Plan Quality Comparison at Five Years in Two Cohorts of Breast Cancer Patients Treated with Helical Tomotherapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radiotherapy Treatment Technique
2.2. Treatment Plan Evaluation and Scoring
2.3. Toxicity Evaluation
3. Results
3.1. Plans Evaluation
3.2. Toxicity Evaluation
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
ACROP | Advisory Committee for Radiation Oncology Practice |
AIRO | Italian Association of Radiotherapy and Clinical Oncology |
BC | Breast Cancer |
CC | Capsular Contracture |
CTV | Clinical Target Volume |
CW | Chest Wall |
DVH | Dose–Volume Histograms |
ESTRO | European Society for Radiotherapy and Oncology |
IBR | Immediate Breast Reconstruction |
IMRT | Intensity Modulated Radiotherapy |
OARs | Organs At Risk |
PI | Permanent Implant |
PMRT | Postmastectomy Radiation Therapy |
PTV | Planning Target Volume |
RT | Radiotherapy |
SVC | Supraclavicular Nodal Region |
TE | Tissue expander |
References
- EBCTCG (Early Breast Cancer Trialists’ Collaborative Group); McGale, P.; Taylor, C.; Correa, C.; Cutter, D.; Duane, F.; Ewertz, M.; Wang, Y. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014, 383, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Berbers, J.; van Baardwijk, A.; Houben, R.; Heuts, E.; Smidt, M.; Keymeulen, K.; Bessems, M.; Tuinder, S.; Boersma, L.J. ‘Reconstruction: Before or after postmastectomy radiotherapy?’ A systematic review of the literature. Eur. J. Cancer 2014, 50, 2752–2762. [Google Scholar] [CrossRef] [PubMed]
- Krueger, E.A.; Fraass, B.A.; McShan, D.L.; Marsh, R.; Pierce, L.J. Potential gains for irradiation of chest wall and regional nodes with intensity modulated radiotherapy. Int. J. Radiat. Oncol. 2003, 56, 1023–1037. [Google Scholar] [CrossRef] [PubMed]
- Ashenafi, M.; Boyd, R.A.; Lee, T.K.; Lo, K.K.; Gibbons, J.P.; Rosen, I.I.; Fontenot, J.D.; Hogstrom, K.R. Feasibility of Postmastectomy Treatment With Helical TomoTherapy. Int. J. Radiat. Oncol. 2010, 77, 836–842. [Google Scholar] [CrossRef]
- Wang, S.-L.; Fang, H.; Song, Y.-W.; Wang, W.-H.; Hu, C.; Liu, Y.-P.; Jin, J.; Liu, X.-F.; Yu, Z.-H.; Ren, H.; et al. Hypofractionated versus conventional fractionated postmastectomy radiotherapy for patients with high-risk breast cancer: A randomised, non-inferiority, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 352–360. [Google Scholar] [CrossRef]
- Liu, L.; Yang, Y.; Guo, Q.; Ren, B.; Peng, Q.; Zou, L.; Zhu, Y.; Tian, Y. Comparing hypofractionated to conventional fractionated radiotherapy in postmastectomy breast cancer: A meta-analysis and systematic review. Radiat. Oncol. 2020, 15, 17. [Google Scholar] [CrossRef]
- Orecchia, R.; Rojas, D.P.; Cattani, F.; Ricotti, R.; Santoro, L.; Morra, A.; Cambria, R.; Luraschi, R.; Dicuonzo, S.; Ronchi, S.; et al. Hypofractionated postmastectomy radiotherapy with helical tomotherapy in patients with immediate breast reconstruction: Dosimetric results and acute/intermediate toxicity evaluation. Med. Oncol. 2018, 35, 39. [Google Scholar] [CrossRef]
- Rojas, D.P.; Leonardi, M.C.; Frassoni, S.; Morra, A.; Gerardi, M.A.; La Rocca, E.; Cattani, F.; Luraschi, R.; Fodor, C.; Zaffaroni, M.; et al. Implant risk failure in patients undergoing postmastectomy 3-week hypofractionated radiotherapy after immediate reconstruction. Radiother. Oncol. 2021, 163, 105–113. [Google Scholar] [CrossRef]
- Meattini, I.; Becherini, C.; Boersma, L.; Kaidar-Person, O.; Marta, G.N.; Montero, A.; Offersen, B.V.; Aznar, M.C.; Belka, C.; Brunt, A.M.; et al. European Society for Radiotherapy and Oncology Advisory Committee in Radiation Oncology Practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer. Lancet Oncol. 2022, 23, e21–e31. [Google Scholar] [CrossRef]
