Applications of Artificial Intelligence in Acute Promyelocytic Leukemia: An Avenue of Opportunities? A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
- -
- Sensitivity (True Positive Rate, TPR) = (True Positives)/(True Positives + False Negatives) (it measures the proportion of actual positives that are correctly identified);
- -
- Specificity (True Negative Rate, TNR) = (True Negatives)/(True Negatives + False Positives) (the ratio of correctly predicted negative observations to all actual negatives; it measures the proportion of actual negatives that are correctly identified by the model);
- -
- Accuracy = (True Positives + True Negatives)/Total Observations (the ratio of correctly predicted observations to the total observations; a common measure of the overall performance of a classification model);
- -
- AUROC = a measure of the ability of a classifier to distinguish between classes. It plots the TPR against the False Positive Rate (FPR) at various threshold settings. It is positively correlated with the performance of the analyzed model.
3. Results
3.1. Diagnostic Tools Based on Morphological Features
3.2. Diagnostic Tools Based on Routine Biological Parameters
3.3. Diagnostic Tools Based on Multiparameter Flow-Cytometry
3.4. Multi-Omics and Machine Learning Applications in APL Assessment
3.5. Qualitative Analysis of the Performance Metrics of AI Models Used for APL Assessment
3.6. Quantitative Analysis of the Performance Metrics of AI Models Used for APL Assessment
3.7. Quantitative Analysis of the Performance Metrics of AI Models That Used Bone Marrow Aspirate Smears for APL Assessment
3.8. Quantitative Analysis of the Performance Metrics of AI Models That Used Peripheral Blood Smears for APL Assessment
3.9. Quantitative Analysis of the Performance Metrics of AI Models That Used Other Parameters for APL Assessment
4. Discussions, Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noguera, N.I.; Catalano, G.; Banella, C.; Divona, M.; Faraoni, I.; Ottone, T.; Arcese, W.; Voso, M.T. Acute Promyelocytic Leukemia: Update on the Mechanisms of Leukemogenesis, Resistance and on Innovative Treatment Strategies. Cancers 2019, 11, 1591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stahl, M.; Tallman, M.S. Acute promyelocytic leukemia (APL): Remaining challenges towards a cure for all. Leuk. Lymphoma 2019, 60, 3107–3115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iyer, S.G.; Elias, L.; Stanchina, M.; Watts, J. The treatment of acute promyelocytic leukemia in 2023: Paradigm, advances, and future directions. Front. Oncol. 2023, 12, 1062524. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liquori, A.; Ibañez, M.; Sargas, C.; Sanz, M.Á.; Barragán, E.; Cervera, J. Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers 2020, 12, 624. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yilmaz, M.; Kantarjian, H.; Ravandi, F. Acute promyelocytic leukemia current treatment algorithms. Blood Cancer J. 2021, 11, 123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Duminuco, A.; Del Fabro, V.; De Luca, P.; Leotta, D.; Limoli, M.C.; Longo, E.; Nardo, A.; Santuccio, G.; Petronaci, A.; Stanzione, G.; et al. Emergencies in Hematology: Why, When and How I Treat? J. Clin. Med. 2024, 13, 7572. [Google Scholar] [CrossRef]
- Yue, Q.F.; Xiong, B.; Chen, W.X.; Liu, X.Y. Comparative study of the efficacy of Wright-Giemsa stain and Liu’s stain in the detection of Auer rods in acute promyelocytic leukemia. Acta Histochem. 2014, 116, 1113–1116. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Wang, S.A.; Hu, S.; Konoplev, S.N.; Mo, H.; Liu, W.; Zuo, Z.; Xu, J.; Jorgensen, J.L.; Yin, C.C.; et al. Acute promyelocytic leukemia: Immunophenotype and differential diagnosis by flow cytometry. Cytom. B Clin. Cytom. 2022, 102, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Horna, P.; Zhang, L.; Sotomayor, E.M.; Lancet, J.E.; Moscinski, L.C. Diagnostic immunophenotype of acute promyelocytic leukemia before and early during therapy with all-trans retinoic acid. Am. J. Clin. Pathol. 2014, 142, 546–552. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rösler, W.; Altenbuchinger, M.; Baeßler, B.; Beissbarth, T.; Beutel, G.; Bock, R.; von Bubnoff, N.; Eckardt, J.N.; Foersch, S.; Loeffler, C.M.L.; et al. An overview and a roadmap for artificial intelligence in hematology and oncology. J. Cancer Res. Clin. Oncol. 2023, 149, 7997–8006. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alhajahjeh, A.; Nazha, A. Unlocking the Potential of Artificial Intelligence in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Curr. Hematol. Malig. Rep. 2024, 19, 9–17. [Google Scholar] [CrossRef] [PubMed]
- PubMed/MEDLINE. Available online: https://pubmed.ncbi.nlm.nih.gov/ (accessed on 22 February 2025).
