Influence of Lactobionic Acid on Hydration and Elasticity Parameters in Women Aged 30–40 and 50–60 Years in Comparison to Mandelic Acid
Abstract
:1. Introduction
2. Purpose of This Work
3. Materials and Methods
3.1. Test Procedure
3.2. Statistical Analysis
4. Results
5. Discussion
5.1. Assessment of the Level of Hydration in Studied Groups of Women
5.2. Assessment of the Level of Flexibility in Studied Groups of Women
5.3. Limitations
6. Conclusions
- The effectiveness of the impact of peels on the biophysical parameters of facial skin depends largely on the age of the surveyed women.
- In the group of younger women, lactobionic acid significantly improved the level of facial skin hydration.
- In the group of younger women, mandelic acid significantly improved the level of facial skin elasticity.
- In the group of older women, mandelic acid significantly improved the level of elasticity.
- In the group of older women, lactobionic acid significantly improved the level of elasticity and hydration.
- Lactobionic acid should be dedicated to older women, while mandelic acid can be used interchangeably with lactobionic acid by younger women.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krzykowska, M. Diagnostyka skóry w gabinecie kosmetologicznym. Kosmetol. Estet. 2018, 4, 433–436. [Google Scholar]
- Jaroszewska, B. Kosmetologia; ATENA: Warszawa, Poland, 2010. [Google Scholar]
- Noszczyk, M. Kosmetologia pielęgnacyjna i lekarska. In Wydawnictwo Lekarskie PZWL; PZWL: Warszawa, Poland, 2012. [Google Scholar]
- Kaniewska, M. Kosmetologia Podstawy; WsiP: Warszawa, Poland, 2011. [Google Scholar]
- Warowna, M.; Kręcisz, B.; Sobolewska-Samorek, A.; Hordyjewska, A. Rola i działanie kwasu laktobionowego w przebiegu wybranych chorób skórnych. Kosmetol. Estet. 2018, 7, 651–654. [Google Scholar]
- Arct, J. Polihydroksykwasy w kosmetyce. Dermatol. Estet. 2015, 17, 308–312. [Google Scholar]
- Tasić-Kostov, M.; Lukić, M.; Savić, S. A 10% Lactobionic acid—Containing moisturizer reduces skin surface pH without irritation—An in vivo/in vitro study. J. Cosmet. Dermatol. 2019, 18, 1705–1710. [Google Scholar] [CrossRef] [PubMed]
- Green, B.A.; Edison, B.L.; Wildnauer, R.H. Polyhydroxy acids (PHAs) provide conditioning effects to skin without increasing sensitivity to uv light. American Academy of Dermatology Poster Exhibit: New Orleans, LA, USA, 2002. [Google Scholar]
- Ditre, C.M.; Griffin, T.D.; Murphy, G.F.; Sueki, H.; Telegan, B.; Johnson, W.C. Effects of alpha-hydroxy acids on photoaged skin: A pilot clinical, histologic, and ultrastructural study. J. Am. Acad. Dermatol. 1996, 34, 187–195. [Google Scholar] [CrossRef]
- Grimes, P.E.; Green, B.A.; Wildnauer, R.H.; Edisoin, B.L. The use of polyhydroxy acids (PHAs) in photoaged skin. Cutis 2004, 74, 3–13. [Google Scholar]
- Niemyska, K.; Marwicka, J. Zastosowanie kwasu migdałowego w kosmetyce. Kosmetol. Estet. 2017, 6, 29–32. [Google Scholar]
- Kapuścińska, A.; Nowak, I. Zastosowanie kwasów organicznych w terapii trądziku i przebarwień skóry. Postępy Hig. Med. Dosw. 2015, 69, 374–383. [Google Scholar] [CrossRef]
- Feliczak-Guzik, A.; Jagodzińska, K.; Nowak, I. Rola hydroksykwasów w kosmetyce. Pol. J. Cosmetol. 2013, 16, 85–92. [Google Scholar]
- Arct, J.; Stępień, M.; Pytkowski, K. Kwas migdałowy i jego zastosowanie kosmetyczne. Pol. J. Cosmetol. 2017, 20, 296–299. [Google Scholar]
- Matuszyńska, M.; Piotrowska, A. Analiza deklarowanego składu i form fizykochemicznych preparatów kosmetycznych z kwasem migdałowym. Kosmetol. Estety 2019, 8, 51–55. [Google Scholar]
- Palacz, A. Ocena skuteczności peelingów na bazie kwasu mlekowego i migdałowego. Kosmetol. Estet. 2014, 3, 13–16. [Google Scholar]
- Sicińska, A. Ocena stanu cery suchej po zastosowaniu serii zabiegów z kwasem migdałowym. Kosmetol. Estet. 2015, 1, 13–23. [Google Scholar]