- Konopka-Filippow, M.; Sierko, E.; Hempel, D.; Maksim, R.; Samołyk-Kogaczewska, N.; Filipowski, T.; Rożkowska, E.; Jelski, S.; Kasprowicz, B.; Karbowska, E.; et al. The Learning Curve and Inter-Observer Variability in Contouring the Hippocampus under the Hippocampal Sparing Guidelines of Radiation Therapy Oncology Group 0933. Curr. Oncol. 2022, 29, 2564–2574. [Google Scholar] [CrossRef]
- Banas, B.; Kolodziejczyk, P.; Czerw, A.; Banas, T.; Kotwas, A.; Richter, P. A Retrospective, Single-Centre Study on the Learning Curve for Liver Tumor Open Resection in Patients with Hepatocellular Cancers and Intrahepatic Cholagangiocarcinomas. Int. J. Environ. Res. Public Health 2022, 19, 4872. [Google Scholar] [CrossRef] [PubMed]
- Mazzella, A.; Mohamed, S.; Maisonneuve, P.; Sedda, G.; Cara, A.; Casiraghi, M.; Petrella, F.; Donghi, S.M.; Iacono, G.L.; Spaggiari, L. Learning Curve of Robotic Lobectomy for the Treatment of Lung Cancer: How Does It Impact on the Autonomic Nervous System of the Surgeon? J. Pers. Med. 2023, 13, 193. [Google Scholar] [CrossRef] [PubMed]
- Offersen, B.V.; Boersma, L.J.; Kirkove, C.; Hol, S.; Aznar, M.C.; Sola, A.B.; Kirova, Y.M.; Pignol, J.-P.; Remouchamps, V.; Verhoeven, K.; et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer. Radiother. Oncol. 2015, 114, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Airo Breast Cancer Group. La Radioterapia dei Tumori Della Mammella; Indicazioni e Criteri Guida AIRO: 2013. Available online: https://www.radioterapiaitalia.it/wp-content/uploads/2019/09/Best-Clinical-Practice-nella-radioterapia-dei-tumori-della-mammella-2019.pdf (accessed on 24 February 2025).
- Motwani, S.B.; Strom, E.A.; Schechter, N.R.; Butler, C.E.; Lee, G.K.; Langstein, H.N.; Kronowitz, S.J.; Meric-Bernstam, F.; Ibrahim, N.K.; Buchholz, T.A. The impact of immediate breast reconstruction on the technical delivery of postmastectomy radiotherapy. Int. J. Radiat. Oncol. 2006, 66, 76–82. [Google Scholar] [CrossRef]
- Spear, S.L.; Baker, J.L. Classification of capsular contracture after prosthetic breast reconstruction. Plast. Reconstr. Surg. 1995, 96, 1119–1123. [Google Scholar] [CrossRef]
- Venigalla, S.; Guttmann, D.M.; Jain, V.; Sharma, S.; Freedman, G.M.; Shabason, J.E. Trends and Patterns of Utilization of Hypofractionated Postmastectomy Radiotherapy: A National Cancer Database Analysis. Clin. Breast Cancer 2018, 18, e899–e908. [Google Scholar] [CrossRef]
- Nguyen, K.; Mackenzie, P.; Allen, A.; Dreosti, M.; Morgia, M.; Zissiadis, Y.; Lamoury, G.; Windsor, A. Breast interest group faculty of radiation oncology: Australian and New Zealand patterns of practice survey on breast radiotherapy. J. Med. Imaging Radiat. Oncol. 2016, 61, 508–516. [Google Scholar] [CrossRef]
- Aristei, C.; Kaidar-Person, O.; Tagliaferri, L.; Arenas, M.; Coles, C.E.; Offersen, B.V.; Frezza, G.; Leonardi, M.C.; Valentini, V.; Bourgier, C.; et al. The Assisi Think Tank Meeting and Survey of post MAstectomy Radiation Therapy after breast reconstruction: The ATTM-SMART report. Eur. J. Surg. Oncol. 2018, 44, 436–443. [Google Scholar] [CrossRef]
- Davis, N.; Jyothirmayi, R. A Nationwide Survey of UK Oncologists’ Views on the Choice of Radiotherapy Regime for the Reconstructed Chest Wall in Breast Cancer Patients. Int. J. Breast Cancer 2017, 2017, 6385432. [Google Scholar] [CrossRef]
- Hypofractionated Radiation Therapy After Mastectomy in Preventing Recurrence in Patients With Stage IIa-IIIa Breast Cancer-Tabular View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/record/NCT03414970 (accessed on 28 June 2023).