- Elshoeibi, A.M.; Badr, A.; Elsayed, B.; Metwally, O.; Elshoeibi, R.; Elhadary, M.R.; Elshoeibi, A.; Attya, M.A.; Khadadah, F.; Alshurafa, A.; et al. Integrating AI and ML in Myelodysplastic Syndrome Diagnosis: State-of-the-Art and Future Prospects. Cancers 2023, 16, 65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hybel, T.E.; Jensen, S.H.; Rodrigues, M.A.; Hybel, T.E.; Pedersen, M.N.; Qvick, S.H.; Enemark, M.H.; Bill, M.; Rosenberg, C.A.; Ludvigsen, M. Imaging Flow Cytometry and Convolutional Neural Network-Based Classification Enable Discrimination of Hematopoietic and Leukemic Stem Cells in Acute Myeloid Leukemia. Int. J. Mol. Sci. 2024, 25, 6465. [Google Scholar] [CrossRef] [PubMed]
- Doknić, I.; Mitrović, M.; Bukumirić, Z.; Virijević, M.; Pantić, N.; Sabljić, N.; Antić, D.; Bojović, Ž. The Comparison of Classical Statistical and Machine Learning Methods in Prediction of Thrombosis in Patients with Acute Myeloid Leukemia. Bioengineering 2025, 12, 63. [Google Scholar] [CrossRef]
- Al-Hussaini, I.; White, B.; Varmeziar, A.; Mehra, N.; Sanchez, M.; Lee, J.; DeGroote, N.P.; Miller, T.P.; Mitchell, C.S. An Interpretable Machine Learning Framework for Rare Disease: A Case Study to Stratify Infection Risk in Pediatric Leukemia. J. Clin. Med. 2024, 13, 1788. [Google Scholar] [CrossRef]
- Elsayed, B.; Elshoeibi, A.M.; Elhadary, M.; Ferih, K.; Elsabagh, A.A.; Rahhal, A.; Abu-Tineh, M.; Afana, M.S.; Abdulgayoom, M.; Yassin, M. Applications of Artificial Intelligence in Philadelphia-Negative Myeloproliferative Neoplasms. Diagnostics 2023, 13, 1123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Verstovsek, S.; Krečak, I.; Heidel, F.H.; De Stefano, V.; Bryan, K.; Zuurman, M.W.; Zaiac, M.; Morelli, M.; Smyth, A.; Redondo, S.; et al. Identifying Patients with Polycythemia Vera at Risk of Thrombosis after Hydroxyurea Initiation: The Polycythemia Vera—Advanced Integrated Models (PV-AIM) Project. Biomedicines 2023, 11, 1925. [Google Scholar] [CrossRef]
- Bernardi, S.; Vallati, M.; Gatta, R. Artificial Intelligence-Based Management of Adult Chronic Myeloid Leukemia: Where Are We and Where Are We Going? Cancers 2024, 16, 848. [Google Scholar] [CrossRef]
- Allegra, A.; Tonacci, A.; Sciaccotta, R.; Genovese, S.; Musolino, C.; Pioggia, G.; Gangemi, S. Machine Learning and Deep Learning Applications in Multiple Myeloma Diagnosis, Prognosis, and Treatment Selection. Cancers 2022, 14, 606. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mikulski, D.; Kędzior, M.K.; Mirocha, G.; Jerzmanowska-Piechota, K.; Witas, Ż.; Woźniak, Ł.; Pawlak, M.; Kościelny, K.; Kośny, M.; Robak, P.; et al. Predictors and Profile of Severe Infectious Complications in Multiple Myeloma Patients Treated with Daratumumab-Based Regimens: A Machine Learning Model for Pneumonia Risk. Cancers 2024, 16, 3709. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.; Si, M.; Xue, P.; Qu, Y.; Jiang, Y. Artificial intelligence performance in detecting lymphoma from medical imaging: A systematic review and meta-analysis. BMC Med. Inf. Decis. Mak. 2024, 24, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Milara, E.; Sarandeses, P.; Jiménez-Ubieto, A.; Saviatto, A.; Seiffert, A.P.; Gárate, F.J.; Moreno-Blanco, D.; Poza, M.; Gómez, E.J.; Gómez-Grande, A.; et al. Machine Learning Models Based on [18F]FDG PET Radiomics for Bone Marrow Assessment in Non-Hodgkin Lymphoma. Appl. Sci. 2024, 14, 10291. [Google Scholar] [CrossRef]
