imbalance as a Risk Factor. Journal of Clinical Medicine. 2025; 14(5):1770. https://doi.org/10.3390/jcm14051770
Chicago/Turabian StyleBenbaibeche, Hassiba, Abdenour Bounihi, Hamza Saidi, Elhadj Ahmed Koceir, and Naim Akhtar Khan. 2025. "Cardiometabolic Markers in Algerian Obese Subjects with and Without Type 2 Diabetes: Adipocytokine Imbalance as a Risk Factor" Journal of Clinical Medicine 14, no. 5: 1770. https://doi.org/10.3390/jcm14051770
APA StyleBenbaibeche, H., Bounihi, A., Saidi, H., Koceir, E. A., & Khan, N. A. (2025). Cardiometabolic Markers in Algerian Obese Subjects with and Without Type 2 Diabetes: Adipocytokine Imbalance as a Risk Factor. Journal of Clinical Medicine, 14(5), 1770. https://doi.org/10.3390/jcm14051770