- Whitfield, G.A.; Horan, G.; Irwin, M.S.; Malata, C.M.; Wishart, G.C.; Wilson, C.B. Incidence of severe capsular contracture following implant-based immediate breast reconstruction with or without postoperative chest wall radiotherapy using 40 Gray in 15 fractions. Radiother. Oncol. 2008, 90, 141–147. [Google Scholar] [CrossRef]
- Kim, D.-Y.; Park, E.; Heo, C.Y.; Jin, U.S.; Kim, E.K.; Han, W.; Shin, K.H.; Kim, I.A. Influence of Hypofractionated Versus Conventional Fractionated Postmastectomy Radiation Therapy in Breast Cancer Patients With Reconstruction. Int. J. Radiat. Oncol. 2021, 112, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Poppe, M.M.; Yehia, Z.A.; Baker, C.; Goyal, S.; Toppmeyer, D.; Kirstein, L.; Chen, C.; Moore, D.; Haffty, B.G.; Khan, A.J. 5-Year Update of a Multi-Institution, Prospective Phase 2 Hypofractionated Postmastectomy Radiation Therapy Trial. Int. J. Radiat. Oncol. 2020, 107, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Kaidar-Person, O.; Offersen, B.V.; Hol, S.; Arenas, M.; Aristei, C.; Bourgier, C.; Cardoso, M.J.; Chua, B.; Coles, C.E.; Damsgaard, T.E.; et al. ESTRO ACROP consensus guideline for target volume delineation in the setting of postmastectomy radiation therapy after implant-based immediate reconstruction for early stage breast cancer. Radiother. Oncol. 2019, 137, 159–166. [Google Scholar] [CrossRef] [PubMed]
Total Score (Points) | n Plans 2012–2015 (%) N = 120 | n Plans 2019–2020 (%) N = 120 | Δ | |
---|---|---|---|---|
Optimal | 6 | 85 (70.8) | 93 (77.5) | +6.7% |
Acceptable | 5.5 | 22 (18.4) | 18 (15.0) | −4.0% |
Compromised | ≤5 | 13 (10.8) | 9 (7.5) | −3.3% |
Median Value (IQR) 2012–2015 | Median Value (IQR) 2019–2020 | p Value | Satisfying Plans 2012–2015 (%) | Satisfying Plans 2019–2020 (%) | Δ | |
---|---|---|---|---|---|---|
CW-PTV | ||||||
V95% ≥ 90% | 94.9 (92–97) | 96.3 (92.6–98.0) | 0.03318 | 85.8 | 90 | +4.2 |
V90% ≥ 95% | 99 (97–99.8) | 99.4 (98.4–100.0) | 0.01878 | 92.5 | 95 | +2.5 |
Dmean ≥ 99% | 99.8 (99.5–100) | 99.6 (99.4–99.8) | 0.00036 | 90.8 | 92.5 | +1.7 |
D0.03 cm3 ≤ 110% | 107.7 (106–108.9) | 106.6 (105.8–107.1) | 0.00001 | 90.8 | 97.5 | +6.7 |
V107% ≤ 30% | 0.04 (0–0.3) | 0 (0–0.01) | 0.00374 | 100 | 100 | 0 |
SVC-PTV | ||||||
V95% ≥ 85% | 93 (87.2–96.1) | 97.8 (96.3–98.8) | 0.00001 | 81.7 | 100 | +18.3 |
V90% ≥ 90% | 97.7 (95.0–99.2) | 99.4 (98.6–100) | 0.00001 | 91.7 | 100 | +8.3 |
Dmean ≥ 95% | 98.8 (96.9–99.9) | 99.1 (98.6–99.7) | 0.0164 | 91.7 | 100 | +8.3 |
D0.03 cm3 ≤ 110% | 107.0 (105.0–108.2) | 107.0 (105.6–108.2) | 0.3843 | 90 | 95 | +5 |