- Hemmingsen, J.K.; Enemark, M.H.; Sørensen, E.F.; Lauridsen, K.L.; Hamilton-Dutoit, S.J.; Kridel, R.; Honoré, B.; Ludvigsen, M. Proteomic Profiling Identifies Predictive Signatures for Progression Risk in Patients with Advanced-Stage Follicular Lymphoma. Cancers 2024, 16, 3278. [Google Scholar] [CrossRef]
- Irshaid, L.; Bleiberg, J.; Weinberger, E.; Garritano, J.; Shallis, R.M.; Patsenker, J.; Lindenbaum, O.; Kluger, Y.; Katz, S.G.; Xu, M.L. Histopathologic and Machine Deep Learning Criteria to Predict Lymphoma Transformation in Bone Marrow Biopsies. Arch. Pathol. Lab. Med. 2022, 146, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Loscertales, J.; Abrisqueta-Costa, P.; Gutierrez, A.; Hernández-Rivas, J.Á.; Andreu-Lapiedra, R.; Mora, A.; Leiva-Farré, C.; López-Roda, M.D.; Callejo-Mellén, Á.; Álvarez-García, E.; et al. Real-World Evidence on the Clinical Characteristics and Management of Patients with Chronic Lymphocytic Leukemia in Spain Using Natural Language Processing: The SRealCLL Study. Cancers 2023, 15, 4047. [Google Scholar] [CrossRef] [PubMed]
- Garuffo, L.; Leoni, A.; Gatta, R.; Bernardi, S. The Applications of Machine Learning in the Management of Patients Undergoing Stem Cell Transplantation: Are We Ready? Cancers 2025, 17, 395. [Google Scholar] [CrossRef]
- Shyr, D.; Zhang, B.M.; Saini, G.; Brewer, S.C. Exploring Pattern of Relapse in Pediatric Patients with Acute Lymphocytic Leukemia and Acute Myeloid Leukemia Undergoing Stem Cell Transplant Using Machine Learning Methods. J. Clin. Med. 2024, 13, 4021. [Google Scholar] [CrossRef]
- Musiał, K.; Stojanowski, J.; Augustynowicz, M.; Miśkiewicz-Migoń, I.; Kałwak, K.; Ussowicz, M. Assessment of Risk Factors for Acute Kidney Injury with Machine Learning Tools in Children Undergoing Hematopoietic Stem Cell Transplantation. J. Clin. Med. 2024, 13, 2266. [Google Scholar] [CrossRef]
- Kang, J.; Lafata, K.; Kim, E.; Yao, C.; Lin, F.; Rattay, T.; Nori, H.; Katsoulakis, E.; Lee, C.I. Artificial intelligence across oncology specialties: Current applications and emerging tools. BMJ Oncol. 2024, 3, e000134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Salib, C.; Bhardwaj, S.; Hussein, S.; El Jamal, S.; Petersen, B.; Scigliano, E.; Dembitzer, F.R.; Teruya-Feldstein, J. Digital AI in Hematology—Integration of the Scopio Labs X100 Scanner with Newly Implemented AI Capabilities into Routine Clinical Workflow. Blood 2021, 138 (Suppl. 1), 4932. [Google Scholar] [CrossRef]
- Sidhom, J.W.; Siddarthan, I.J.; Lai, B.S.; Luo, A.; Hambley, B.C.; Bynum, J.; Duffield, A.S.; Streiff, M.B.; Moliterno, A.R.; Imus, P.; et al. Deep learning for diagnosis of acute promyelocytic leukemia via recognition of genomically imprinted morphologic features. npj Precis. Oncol. 2021, 5, 38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clark, J.M.; Sanders, S.; Carter, M.; Honeyman, D.; Cleo, G.; Auld, Y.; Booth, D.; Condron, P.; Dalais, C.; Bateup, S.; et al. Improving the translation of search strategies using the Polyglot Search Translator: A randomized controlled trial. J. Med. Libr. Assoc. 2020, 108, 195–207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Shreffler, J.; Huecker, M.R. Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios; StatPearls Publishing: Treasure Island, FL, USA, 2025; Available online: https://www.ncbi.nlm.nih.gov/books/NBK557491/ (accessed on 22 February 2025).