- Algiert-Zielińska, B.; Mucha, P.; Rotsztejn, H. Comparative evaluation of skin moisture after topical application of 10% and 30% lactobionic acid. J. Cosmet. Dermatol. 2018, 9, 3–10. [Google Scholar] [CrossRef]
- Algiert-Zielińska, B.; Mucha, P.; Rotsztejn, H. Effects of lactobionic acid peel, aluminum oxide crystal microdermabrasion, and both procedures on skin hydration, elasticity, and transepidermal water loss. J. Cosmet. Dermatol. 2019, 20, 1463–1774. [Google Scholar] [CrossRef]
- Klauzińska, O.; Niewęgłowska, M.; Kalicińska, J.; Nowak, P.; Śpiewak, R. Wpływ stosowania kremu z kwasem laktobionowym i hialuronowym na przeznaskórkową utratę wody. Kosmetol. Estet. 2017, 6, 569–571. [Google Scholar]
- Ezure, T.; Amano, S. Influence of subcutaneous adipose tissue mass on dermal elasticity and sagging severity in lower cheek. Ski. Res. Technol. 2010, 16, 332–338. [Google Scholar] [CrossRef]
- Ezure, T.; Hosoi, J.; Amano, S.; Tsuchiya, T. Sagging of the cheek is related to skin elasticity, fat mass and mimetic muscle function. Skin. Res. Technol. 2009, 15, 299–305. [Google Scholar] [CrossRef]
- Escoffier, C.; de Rigal, J.; Rochefort, A.; Vasselet, R.; Lévêque, J.L.; Agache, P.G. Age-related mechanical properties of human skin: An in vivo study. J. Investig. Dermatol. 1989, 93, 353–357. [Google Scholar] [CrossRef]
- Philips, N.; Burchill, D.; O’donoghue, D.; Keller, T.; Gonzalez, S. Identification of benzene metabolites in dermal fibroblasts as nonphenolic: Regulation of cell viability, apoptosis, lipid peroxidation and expression of matrix metalloproteinase 1 and elastin by benzene metabolites. Skin. Pharmacol. Physiol. 2004, 17, 147–152. [Google Scholar] [CrossRef]
- Philips, N.; Conte, J.; Chen, Y.J.; Natrajan, P.; Taw, M.; Keller, T.; Givant, J.; Tuason, M.; Dulaj, L.; Leonardi, D.; et al. Beneficial regulation of matrixmetalloproteinases and their inhibitors, fibrillar collagens and transforming growth factor-β by Polypodium leucotomos, directly or in dermal fibroblasts, ultraviolet radiated fibroblasts, and melanoma cells. Arch. Dermatol. Res. 2009, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-W.; Choi, H.-J.; Kim, H.-S.; Kim, D.-H.; Chang, I.-S.; Moon, H.T.; Lee, S.-Y.; Oh, W.K.; Woo, E.-R. Biflavonoids isolated from Selaginella tamariscina regulate the expression of matrix metalloproteinase in human skin fibroblasts. Bioorgan Med. Chem. 2008, 16, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Escander, G.M.; Olivieri, A.C.; Gonzalez-Sierra, M.; Sala, L.F. Iron (III) complexes of lactobionic acid: Equilibrium and structural studiem in aqueous solution. J. Chem. Soc. Daltion Trans. 1994, 8, 1189–1192. [Google Scholar] [CrossRef]
- Tasic-Konov, M.; Pavlovic, D.; Lukic, M.; Jaksic, I.; Arsic, I.; Savic, S. Lactobionic acid as antioxidant and moisturizing active in alkyl polyglucoside-based topical emulsions: The colloidal structure, stability and efficacy evaluation. Int. J. Cosmet. Sci. 2012, 34, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Pinnell, S.R. Cutaneous photodamage, oxidative stress, and topical antioxidant protection. J. Am. Acad. Dermatol. 2003, 48, 1–19. [Google Scholar] [CrossRef]
- Green, B. Lactobionic acid. Ski. Inc. 2000, 12, 62–65. [Google Scholar]
- Jacobs, S.W.; Culbertson, E.J. Effects of Topical Mandelic Acid Treatment on Facial Skin Viscoelasticity. Facial Plast. Surg. 2018, 34, 651–656. [Google Scholar] [CrossRef]
- Green, B.A.; Edison, B.L.; Sigler, M.L. Antiaging effects of topical lactobionic acid: Results of a controlled Osage study. Cosmet. Dermatol. 2008, 21, 76–82. [Google Scholar]
Exhibition 30–40 Years | Type of Impact | n | M | SD | Me | Min | Max | Q1 | Q3 | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
hydration before | mandelic acid | 30 | 60.84 | 8.40 | 60.35 | 47.50 | 76.70 | 55.50 | 66.75 | p = 0.001 * |
hydration after | mandelic acid | 30 | 67.49 | 8.49 | 69.58 | 50.15 | 91.50 | 61.65 | 73.00 | |