V107% ≤ 30% | 0 (0–0.2) | 0 (0–0.15) | 0.78716 | 100 | 97.5 | −2.5 |
OARs | ||||||
Ipsilateral lung | ||||||
D15% ≤ 31 Gy | 27.0 (25.7–28.5) | 26.30 (25.0–27.6) | 0.00362 | 100 | 99.2 | −0.8 |
D20% ≤ 26.4 Gy | 23.8 (22.9–25.0) | 23.25 (22.0–24.4) | 0.00672 | 96.7 | 99.2 | +2.5 |
D35% ≤ 17.6 Gy | 16.0 (15.0–17.0) | 15.3 (14.3–16.5) | 0.00452 | 96.7 | 99.2 | +2.5 |
D50% ≤ 13 Gy | 11.5 (10.2–12.0) | 11.2 (9.8–12.0) | 0.06288 | 99.2 | 98.3 | −0.9 |
Contralateral lung | ||||||
D20% ≤ 13 Gy | 6.7 (5.2–8.1) | 6.1 (5.3–7.3) | 0.08012 | 100 | 100 | 0 |
D35% ≤ 10.6 Gy | 4.7 (4.0–6.0) | 4.7 (3.7–5.4) | 0.29372 | 100 | 100 | 0 |
D50% ≤ 9 Gy | 3.1 (2.3–4.0) | 3.4 (2.4–4.1) | 0.90448 | 100 | 98.3 | −1.7 |
Contralateral breast | ||||||
D15% ≤ 17.6 Gy | 7.5 (6.0–9.1) | 7.6 (6.3–8.6) | 0.58232 | 100 | 100 | 0 |
D20% ≤ 9 Gy | 6.5 (5.6–7.7) | 6.5 (5.7–7.3) | 0.39532 | 98.3 | 97.5 | −0.8 |
D35% ≤ 6 Gy | 4.9 (4.0–5.2) | 4.7 (4.0–5.1) | 0.34212 | 97.5 | 97.5 | 0 |
D50% ≤ 4.4 Gy | 3.9 (3.3–4.0) | 3.7 (3.4–4.1) | 0.6672 | 95 | 97.5 | +2.5 |
Heart * | ||||||
D15% ≤ 17.6 Gy | 12.0 (11.0–13.0) | 100 | - | |||
D20% ≤ 13 Gy | 10.8 (10.0–11.9) | 100 | - | |||
Heart ** | ||||||
D15% ≤ 8 Gy | 6.1 (5.6–7.0) | 6.3 (5.6–7.0) | 0.75656 | 100 | 97.5 | −2.5 |
D20% ≤ 6 Gy | 5.1 (4.5–5.9) | 5.1 (4.6–5.7) | 0.88076 | 97.9 | 93.3 | −4.6 |
Dmean ≤ 5 Gy | 4.2 (3.8–4.7) | 4.5 (3.9–4.8) | 0.12356 | 94.9 | 94.2 | −0.7 |
Brachial plexus | ||||||
D0.03 cm3 ≤ 39.6 Gy | 38.8 (38.0–39.3) | 39.1 (38.9–39.4) | <0.00001 | 94.2 | 96.7 | +2.5 |
Spinal cord | ||||||
D0.03 cm3 ≤ 17 Gy | 13.4 (3.0–15.0) | 15.0 (13.7–15.9) | <0.00001 | 98.3 | 100 | +1.7 |
Stomach | ||||||
Dmax ≤ 9 Gy | 4.4 (2.2–8.8) | 5.7 (3.0–9.9) | 0.08012 | 70 | ||
Dmean ≤ 2.6 Gy | 1.3 (1.0–2.6) | 1.2 (0.7–2.0) | 0.00854 | 91.7 | ||
Liver | ||||||
V13Gy ≤ 17% | 3.7 (0.5–7.5) | 3.0 (0.1–6.8) | 0.24604 | - | 100 | |
Dmean ≤ 4.4 Gy | 3.2 (1.6–4.1) | 3.0 (1.5–4.0) | 0.4965 | - | 88.3 | |
Esophagus § | ||||||
Dmax ≤ 10 Gy (2015) Dmax ≤ 15 Gy (2020) | 7.9 (6.9–9.0) | 14.8 (14.0–15.7) | <0.00001 | 91.2 | 60.8 | −30.4 |
Humeral head ‡ | ||||||
Dmax ≤ 30 Gy | 25.0 (19.0–28.0) | 26.7 (24.0–28.6) | 0.0012 | 97.3 | 94.2 | −3.1 |
Baker Capsular Contracture | 1 | 2 | 3 | 4 |
---|---|---|---|---|
2012–2015 plans * n, (%) | 3/84 (3.6) | 33/84 (39.3) | 34/84 (40.5) | 12/84 (14.3) |
2019–2020 plans n, (%) | 7/62 (11.3) | 28/62 (45.2) | 24/62 (38.7) | 3/62 (4.8) |
2019–2020 | 2012–2015 | |||
---|---|---|---|---|
Age (Years) | n | % | n | % |
<50 | 55 | 45.8 | 76 | 63.3 |
>50 | 65 | 54.2 | 44 | 36.7 |
BMI (kg/m2) | ||||
Underweight (<18.5) | 7 | 5.8 | 3 | 2.5 |
