Assessing ChatGPT’s Role in Sarcopenia and Nutrition: Insights from a Descriptive Study on AI-Driven Solutions
Abstract
:1. Background
2. Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127 (Suppl. S5), 990S–991S. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; van Kan, G.A.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.; Mets, T.; Seal, C.; Wijers, S.L.; et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: A randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2015, 16, 740–747. [Google Scholar] [CrossRef]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef]
- Shatte, A.B.R.; Hutchinson, D.M.; Teague, S.J. Machine learning in mental health: A scoping review of methods and applications. Psychol. Med. 2019, 49, 1426–1448. [Google Scholar] [CrossRef]
- Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.; Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-Assisted Medical Education Using Large Language Models. PLoS Digit. Health 2023, 2, e0000198. [Google Scholar] [CrossRef]
- Miner, A.S.; Milstein, A.; Schueller, S.; Hegde, R.; Mangurian, C.; Linos, E. Smartphone-based conversational agents and responses to questions about mental health, interpersonal violence, and physical health. JAMA Intern. Med. 2016, 176, 619–625. [Google Scholar] [CrossRef]
- Laranjo, L.; Dunn, A.G.; Tong, H.L.; Kocaballi, A.B.; Chen, J.; Bashir, R.; Surian, D.; Gallego, B.; Magrabi, F.; Lau, A.Y.S.; et al. Conversational agents in healthcare: A systematic review. J. Am. Med. Inform. Assoc. 2018, 25, 1248–1258. [Google Scholar] [CrossRef]
- Gilson, A.; Safranek, C.W.; Huang, T.; Socrates, V.; Chi, L.; Taylor, R.A.; Chartash, D. How Well Does ChatGPT Do When Taking the Medical Licensing Exams? The Implications of Large Language Models for Medical Education and Knowledge Assessment. JMIR Med. Educ. 2023, 9, e45312. [Google Scholar] [CrossRef]
- Magruder, M.L.; Rodriguez, A.N.; Wong, J.C.J.; Erez, O.; Piuzzi, N.S.; Scuderi, G.R.; Slover, J.D.; Oh, J.H.; Schwarzkopf, R.; Chen, A.F.; et al. Assessing ability for ChatGPT to answer total knee arthroplasty-related questions. J. Arthroplast. 2024, 39, 2022–2027. [Google Scholar] [CrossRef] [PubMed]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Yao, Z.; Cui, Y.; Wei, B.; Jin, Z.; Xu, X. Evaluation of ChatGPT-generated medical responses: A systematic review and meta-analysis. J. Biomed. Inform. 2024, 151, 104620. [Google Scholar] [CrossRef]
- Kirk, D.; Van Eijnatten, E.; Camps, G. Comparison of answers between ChatGPT and human dieticians to common nutrition questions. J. Nutr. Metab. 2023, 2023, 5548684. [Google Scholar] [CrossRef]
- Chatelan, A.; Clerc, A.; Fonta, P.A. ChatGPT and future artificial intelligence chatbots: What may be the influence on credentialed nutrition and dietetics practitioners? J. Acad. Nutr. Diet. 2023, 123, 1525–1531. [Google Scholar] [CrossRef]
- Papastratis, I.; Stergioulas, A.; Konstantinidis, D.; Daras, P.; Dimitropoulos, K. Can ChatGPT provide appropriate meal plans for NCD patients? Nutrition 2023, 121, 112291. [Google Scholar] [CrossRef]