hydration before | lactobionic acid | 30 | 56.64 | 11.02 | 57.25 | 33.00 | 77.50 | 50.35 | 64.85 | p = 0.001 ** |
hydration after | lactobionic acid | 30 | 70.75 | 11.15 | 69.58 | 49.65 | 95.00 | 64.45 | 76.80 | |
hydration before | control group | 30 | 57.53 | 11.56 | 54.90 | 29.70 | 80.20 | 47.65 | 68.65 | p = 0.001 ** |
hydration after | control group | 30 | 67.05 | 9.22 | 68.33 | 50.05 | 87.15 | 58.50 | 73.05 |
Exhibition 30–40 Years | Type of Impact | n | M | SD | Me | Min | Max | Q1 | Q3 | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
elasticity before | mandelic acid | 30 | 64.14 | 5.86 | 64.90 | 54.65 | 75.15 | 59.15 | 68.00 | p = 0.000 * |
elasticity after | mandelic acid | 30 | 72.76 | 10.48 | 70.75 | 57.80 | 90.50 | 66.50 | 80.65 | |
elasticity before | lactobionic acid | 30 | 62.94 | 7.27 | 61.75 | 46.20 | 88.50 | 58.85 | 66.35 | p = 0.005 * |
elasticity after | lactobionic acid | 30 | 68.78 | 11.48 | 68.58 | 51.35 | 94.15 | 58.70 | 76.50 | |
elasticity before | control group | 30 | 64.13 | 8.24 | 64.68 | 45.35 | 80.15 | 61.00 | 69.85 | p = 0.046 ** |
elasticity after | control group | 30 | 67.59 | 9.71 | 67.60 | 46.00 | 85.00 | 60.65 | 72.15 |
Exhibition 50–60 Years | Type of Impact | n | M | SD | Me | Min | Max | Q1 | Q3 | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
hydration before | mandelic acid | 30 | 63.83 | 8.33 | 63.50 | 50.50 | 88.80 | 58.00 | 65.80 | p = 0.497 * |
hydration after | mandelic acid | 30 | 62.84 | 8.21 | 64.25 | 48.50 | 76.35 | 58.00 | 70.00 | |
hydration before | lactobionic acid | 30 | 59.95 | 10.77 | 61.83 | 39.00 | 79.90 | 52.05 | 68.35 | p = 0.001 ** |
hydration after | lactobionic acid | 30 | 71.27 | 9.98 | 70.45 | 52.50 | 90.50 | 62.65 | 79.50 | |
hydration before | control group | 30 | 64.34 | 6.43 | 63.00 | 54.65 | 80.00 | 61.00 | 68.00 | p = 0.014 ** |
hydration after | control group | 30 | 67.68 | 10.95 | 65.75 | 48.40 | 85.50 | 63.00 | 78.80 |
Exhibition 50–60 Years | Type of Impact | n | M | SD | Me | Min | Max | Q1 | Q3 | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
elasticity before | mandelic acid | 30 | 62.00 | 6.41 | 64.00 | 51.00 | 70.50 | 55.20 | 67.00 | p = 0.000 * |
elasticity after | mandelic acid | 30 | 68.54 | 9.16 | 69.03 | 52.00 | 90.50 | 60.20 | 72.50 | |
elasticity before | lactobionic acid | 30 | 57.00 | 4.44 | 56.85 | 49.00 | 69.65 | 54.50 | 59.50 | p = 0.000 ** |
elasticity after | lactobionic acid | 30 | 64.40 | 6.82 | 63.93 | 46.85 | 77.00 | 61.00 | 68.85 | |
elasticity before | control group | 30 | 58.68 | 6.05 | 59.55 | 49.50 | 68.50 | 53.00 | 64.65 | p = 0.011 ** |
elasticity after | control group | 30 | 62.67 | 7.70 | 62.20 | 48.00 | 74.00 | 56.70 | 69.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warowna, M.; Strzelecka, A.; Kręcisz, B. Influence of Lactobionic Acid on Hydration and Elasticity Parameters in Women Aged 30–40 and 50–60 Years in Comparison to Mandelic Acid. J. Clin. Med. 2025, 14, 1619. https://doi.org/10.3390/jcm14051619
Warowna M, Strzelecka A, Kręcisz B. Influence of Lactobionic Acid on Hydration and Elasticity Parameters in Women Aged 30–40 and 50–60 Years in Comparison to Mandelic Acid. Journal of Clinical Medicine. 2025; 14(5):1619. https://doi.org/10.3390/jcm14051619
Chicago/Turabian StyleWarowna, Marlena, Agnieszka Strzelecka, and Beata Kręcisz. 2025. "Influence of Lactobionic Acid on Hydration and Elasticity Parameters in Women Aged 30–40 and 50–60 Years in Comparison to Mandelic Acid" Journal of Clinical Medicine 14, no. 5: 1619. https://doi.org/10.3390/jcm14051619
APA StyleWarowna, M., Strzelecka, A., & Kręcisz, B. (2025). Influence of Lactobionic Acid on Hydration and Elasticity Parameters in Women Aged 30–40 and 50–60 Years in Comparison to Mandelic Acid. Journal of Clinical Medicine, 14(5), 1619. https://doi.org/10.3390/jcm14051619