The Role of Blood Inflammatory Markers in Salivary Gland Carcinoma: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jegadeesh, N.; Liu, Y.; Prabhu, R.S.; Magliocca, K.R.; Marcus, D.M.; Higgins, K.A.; Vainshtein, J.M.; Wadsworth, J.T.; Beitler, J.J. Outcomes and prognostic factors in modern era management of major salivary gland cancer. Oral Oncol. 2015, 51, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Elhusseiny, K.M.; Abd-Elhay, F.A.; Kamel, M.G.; Abd El Hamid Hassan, H.H.; El Tanany, H.H.M.; Hieu, T.H.; Tieu, T.M.; Low, S.K.; Hou, V.; Dibas, M.; et al. Examined and positive lymph nodes counts and lymph nodes ratio are associated with survival in major salivary gland cancer. Head Neck 2019, 41, 2625–2635. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, R. Malignant salivary gland tumors: A short review. Oral Maxillofac. Res. 2021, 7, 1–5. [Google Scholar] [CrossRef]
- Andreasen, S.; Stevens, E.; Bjørndal, K.; Homøe, P. Salivary gland epithelial neoplasms in pediatric population: A single-institute experience with a focus on the histologic spectrum and clinical outcome. Hum. Pathol. 2018, 73, 193–194. [Google Scholar] [CrossRef]
- Fang, Q.G.; Shi, S.; Li, Z.N.; Zhang, X.; Liu, F.Y.; Sun, C.F. Epithelial salivary gland tumors in children: A twenty-five-year experience of 122 patients. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 1252–1254. [Google Scholar] [CrossRef]
- Li, L.J.; Li, Y.; Wen, Y.M.; Liu, H.; Zhao, H.W. Clinical analysis of salivary gland tumor cases in West China in past 50 years. Oral Oncol. 2008, 44, 187–192. [Google Scholar] [CrossRef]
- Kupferman, M.E.; de la Garza, G.O.; Santillan, A.A.; Williams, M.D.; Varghese, B.T.; Huh, W.; Roberts, D.; Weber, R.S. Outcomes of pediatric patients with malignancies of the major salivary glands. Ann. Surg. Oncol. 2010, 17, 3301–3307. [Google Scholar] [CrossRef]
- El-Naggar, A.K.; Chan, J.K.C.; Grandis, J.R.; Takata, T.S.P. WHO Classification of Head and Neck Tumours, 4th ed.; IARC Publication: Lyon, France, 2017; pp. 159–202. [Google Scholar]
- Peravali, R.K.; Bhat, H.H.; Upadya, V.H.; Agarwal, A.; Naag, S. Salivary gland tumors: A diagnostic dilemma! J. Maxillofac. Oral Surg. 2015, 14 (Suppl. S1), 438–442. [Google Scholar] [CrossRef]
- Ronchi, A.; Montella, M.; Zito Marino, F.; Panarese, I.; Pagliuca, F.; Colella, G.; Franco, R.; Cozzolino, I. Diagnostic accuracy of FNA cytology for diagnosis of salivary gland tumors in pediatric patients. Cancer Cytopathol. 2019, 127, 529–538. [Google Scholar] [CrossRef]
- Dell’Aversana Orabona, G.; Salzano, G.; Abbate, V.; Bonavolontà, P.; Committeri, U.; Seidita, F.; Petrocelli, M.; Somma, T.; Improta, G.; Vaira, L.A.; et al. Malignant tumours of the parotid gland: Management of the neck (including the clinically negative neck) and a literature review. Br. J. Oral Maxillofac. Surg. 2021, 59, 665–671. [Google Scholar] [CrossRef]
- Bianchini, C.; Brugali, M.; Migliorelli, A.; Corazzi, V.; Cammaroto, G.; Meccariello, G.; Stomeo, F.; Ciorba, A.; Pelucchi, S. Basal cell adenoma and pleomorphic adenoma of the parotid gland: A single center experience. Minerva Surg. 2023, 78, 626–632. [Google Scholar] [CrossRef]
- Rossi, E.D.; Faquin, W.C. The Milan system for reporting salivary gland cytopathology (MSRSGC): An international effort toward improved patient care—When the roots might be inspired by Leonardo da Vinci. Cancer Cytopathol. 2018, 126, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Geiger, J.L.; Ismaila, N.; Beadle, B.; Caudell, J.J.; Chau, N.; Deschler, D.; Glastonbury, C.; Kaufman, M.; Lamarre, E.; Lau, H.Y.; et al. Management of Salivary Gland Malignancy: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1909–1941. [Google Scholar] [CrossRef] [PubMed]