- Sallam, M. ChatGPT utility in healthcare education, research, and practice: Systematic review on the promising perspectives and valid concerns. Healthcare 2023, 11, 887. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Yapar, D.; Demir Avcı, Y.; Tokur Sonuvar, E.; Eğerci, Ö.F.; Yapar, A. ChatGPT’s potential to support home care for patients in the early period after orthopedic interventions and enhance public health. Jt. Dis. Relat. Surg. 2024, 35, 169–176. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Kalla, D.; Smith, N. Study and analysis of chat GPT and its impact on different fields of study. Int. J. Innov. Sci. Res. Technol. 2023, 8, 827–833. [Google Scholar]
- Atwal, K. Artificial intelligence in clinical nutrition and dietetics: A brief overview of current evidence. Nutr. Clin. Pract. 2024, 39, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Li, T.; Wu, D.; Jenkin, M.; Liu, S.; Dudek, G. Hallucination Detection and Hallucination Mitigation: An Investigation. arXiv 2024, arXiv:2401.08358. [Google Scholar]
- Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.; Bang, Y.J.; Madotto, A.; Fung, P. Survey of hallucination in natural language generation. ACM Comput. Surv. 2023, 55, 1–38. [Google Scholar] [CrossRef]
- You, M.; Chen, X.; Liu, D.; Lin, Y.; Chen, G.; Li, J. ChatGPT-4 and wearable device assisted Intelligent Exercise Therapy for co-existing Sarcopenia and Osteoarthritis (GAISO): A feasibility study and design for a randomized controlled PROBE non-inferiority trial. J. Orthop. Surg. Res. 2024, 19, 635. [Google Scholar] [CrossRef]
- Sharma, S.; Pajai, S.; Prasad, R.; Wanjari, M.B.; Munjewar, K.P.; Sharma, R.; Pathade, A. A critical review of ChatGPT as a potential substitute for diabetes educators. Cureus 2023, 15, e38380. [Google Scholar] [CrossRef]
Average Score for All Criteria | Median (Min–Max) for All Criteria | Rate of Respondents Giving a Rating of ≥4 for All Criteria, % | ||
---|---|---|---|---|
Q1 | What is sarcopenia and how is it related to nutrition? | 4.60 | 5.0 (2.0–5.0) | 97.06 |
Q2 | Which nutrients should I prioritize to increase or maintain my muscle mass (proteins, vitamins, minerals)? | 4.54 | 5.0 (2.0–5.0) | 97.06 |
Q3 | How much daily protein do I need, and from which foods should I obtain these proteins? | 4.51 | 5.0 (2.0–5.0) | 89.71 |
Q4 | Are plant-based protein sources sufficient to reduce the risk of sarcopenia, or should I necessarily consume animal proteins? | 4.65 | 5.0 (3.0–5.0) | 94.85 |
Q5 | How frequently should I consume protein sources such as eggs, fish, chicken, or red meat? | 4.64 | 5.0 (3.0–5.0) | 95.59 |
Q6 | Are protein powders or amino acid supplements recommended for sarcopenia? When and how should I use them? | 4.48 | 5.0 (2.0–5.0) | 90.44 |
Q7 | Do vitamin D, calcium, or omega-3 fatty acids help maintain muscle mass? From which foods can I obtain these nutrients? | 4.57 | 5.0 (3.0–5.0) | 99.26 |
Q8 | How should I plan the number of meals and the intervals between meals to prevent or slow down sarcopenia? | 4.60 | 5.0 (3.0–5.0) | 94.85 |
Q9 | In cases of overweight or obesity, how can I lose weight healthily while preserving muscle mass? | 4.58 | 5.0 (2.0–5.0) | 95.59 |
Q10 | What are the nutritional differences in age groups at high risk of sarcopenia (e.g., over 65 years old)? | 4.55 | 5.0 (3.0–5.0) | 94.85 |
Q11 | What type of diet should I adopt to preserve my muscles? For example, does a Mediterranean diet benefit sarcopenia? | 4.67 | 5.0 (3.0–5.0) | 97.79 |