- Manescu, P.; Narayanan, P.; Bendkowski, C.; Elmi, M.; Claveau, R.; Pawar, V.; Brown, B.J.; Shaw, M.; Rao, A.; Fernandez-Reyes, D. Detection of acute promyelocytic leukemia in peripheral blood and bone marrow with annotation-free deep learning. Sci. Rep. 2023, 13, 2562. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eckardt, J.N.; Schmittmann, T.; Riechert, S.; Kramer, M.; Sulaiman, A.S.; Sockel, K.; Kroschinsky, F.; Schetelig, J.; Wagenführ, L.; Schuler, U.; et al. Deep learning identifies Acute Promyelocytic Leukemia in bone marrow smears. BMC Cancer 2022, 22, 201. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ouyang, N.; Wang, W.; Ma, L.; Wang, Y.; Chen, Q.; Yang, S.; Xie, J.; Su, S.; Cheng, Y.; Cheng, Q.; et al. Diagnosing acute promyelocytic leukemia by using convolutional neural network. Clin. Chim. Acta 2021, 512, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Zhang, Y.; Liu, N.; Chen, P.; Liu, Y. An End-to-End Pipeline for Early Diagnosis of Acute Promyelocytic Leukemia Based on a Compact CNN Model. Diagnostics 2021, 11, 1237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boldú, L.; Merino, A.; Acevedo, A.; Molina, A.; Rodellar, J. A deep learning model (ALNet) for the diagnosis of acute leukaemia lineage using peripheral blood cell images. Comput. Methods Programs Biomed. 2021, 202, 105999. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Mingyang, G.; Wei, S.; Hongping, L.; Liyuan, Q.; Ailan, L.; Xiaomei, K.; Huilan, Z.; Juanjuan, Z.; Yan, Q. Diagnosis and typing of leukemia using a single peripheral blood cell through deep learning. Cancer Sci. 2025, 116, 533–543. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lincz, L.F.; Makhija, K.; Attalla, K.; Scorgie, F.E.; Enjeti, A.K.; Prasad, R. A comparative evaluation of three consecutive artificial intelligence algorithms released by Techcyte for identification of blasts and white blood cells in abnormal peripheral blood films. Int. J. Lab. Hematol. 2024, 46, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Huang, Z.; Wu, J.; Zhang, Y.; Yang, Y.; Xu, C.; Guo, F.; Ni, X.; Hu, X.; Yang, J.; et al. Rapid screening of acute promyelocytic leukaemia in daily batch specimens: A novel artificial intelligence-enabled approach to bone marrow morphology. Clin. Transl. Med. 2024, 14, e1783. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barrera, K.; Merino, A.; Molina, A.; Rodellar, J. Automatic generation of artificial images of leukocytes and leukemic cells using generative adversarial networks (syntheticcellgan). Comput. Methods Programs Biomed. 2023, 229, 107314. [Google Scholar] [CrossRef] [PubMed]
- Cheli, E.; Chevalier, S.; Kosmider, O.; Eveillard, M.; Chapuis, N.; Plesa, A.; Heiblig, M.; Andre, L.; Pouget, J.; Mossuz, P.; et al. Diagnosis of acute promyelocytic leukemia based on routine biological parameters using machine learning. Haematologica 2022, 107, 1466–1469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liao, H.; Xu, Y.; Meng, Q.; Mao, Z.; Qiao, Y.; Liu, Y.; Zheng, Q. A convolutional neural network-based, quantitative complete blood count scattergram-mapping framework promptly screens acute promyelocytic leukemia with high sensitivity. Cancer 2023, 129, 2986–2998. [Google Scholar] [CrossRef] [PubMed]