- Damar, M.; Dinç, A.E.; Erdem, D.; Aydil, U.; Kizil, Y.; Eravcı, F.C.; Bişkin, S.; Şevik Eliçora, S.; Işik, H. Pretreatment Neutrophil-Lymphocyte Ratio in Salivary Gland Tumors Is Associated with Malignancy. Otolaryngol. Head Neck Surg. 2016, 155, 988–996. [Google Scholar] [CrossRef]
- Nakayama, M.; Gosho, M.; Hirose, Y.; Nishimura, B.; Tanaka, S.; Tabuchi, K.; Okubo, H.; Wada, T.; Hara, A. Modified combination of platelet count and neutrophil “to” lymphocyte ratio as a prognostic factor in patients with advanced head and neck cancer. Head Neck 2018, 40, 1138–1146. [Google Scholar] [CrossRef]
- Mizuno, R.; Kawada, K.; Itatani, Y.; Ogawa, R.; Kiyasu, Y.; Sakai, Y. The Role of Tumor-Associated Neutrophils in Colorectal Cancer. Int. J. Mol. Sci. 2019, 20, 529. [Google Scholar] [CrossRef] [PubMed]
- Borsetto, D.; Sethi, M.; Polesel, J.; Tomasoni, M.; Deganello, A.; Nicolai, P.; Bossi, P.; Fabbris, C.; Molteni, G.; Marchioni, D.; et al. The risk of recurrence in surgically treated head and neck squamous cell carcinomas: A conditional probability approach. Acta Oncol. 2021, 60, 942–947. [Google Scholar] [CrossRef]
- Kwon, H.C.; Kim, S.H.; Oh, S.Y.; Lee, S.; Lee, J.H.; Choi, H.J.; Park, K.J.; Roh, M.S.; Kim, S.G.; Kim, H.J.; et al. Clinical significance of preoperative neutrophil-lymphocyte versus platelet-lymphocyte ratio in patients with operable colorectal cancer. Biomarkers 2012, 17, 216–222. [Google Scholar] [CrossRef]
- Hua, X.; Long, Z.Q.; Zhang, Y.L.; Wen, W.; Guo, L.; Xia, W.; Zhang, W.W.; Lin, H.X. Prognostic Value of Preoperative Systemic Immune-Inflammation Index in Breast Cancer: A Propensity Score-Matching Study. Front. Oncol. 2020, 10, 580. [Google Scholar] [CrossRef]
- Boscolo-Rizzo, P.; D’Alessandro, A.; Polesel, J.; Borsetto, D.; Tofanelli, M.; Deganello, A.; Tomasoni, M.; Nicolai, P.; Bossi, P.; Spinato, G.; et al. Different inflammatory blood markers correlate with specific outcomes in incident HPV-negative head and neck squamous cell carcinoma: A retrospective cohort study. BMC Cancer 2022, 22, 243. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Kawakita, D.; Tada, Y.; Imanishi, Y.; Beppu, S.; Tsukahara, K.; Kano, S.; Ozawa, H.; Okami, K.; Sato, Y.; Shimizu, A.; et al. Impact of hematological inflammatory markers on clinical outcome in patients with salivary duct carcinoma: A multi-institutional study in Japan. Oncotarget 2017, 8, 1083–1091. [Google Scholar] [CrossRef]
- Fang, Q.; Liu, F.; Seng, D. Oncologic outcome of parotid mucoepidermoid carcinoma in pediatric patients. Cancer Manag. Res. 2019, 11, 1081–1085. [Google Scholar] [CrossRef]
- Cheng, G.; Liu, F.; Niu, X.; Fang, Q. Role of the pretreatment neutrophil-to-lymphocyte ratio in the survival of primary parotid cancer patients. Cancer Manag. Res. 2019, 11, 2281–2286. [Google Scholar] [CrossRef] [PubMed]
- Seng, D.; Fang, Q.; Li, P.; Liu, F.; Liu, S. Prognostic Value of the Pretreatment Neutrophil-to-Lymphocyte Ratio in Pediatric Parotid Cancer. Front. Pediatr. 2019, 7, 207. [Google Scholar] [CrossRef]
- Gao, H.; Gao, Q.; Sun, J. Significance of Pretreatment Neutrophil-to-Lymphocyte Ratio in Mucoepidermoid Carcinoma of Pediatrics: A Multicenter Study. Front. Pediatr. 2020, 8, 96. [Google Scholar] [CrossRef] [PubMed]
- Somay, E.; Yilmaz, B.; Topkan, E.; Kucuk, A.; Pehlivan, B.; Selek, U. Initial neutrophil-to-lymphocyte ratio predicts radiation-induced trismus in parotid gland cancer. Oral Dis. 2023, 29, 2772–2779. [Google Scholar] [CrossRef]