Q12 | How do lifestyle factors (exercise, sleep, stress management) affect sarcopenia, and what is their interaction with nutrition? | 4.64 | 5.0 (3.0–5.0) | 98.53 |
Q13 | When grocery shopping, which foods should I prioritize to support my muscle mass, and which should I avoid? | 4.65 | 5.0 (2.0–5.0) | 96.32 |
Q14 | Can dietary supplements (e.g., creatine, BCAAs, collagen) contribute to the management of sarcopenia, or should I be cautious about them? | 4.58 | 5.0 (2.0–5.0) | 91.91 |
Q15 | As a person with sarcopenia, should I seek help from a dietitian or specialist when planning my nutrition, or are general recommendations sufficient? | 4.72 | 5.0 (2.0–5.0) | 96.32 |
Q16 | Are dietary approaches like intermittent fasting effective in preventing or treating sarcopenia? | 4.65 | 5.0 (2.0–5.0) | 94.85 |
Q17 | Which vitamins and minerals support muscle health and are important in preventing sarcopenia (e.g., magnesium, zinc, vitamin D)? | 4.65 | 5.0 (3.0–5.0) | 94.85 |
Q18 | How does appetite loss in elderly individuals affect sarcopenia, and what nutritional strategies can be applied to increase appetite? | 4.68 | 5.0 (3.0–5.0) | 99.26 |
Q19 | Does limiting carbohydrate intake increase the risk of sarcopenia, or is it more important to focus on protein? | 4.58 | 5.0 (2.0–5.0) | 90.44 |
Q20 | What types of foods should I consume before or after exercise, and how does this make a difference in the treatment of sarcopenia? | 4.64 | 5.0 (2.0–5.0) | 94.12 |
Relevance * | Accuracy * | Clarity * | Completeness * | p ** (Cohen’s d) | |
---|---|---|---|---|---|
All Questions | |||||
Mean ± SD | 4.72 ± 0.06 | 4.60 ± 0.09 | 4.55 ± 0.08 | 4.56 ± 0.15 | Relevance vs. Accuracy < 0.001 (1.56) Relevance vs. Clarity< 0.001 (2.40) Relevance vs. Completeness = 0.001 (1.40) Accuracy vs. Clarity = 0.054 (0.58) Accuracy vs. Completeness = 0.642 (0.32) Clarity vs. Completeness = 0.586 (0.08) |
Median (min–max) | 4.71 (4.65–4.82) | 4.58 (4.41–4.76) | 4.55 (4.35–4.68) | 4.58 (4.24–4.79) |
ICC Value | 95%CI | p | |
---|---|---|---|
Relevance | −0.104 | −0.391; −0.287 | 0.684 |
Accuracy | 0.127 | −0.195; 0.493 | 0.208 |
Clarity | 0.022 | −0.350; 0.437 | 0.417 |
Completeness | 0.569 | 0.324; 0.780 | <0.001 |
Total | 0.416 | 0.261; 0.562 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karataş, Ö.; Demirci, S.; Pota, K.; Tuna, S. Assessing ChatGPT’s Role in Sarcopenia and Nutrition: Insights from a Descriptive Study on AI-Driven Solutions. J. Clin. Med. 2025, 14, 1747. https://doi.org/10.3390/jcm14051747
Karataş Ö, Demirci S, Pota K, Tuna S. Assessing ChatGPT’s Role in Sarcopenia and Nutrition: Insights from a Descriptive Study on AI-Driven Solutions. Journal of Clinical Medicine. 2025; 14(5):1747. https://doi.org/10.3390/jcm14051747
Chicago/Turabian StyleKarataş, Özlem, Seden Demirci, Kaan Pota, and Serpil Tuna. 2025. "Assessing ChatGPT’s Role in Sarcopenia and Nutrition: Insights from a Descriptive Study on AI-Driven Solutions" Journal of Clinical Medicine 14, no. 5: 1747. https://doi.org/10.3390/jcm14051747
APA StyleKarataş, Ö., Demirci, S., Pota, K., & Tuna, S. (2025). Assessing ChatGPT’s Role in Sarcopenia and Nutrition: Insights from a Descriptive Study on AI-Driven Solutions. Journal of Clinical Medicine, 14(5), 1747. https://doi.org/10.3390/jcm14051747