- Haider, R.Z.; Ujjan, I.U.; Khan, N.A.; Urrechaga, E.; Shamsi, T.S. Beyond the In-Practice CBC: The Research CBC Parameters-Driven Machine Learning Predictive Modeling for Early Differentiation among Leukemias. Diagnostics 2022, 12, 138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alcazer, V.; Le Meur, G.; Roccon, M.; Barriere, S.; Le Calvez, B.; Badaoui, B.; Spaeth, A.; Kosmider, O.; Freynet, N.; Eveillard, M.; et al. Evaluation of a machine-learning model based on laboratory parameters for the prediction of acute leukaemia subtypes: A multicentre model development and validation study in France. Lancet Digit. Health. 2024, 6, e323–e333. [Google Scholar] [CrossRef] [PubMed]
- Cox, A.M.; Kim, D.; García, R.; Fuda, F.S.; Weinberg, O.K.; Chen, W. Automated prediction of acute promyelocytic leukemia from flow cytometry data using a graph neural network pipeline. Am. J. Clin. Pathol. 2024, 161, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Monaghan, S.A.; Li, J.L.; Liu, Y.C.; Ko, M.Y.; Boyiadzis, M.; Chang, T.Y.; Wang, Y.F.; Lee, C.C.; Swerdlow, S.H.; Ko, B.S. A Machine Learning Approach to the Classification of Acute Leukemias and Distinction from Nonneoplastic Cytopenias Using Flow Cytometry Data. Am. J. Clin. Pathol. 2022, 157, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.; Rajwa, B.; Pothen, A. Immunophenotype Discovery, Hierarchical Organization, and Template-Based Classification of Flow Cytometry Samples. Front. Oncol. 2016, 6, 188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Villiers, W.; Kelly, A.; He, X.; Kaufman-Cook, J.; Elbasir, A.; Bensmail, H.; Lavender, P.; Dillon, R.; Mifsud, B.; Osborne, C.S. Multi-omics and machine learning reveal context-specific gene regulatory activities of PML::RARA in acute promyelocytic leukemia. Nat. Commun. 2023, 14, 724. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, X.; Song, J.; Chyr, J.; Wan, J.; Wang, X.; Du, J.; Duan, J.; Zhang, H.; Zhou, X.; Wu, X. APAview: A web-based platform for alternative polyadenylation analyses in hematological cancers. Front. Genet. 2022, 13, 928862. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thrun, M.C.; Mack, E.K.M.; Neubauer, A.; Haferlach, T.; Frech, M.; Ultsch, A.; Brendel, C. A Bioinformatics View on Acute Myeloid Leukemia Surface Molecules by Combined Bayesian and ABC Analysis. Bioengineering 2022, 9, 642. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- George, G.V.; Elsadawi, M.; Evans, A.G.; Ali, S.; Zhang, B.; Iqbal, M.A. Utilization of RT-PCR and Optical Genome Mapping in Acute Promyelocytic Leukemia with Cryptic PML::RARA Rearrangement: A Case Discussion and Systemic Literature Review. Genes 2025, 16, 7. [Google Scholar] [CrossRef]