- Abbate, V.; Barone, S.; Troise, S.; Laface, C.; Bonavolontà, P.; Pacella, D.; Salzano, G.; Iaconetta, G.; Califano, L.; Dell’Aversana Orabona, G. The Combination of Inflammatory Biomarkers as Prognostic Indicator in Salivary Gland Malignancy. Cancers 2022, 14, 5934. [Google Scholar] [CrossRef]
- Committeri, U.; Barone, S.; Salzano, G.; Arena, A.; Borriello, G.; Giovacchini, F.; Fusco, R.; Vaira, L.A.; Scarpa, A.; Abbate, V.; et al. Support Tools in the Differential Diagnosis of Salivary Gland Tumors through Inflammatory Biomarkers and Radiomics Metrics: A Preliminary Study. Cancers 2023, 15, 1876. [Google Scholar] [CrossRef]
- Lee, R.H.; Truong, A.; Wu, X.; Kang, H.; Algazi, A.P.; El-Sayed, I.H.; George, J.R.; Heaton, C.M.; Ryan, W.R.; Ha, P.K.; et al. The neutrophil-to-lymphocyte ratio in salivary gland cancers treated with pembrolizumab. Head Neck 2024, 46, 129–137. [Google Scholar] [CrossRef]
- Abbate, V.; Barone, S.; Borriello, G.; Troise, S.; Bonavolontà, P.; Pacella, D.; Vaira, L.A.; Turri-Zanoni, M.; Cuéllar, C.N.; Califano, L.; et al. Diagnostic performance of inflammatory biomarkers and cytological analysis in salivary gland tumors. Head Neck 2023, 45, 3015–3023. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Wu, J.; Wang, S.; Xu, S. Perioperative change in neutrophil count predicts worse survival in esophageal squamous cell carcinoma. Future Oncol. 2021, 17, 4721–4731. [Google Scholar] [CrossRef]
- Takenaka, Y.; Oya, R.; Kitamiura, T.; Ashida, N.; Shimizu, K.; Takemura, K.; Yamamoto, Y.; Uno, A. Prognostic role of neutrophil-to-lymphocyte ratio in head and neck cancer: A meta-analysis. Head Neck 2018, 40, 647–655. [Google Scholar] [CrossRef]
- Ulich, T.R.; Del Castillo, J.; Guo, K.Z. In vivo hematologic effects of recombinant interleukin-6 on hematopoiesis and circulating numbers of RBCs and WBCs. Blood 1989, 73, 108–110. [Google Scholar] [CrossRef]
- Di Carlo, E.; Forni, G.; Lollini, P.; Colombo, M.P.; Modesti, A.; Musiani, P. The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 2001, 97, 339–345. [Google Scholar] [CrossRef]
- Ji, H.; Houghton, A.M.; Mariani, T.J.; Perera, S.; Kim, C.B.; Padera, R.; Tonon, G.; McNamara, K.; Marconcini, L.A.; Hezel, A.; et al. K-ras activation generates an inflammatory response in lung tumors. Oncogene 2006, 25, 2105–2112. [Google Scholar] [CrossRef]
- Cassatella, M.A. The production of cytokines by polymorphonuclear neutrophils. Immunol. Today 1995, 16, 21–26. [Google Scholar] [CrossRef]
- Quigley, D.A.; Kristensen, V. Predicting prognosis and therapeutic response from interactions between lymphocytes and tumor cells. Mol. Oncol. 2015, 9, 2054–2062. [Google Scholar] [CrossRef] [PubMed]
- Fridman, W.H.; Zitvogel, L.; Sautès-Fridman, C.; Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, M. Role of Platelets and Platelet Receptors in Cancer Metastasis. J. Hematol. Oncol. 2018, 11, 125. [Google Scholar] [CrossRef]
- Palacios-Acedo, A.L.; Mège, D.; Crescence, L.; Dignat-George, F.; Dubois, C.; Panicot-Dubois, L. Platelets, thrombo-inflammation, and cancer: Collaborating with the enemy. Front. Immunol. 2019, 10, 1805. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, H.; Yan, A.; Wang, H.; Li, X.; Liu, J.; Li, W. Pretreatment neutrophil to lymphocyte ratio in determining the prognosis of head and neck cancer: A meta-analysis. BMC Cancer 2018, 18, 383. [Google Scholar] [CrossRef] [PubMed]
- Kano, S.; Homma, A.; Hatakeyama, H.; Mizumachi, T.; Sakashita, T.; Kakizaki, T.; Fukuda, S. Pretreatment lymphocyte-to-monocyte ratio as an independent prognostic factor for head and neck cancer. Head Neck 2017, 39, 247–253. [Google Scholar] [CrossRef]