Normal weight (18.5–24.99) | 75 | 62.5 | 87 | 72.5 |
Overweight (25–29.99) | 25 | 20.8 | 22 | 18.3 |
Obese (>30) | 10 | 8.3 | 8 | 6.7 |
Missing | 3 | 2.5 | 0 | 0.0 |
Irradiated side | ||||
Right side | 56 | 46.7 | 69 | 57.5 |
Left side | 64 | 53.3 | 51 | 42.5 |
Breast reconstruction | ||||
Tissue expander | 87 | 70.8 | 69 | 57.5 |
Prosthesis | 33 | 26.7 | 51 | 42.5 |
Arterial hypertension | ||||
No | 104 | 86.7 | 106 | 88.3 |
Yes | 16 | 13.3 | 14 | 11.7 |
Surgery | ||||
Mastectomy | 1 | 0.8 | 2 | 1.7 |
Mastectomy + SNB | 18 | 15.0 | 5 | 4.2 |
Mastectomy + ALND + SNB | 97 | 80.8 | 103 | 85.8 |
Other | 4 | 3.3 | 10 | 8.3 |
Adjuvant therapy | ||||
HT alone | 45 | 37.5 | 15 | 12.5 |
AC/EC (+HT) | 56 | 46.7 | 91 | 75.8 |
Other CT (+HT) | 12 | 10.0 | 14 | 11.7 |
No | 7 | 5.8 | 7 | 5.8 |
Target therapy | ||||
No | 98 | 81.7 | 93 | 77.5 |
Yes | 22 | 18.3 | 27 | 22.5 |
Bolus | ||||
No | 117 | 97.5 | 116 | 96.7 |
Yes | 3 | 2.5 | 4 | 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dicuonzo, S.; Zerella, M.A.; Zaffaroni, M.; Vincini, M.G.; Amin, K.; Ronci, G.; D’arcangelo, M.; Rojas, D.P.; Morra, A.; Gerardi, M.A.; et al. Plan Quality Comparison at Five Years in Two Cohorts of Breast Cancer Patients Treated with Helical Tomotherapy. J. Clin. Med. 2025, 14, 1630. https://doi.org/10.3390/jcm14051630
Dicuonzo S, Zerella MA, Zaffaroni M, Vincini MG, Amin K, Ronci G, D’arcangelo M, Rojas DP, Morra A, Gerardi MA, et al. Plan Quality Comparison at Five Years in Two Cohorts of Breast Cancer Patients Treated with Helical Tomotherapy. Journal of Clinical Medicine. 2025; 14(5):1630. https://doi.org/10.3390/jcm14051630
Chicago/Turabian StyleDicuonzo, Samantha, Maria Alessia Zerella, Mattia Zaffaroni, Maria Giulia Vincini, Karl Amin, Giuseppe Ronci, Micol D’arcangelo, Damaris Patricia Rojas, Anna Morra, Marianna Alessandra Gerardi, and et al. 2025. "Plan Quality Comparison at Five Years in Two Cohorts of Breast Cancer Patients Treated with Helical Tomotherapy" Journal of Clinical Medicine 14, no. 5: 1630. https://doi.org/10.3390/jcm14051630
APA StyleDicuonzo, S., Zerella, M. A., Zaffaroni, M., Vincini, M. G., Amin, K., Ronci, G., D’arcangelo, M., Rojas, D. P., Morra, A., Gerardi, M. A., Fodor, C., Cambria, R., Luraschi, R., Cattani, F., Veronesi, P., De Lorenzi, F., Rietjens, M., Orecchia, R., Leonardi, M. C., & Jereczek-Fossa, B. A. (2025). Plan Quality Comparison at Five Years in Two Cohorts of Breast Cancer Patients Treated with Helical Tomotherapy. Journal of Clinical Medicine, 14(5), 1630. https://doi.org/10.3390/jcm14051630