- Infante, J.; Esteves, G.; Raposo, J.; de Lacerda, J.F. Predictors of very early death in acute promyelocytic leukemia: A retrospective real-world cohort study. Ann. Hematol. 2023, 102, 3031–3037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdulrazzaq, M.M.; Ramaha, N.T.A.; Hameed, A.A.; Salman, M.; Yon, D.K.; Fitriyani, N.L.; Syafrudin, M.; Lee, S.W. Consequential Advancements of Self-Supervised Learning (SSL) in Deep Learning Contexts. Mathematics 2024, 12, 758. [Google Scholar] [CrossRef]
Datasets for Model Training and Testing | Results |
---|---|
PBS: 30 APL samples and 40 other samples (normal PBS, other AML subtypes); random split of the samples—three-fold cross-validation; 2/3 for training and 1/3 for testing | AUROC (sample classification): 0.935 ± 0.036 (diagnostic labels) |
Single-cell images (PBS) of 611 promyelocytes and 3000 other myeloid and normal WBC (testing set) | AUROC: 0.88 (discrimination of promyelocytes from other types of WBC) |
Further training and testing—33 APL samples and 72 AML samples (PBS)—random three-fold cross-validation | AUROC: 0.96 ± 0.02 |
BMS from 236 healthy individuals and 1095 AML patients (43 with APL)—training 3/4 and testing 1/4, randomly split; four-fold cross-validation | AUROC (average): 0.99 |
Single-cell images (BMS) of 309 promyelocytes, 718 myeloblasts, and 262 normal WBC (testing set) | AUROC (promyelocytes): 0.895; most promyelocytes (78%) are classified correctly |
Study | Tool | Input Data * | Results ** |
---|---|---|---|
Manescu, 2023 [39] | Multiple Instance Learning for Leukocyte Identification (MILLIE) | PBS and BMS | AUROC (PBS): 0.94 ± 0.04 AUROC (BMS): 0.99 ± 0.01 |
Eckardt, 2024 [40] | Custom AI tool, unnamed | BMS | AUROC: 0.8575–0.9585 (varies between the comparison groups) |
Ouyang, 2020 [41] | Custom AI tool, unnamed | BMS | Average precision: 62.5% Average recall: 84.1% |
Qiao, 2021 [42] | Custom AI tool, unnamed | PBS | AUROC: 0.9977 ± 0.0003 or 0.9914 ± 0.0026 Precision: 97.65% or 99.2% (depending on the dataset) |
Boldu, 2021 [43] | ALNet | PBS | Correct diagnosis prediction for all APL cases |
Sidhom, 2021 [34] | Custom AI tool, unnamed | PBS | AUROC (discovery cohort): 0.890 AUROC (independent prospective validation cohort): 0.743 |
Yan, 2024 [44] | Custom AI tool, unnamed | PBS | Precision: 89.34 ± 0.32 Recall: 97.37 ± 1.34 AUROC: 0.913 |
Lincz, 2023 [45] | Techcyte AI tool | PBS | Blast detection performances in APL: Sensitivity 100% Specificity: 0% Positive predictive value: 91% Negative predictive value: 0% |
Barrera, 2023 [47] | SyntheticCellGAN | Images generated from iterations of PBS | Accuracy (atypical promyelocytes): 100% Accuracy (pathologist’s interpretation): 91% Positive predictive value (ALNet prediction) |
Xiao, 2024 [46] | CELLSEE AI-powered APL morphological diagnostic system | BMS | AUROC: 0.9708 |
Cheli, 2022 [48] | AI for APL | Biological parameters: age, WBC, Ly (% of WBC), NE (absolute value), MCV, MCHC, INR, fibrinogen concentrations | AUROC: 0.96 |
Liao, 2023 [49] | ResNet-18-CNN architecture for scattergram mapping | CBC scattergrams | AUROC: >0.99 |
Haider, 2022 [50] | Cell population data-driven ANN predictive modeling | CBC research parameters/cell population data | AUROC: 0.789 |