Authors (Yrs) | Country | NoP | Average Yrs (Range Yrs) | A/C | M/B | Parameters and Cut-Off | Cut-Off Calculation |
---|---|---|---|---|---|---|---|
Damar (2016) [15] | Turkey | 182 | 53 (16–87) | A | M: 58 B: 124 | NLR: 1.86 | ROC |
Kawakita (2017) [23] | Japan | 140 | 64 (26–84) | A | M | NLR: 2.5 PLR: 186.2 | ROC |
Fang (2019) [24] | China | 73 | 14.3 (8–18) | C | M | NLR: 2.48 | Mean value |
Cheng (2019) [25] | China | 249 | 47.7 (19–73) | A | M | NLR: 2.48 | Mean value |
Seng (2019) [26] | China | 123 | 14.3 (6–18) | C | M | NLR: 2.51 | Mean value |
Gao (2020) [27] | China | 88 | 14.2 (6–18) | C | M | NLR: 2.32 | Mean value |
Somay (2022) [28] | Turkey | 51 | 52 (31–75) | A | M | NLR: 2.7 | ROC |
Abbate (2022) [29] | Italy | 74 | 56 (13–85) | A | M | NLR: 3.95 PLR: 187.6 SII: 917.585 SIRI: 2.045 | ROC |
Committeri (2023) [30] | Italy | 117 | Warthin: 62 Pleomorphic 52.5 Malignant 53.5 | A | M: 28 B: 89 | NLR: 3.62 PLR: 133.30 SII: 594.91 SIRI: 1.61 | ROC |
Lee (2023) [31] | USA | 20 | 60 (41–68) | A | M | NLR: 5 | Literature |
Abbate (2023) [32] | Italy | 239 | 55 (18–87) | A | M: 99 B: 140 | NLR: 3.09 PLR: 129 SII: 788 SIRI: 0.94 | ROC |
Authors (Yrs) | Objective | Major Results |
---|---|---|
Damar (2016) [15] | To evaluate the pretreatment role of NLR, percentages and leucocyte counts in benign and malignant salivary gland tumors. | Malignant tumors showed higher NLR and neutrophil percentages, and lower lymphocyte percentages. |
Kawakita (2017) [23] | To evaluate the role of NLR and PLR in OS and PFS in salivary duct carcinomas. | Multivariate analysis revealed a significant association between high NLR and OS; this association was not consistent with the PFS results. No notable associations were found between PLR and survival. |
Fang (2019) [24] | To evaluate the long-term oncological outcome of pediatric patients with mucoepidermoid carcinoma of the parotid gland treated with total parotidectomy. | A high NLR was associated with recurrence in univariate analysis but not in the Cox model. High NLR was not linked to DSS in univariate analysis. |
Cheng (2019) [25] | To assess the role of NLR in the prognosis of patients with parotid gland cancer. | NLR is an independent predictor of DSS, with high values indicating a worse prognosis. |
Seng (2019) [26] | To assess the prognostic value of NLR in pediatric patients with parotid gland cancer. | In multivariate analysis, RFS and DSS rates were significantly reduced in patients with a high NLR. |
Gao (2020) [27] | To evaluate the significance of pretreatment NLR in the prognosis of pediatric patients with parotid mucoepidermoid carcinoma. | Tumor histological grade and stage were significantly associated with NLR, and an NLR ≥ 2.32 was associated with a worse prognosis. |
Somay (2022) [28] | To evaluate the significance of pretreatment NLR values for predicting radiation-induced trismus in parotid gland tumor patients treated with postoperative radiotherapy. | High pretreatment NLR levels are statistically predictive of increased rates of radiotherapy-induced trismus in patients with parotid carcinoma treated with surgery and adjuvant radiotherapy. |
Abbate (2022) [29] | To investigate the predictive value of inflammatory biomarkers for OS in patients treated surgically for salivary gland malignancies. | SII plus SIRI can independently predict the OS of patients after surgery. The prognostic score based on these is useful in clinical decision making. |