Alcazer, 2024 [51] | AI prediction of acute leukemia (AI-PAL) | Biological parameters: age, MCV, MCHC, PLT (absolute number), LY (absolute number), MO (absolute number), MO% (% of WBCs), LDH, PT, fibrinogen concentration | AUROC: 0.97 |
Cox, 2024 [52] | GNN pipeline using MFC data | MFC data: 4 physical parameters (FSC-A, FSC-H, SSC-A, SSC-H), 6 fluorescent parameters (CD15, CD33, CD34, HLA-DR, CD117, CD45) | AUROC: 1 |
Monaghan, 2022 [53] | Machine learning to classify acute leukemias and distinction from nonneoplastic cytopenias using GMM and Fisher kernel methods on MFC data | MFC data using 37 FC parameters MFC (3 parameters) | AUROC (37 FC parameters): 0.995 AUROC (3 MFC parameters): 0.983 |
Azad, 2016 [54] | FlowMatch | MFC data | N/A |
Villiers, 2023 [55] | Regulatory Element Behavior Extraction Learning (REBEL) | Transcription factor motif datasets, previously distilled by machine learning algorithms | AUROC: 0.51–0.64 |
Thrun, 2022 [57] | Bayesian and ABC Analysis | MFC parameters (CD paired analysis APL vs. non-APL sample structure via microarrays) | N/A—exploratory results identifying particular novel CD markers for APL (e.g., CD339) |
Hu, 2022 [56] | APAview—web-based platform for alternative polyadenylation analyses in hematological cancers | APA sites labeling and quantifying APA usages | N/A—exploratory results analyzing various gene pathways involvement in hematological malignancies (e.g., JAK1 and STAT1, STAT3, GRB2, SOCS5, PTPN11, and MDM2—in APL) |
No. | Author | Sample Type | External Control | Sensitivity (TPR) | Specificity (TNR) | Accuracy | AUROC |
---|---|---|---|---|---|---|---|
1 | Xiao, 2024 [46] | BMS | Yes | 0.9080 | 0.8500 | 0.9380 | 0.9800 |
2 | Manescu, 2023 [39] | BMS | Yes | 1.0000 | 0.9800 | 0.9900 | 0.9900 |
3 | Eckardt, 2024 [40] | BMS | No | 0.9671 | 0.9400 | 0.8700 | 0.9585 |
4 | Ouyang, 2020 [41] | BMS | No | 0.9600 | 0.9700 | 0.9200 | 0.8575 |
5 | Manescu, 2023 [40] | PBS | Yes | 0.8000 | 0.9400 | 0.8700 | 0.9400 |
6 | Qiao, 2021 [42] | PBS | Yes | 0.9919 | 0.9988 | 0.9954 | 0.9585 |
7 | Boldu, 2021 [43] | PBS | Yes | 0.9530 | 1.0000 | 0.9470 | 0.9800 |
8 | Sidhom, 2021 [34] | PBS | Yes | 0.8000 | 0.9000 | N/A | 0.7430 |
9 | Yan, 2024 [44] | PBS | Yes | 0.8934 | 0.9737 | 0.9318 | 0.9130 |
10 | Lincz, 2023 [45] | PBS | No | AI1: 0.97, AI2: 0.98, AI3: 1 | AI1: 0.24, AI2: 0.14, AI3: 0.12 | N/A | N/A |
11 | Barrera, 2023 [47] | PBS (processed images) | No | 0.9800 | 0.9700 | 0.9700 | 0.9900 |
12 | Cheli, 2022 [48] | Biological parameters | Yes | 0.8456 | 0.9398 | 0.9614 | 0.9600 |
13 | Alcazer, 2024 [51] | Biological parameters | Yes | 0.9610 | 0.9970 | 0.9610 | 0.9600 |
14 | Liao, 2023 [49] | CBC | Yes | 0.9500 | 1.0000 | 0.9600 | 0.9900 |
15 | Haider, 2022 [50] | CBC | Yes | N/A | N/A | 0.995 (high score), 0.85 (intermediate score), 0.68 (low score) | 0.9600 |
16 | Thrun, 2022 [57] | CDs | N/A | N/A | N/A | N/A | N/A |
17 | Cox, 2024 [52] | CDs | Yes | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
18 | Monaghan, 2022 [53] | CDs | Yes | 0.8750 | 0.9560 | 0.9420 | 0.9550 |
19 | Azad, 2016 [54] | CDs | No | 0.8750 | 1.0000 | N/A | N/A |
20 | Villiers, 2023 [55] | Transcription factor motifs | No | 0.9950 | 0.9900 | 0.9900 | 0.6400 |
21 | Hu, 2022 [56] | APA | N/A | N/A | N/A | N/A | N/A |
No. | Author | Sample Type | External Control | Sensitivity (TPR) | Specificity (TNR) | Accuracy | AUROC |
---|---|---|---|---|---|---|---|
1 | Xiao, 2024 [46] | BMS | Yes | 0.9080 | 0.8500 | 0.9380 | 0.9800 |
2 | Manescu, 2023 [39] | BMS | Yes | 1.0000 | 0.9800 | 0.9900 | 0.9900 |
3 | Eckardt, 2024 [40] | BMS | No | 0.9671 | 0.9400 | 0.8700 | 0.9585 |
4 | Ouyang, 2020 [41] | BMS | No | 0.9600 | 0.9700 | 0.9200 | 0.8575 |
No. | Author | Sample Type | External Control | Sensitivity (TPR) | Specificity (TNR) | Accuracy | AUROC |
---|---|---|---|---|---|---|---|
1 | Manescu, 2023 [39] | PBS | Yes | 0.8000 | 0.9400 | 0.8700 | 0.9400 |
2 | Qiao, 2021 [46] | PBS | Yes | 0.9919 | 0.9988 | 0.9954 | 0.9585 |
3 | Boldu, 2021 [43] | PBS | Yes | 0.9530 | 1.0000 | 0.9470 | 0.9800 |
4 | Yan, 2024 [44] | PBS | Yes | 0.8934 | 0.9737 | 0.9318 | 0.9130 |
5 | Barrera, 2023 [47] | PBS | No | 0.9800 | 0.9700 | 0.9700 | 0.9900 |
No. | Author | Sample Type | External Control | Sensitivity (TPR) | Specificity (TNR) | Accuracy | AUROC |
---|---|---|---|---|---|---|---|
1 | Cheli, 2022 [48] | Biological parameters | Yes | 0.8456 | 0.9398 | 0.9614 | 0.9600 |
2 | Alcazer, 2024 [51] | Biological parameters | Yes | 0.9610 | 0.9970 | 0.9610 | 0.9600 |
3 | Liao, 2023 [49] | CBC | Yes | 0.9500 | 1.0000 | 0.9600 | 0.9900 |
4 | Cox, 2024 [52] | CDs | Yes | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
5 | Monaghan, 2022 [53] | CDs | Yes | 0.8750 | 0.9560 | 0.9420 | 0.9550 |
6 | Villiers, 2023 [55] | Transcription factor motifs | No | 0.9950 | 0.9900 | 0.9900 | 0.6400 |
Mean Values for Performance Metrics | PBS | BMS | Other Biomarkers |
---|---|---|---|
TPR (Sensitivity) | 0.92366 | 0.958775 | 0.937766667 |
TNR (Specificity) | 0.9765 | 0.935 | 0.980467 |
Accuracy | 0.9428 | 0.9295 | 0.969067 |
AUROC | 0.9563 | 0.9465 | 0.9175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Găman, M.-A.; Dugăeşescu, M.; Popescu, D.C. Applications of Artificial Intelligence in Acute Promyelocytic Leukemia: An Avenue of Opportunities? A Systematic Review. J. Clin. Med. 2025, 14, 1670. https://doi.org/10.3390/jcm14051670
Găman M-A, Dugăeşescu M, Popescu DC. Applications of Artificial Intelligence in Acute Promyelocytic Leukemia: An Avenue of Opportunities? A Systematic Review. Journal of Clinical Medicine. 2025; 14(5):1670. https://doi.org/10.3390/jcm14051670
Chicago/Turabian StyleGăman, Mihnea-Alexandru, Monica Dugăeşescu, and Dragoş Claudiu Popescu. 2025. "Applications of Artificial Intelligence in Acute Promyelocytic Leukemia: An Avenue of Opportunities? A Systematic Review" Journal of Clinical Medicine 14, no. 5: 1670. https://doi.org/10.3390/jcm14051670
APA StyleGăman, M.-A., Dugăeşescu, M., & Popescu, D. C. (2025). Applications of Artificial Intelligence in Acute Promyelocytic Leukemia: An Avenue of Opportunities? A Systematic Review. Journal of Clinical Medicine, 14(5), 1670. https://doi.org/10.3390/jcm14051670