Committeri (2023) [30] | To increase the effectiveness of pre-surgical diagnosis and improve the differentiation between benign and malignant pathologies in salivary gland tumors using inflammatory biomarkers. | The inflammatory biomarkers NLR, PLR, SII and SIRI showed an accuracy of 0.88, 0.74, 0.76 and 0.83, respectively, in differentiating Warthin tumors from pleomorphic adenoma and malignant neoplasms. |
Lee (2023) [31] | To investigate the association between pretreatment NLR and immune checkpoint inhibitor outcomes in patients with recurrent/metastatic salivary gland carcinoma treated with pembrolizumab. | Multivariate Cox analysis shows that pretreatment NLR remained independently associated with 6-month PFS and 2-year OS. In Kaplan–Meier analysis, patients with NLR ≥ 5 had significantly worse 6-month and 2-year PFS and OS after starting pembrolizumab therapy. |
Abbate (2023) [32] | To evaluate the diagnostic efficacy of inflammatory biomarkers compared to FNAC alone in salivary gland tumors. | Combining SIRI with cytological analysis significantly increases the sensitivity to 82.8%, allowing it to be used routinely to increase the accuracy of preoperative diagnosis. |
Authors (Yrs) | Pros | Cons |
---|---|---|
Damar (2016) [15] | Large sample size. First study to analyze the role of inflammatory markers in salivary gland tumors. Cut-off selection method. | Retrospective study. Use of NLR only. Disparity between malignant and benign tumors, with a reduced malignant sample. |
Kawakita (2017) [23] | Large sample size. Multi-parameter analysis. Cut-off selection method. | Retrospective study. |
Fang (2019) [24] | Large sample size. | Retrospective study. Use of NLR only. Cut-off selection method. |
Cheng (2019) [25] | Large sample size. | Retrospective study. Use of NLR only. Cut-off selection method. |
Seng (2019) [26] | Large sample size. | Retrospective study. Use of NLR only. Cut-off selection method. |
Gao (2020) [27] | Large sample size. | Retrospective study. Use of NLR only. Cut-off selection method. |
Somay (2022) [28] | Analyzing a specific subcategory. Cut-off selection method. | Retrospective study. Use of NLR only. |
Abbate (2022) [29] | Multi-parameter analysis. Cut-off selection method. | Retrospective study. |
Committeri (2023) [30] | Multi-parameter analysis. Cut-off selection method. | Retrospective study. Disparity between malignant and benign tumors, with a reduced malignant sample. |
Lee (2023) [31] | Analyzing a specific subcategory. | Retrospective study. Use of NLR only. Cut-off selection method. |
Abbate (2023) [32] | Multi-parameter analysis. Cut-off selection method. Large sample size. | Retrospective study. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Migliorelli, A.; Manuelli, M.; Ciorba, A.; Stomeo, F.; Pelucchi, S.; Bianchini, C. The Role of Blood Inflammatory Markers in Salivary Gland Carcinoma: A Scoping Review. J. Clin. Med. 2025, 14, 1762. https://doi.org/10.3390/jcm14051762
Migliorelli A, Manuelli M, Ciorba A, Stomeo F, Pelucchi S, Bianchini C. The Role of Blood Inflammatory Markers in Salivary Gland Carcinoma: A Scoping Review. Journal of Clinical Medicine. 2025; 14(5):1762. https://doi.org/10.3390/jcm14051762
Chicago/Turabian StyleMigliorelli, Andrea, Marianna Manuelli, Andrea Ciorba, Francesco Stomeo, Stefano Pelucchi, and Chiara Bianchini. 2025. "The Role of Blood Inflammatory Markers in Salivary Gland Carcinoma: A Scoping Review" Journal of Clinical Medicine 14, no. 5: 1762. https://doi.org/10.3390/jcm14051762
APA StyleMigliorelli, A., Manuelli, M., Ciorba, A., Stomeo, F., Pelucchi, S., & Bianchini, C. (2025). The Role of Blood Inflammatory Markers in Salivary Gland Carcinoma: A Scoping Review. Journal of Clinical Medicine, 14(5), 1762. https://doi.org/10.3390/jcm14051762