Effect of Hemoglobin, Albumin, Lymphocyte Count, and Platelet (HALP) Score on Survival of Patients with Metastatic Thyroid Cancer Treated with Tyrosine Kinase Inhibitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Clinical Assesment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, C.M.; Schneider, A.B. Cancer Progress and Priorities: Epidemiology of Thyroid Cancer. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1284. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Cibas, E.S.; Ali, S.Z. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid 2017, 27, 1341–1346. [Google Scholar] [CrossRef]
- Grant, E.G.; Tessler, F.N.; Hoang, J.K.; Langer, J.E.; Beland, M.D.; Berland, L.L.; Cronan, J.J.; Desser, T.S.; Frates, M.C.; Hamper, U.M.; et al. Thyroid Ultrasound Reporting Lexicon: White Paper of the ACR Thyroid Imaging, Reporting and Data System (TIRADS) Committee. J. Am. Coll. Radiol. 2015, 12, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Klopper, J.; Cottrill, E.E. Molecular Diagnostics in the Evaluation of Thyroid Nodules: Current Use and Prospective Opportunities. Front. Endocrinol. 2023, 14, 1101410. [Google Scholar] [CrossRef]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib Versus Placebo in Radioiodine-Refractory Thyroid Cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Elisei, R.; Schlumberger, M.J.; Müller, S.P.; Schöffski, P.; Brose, M.S.; Shah, M.H.; Licitra, L.; Jarzab, B.; Medvedev, V.; Kreissl, M.C.; et al. Cabozantinib in Progressive Medullary Thyroid Cancer. J. Clin. Oncol. 2013, 31, 3639–3646. [Google Scholar] [CrossRef] [PubMed]
- Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; De La Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; et al. Sorafenib in Radioactive Iodine-Refractory, Locally Advanced or Metastatic Differentiated Thyroid Cancer: A Randomised, Double-Blind, Phase 3 Trial. Lancet 2014, 384, 319–328. [Google Scholar] [CrossRef]
- Subbiah, V.; Cabanillas, M.E.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Keam, B.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; et al. Dabrafenib and Trametinib Treatment in Patients with Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; Ryder, M.; Jimenez, C. Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. Endocr. Rev. 2019, 40, 1573–1604. [Google Scholar] [CrossRef]
- Durante, C.; Haddy, N.; Baudin, E.; Leboulleux, S.; Hartl, D.; Travagli, J.P.; Caillou, B.; Ricard, M.; Lumbroso, J.D.; De Vathaire, F.; et al. Long-Term Outcome of 444 Patients with Distant Metastases from Papillary and Follicular Thyroid Carcinoma: Benefits and Limits of Radioiodine Therapy. J. Clin. Endocrinol. Metab. 2006, 91, 2892–2899. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A.; Asa, S.L.; Dralle, H.; Elisei, R.; Evans, D.B.; Gagel, R.F.; Lee, N.; MacHens, A.; Moley, J.F.; Pacini, F.; et al. Revised American Thyroid Association Guidelines for the Management of Medullary Thyroid Carcinoma. Thyroid 2015, 25, 567–610. [Google Scholar] [CrossRef]
- Ceolin, L.; Da Silveira Duval, M.A.; Benini, A.F.; Ferreira, C.V.; Maia, A.L. Medullary Thyroid Carcinoma beyond Surgery: Advances, Challenges, and Perspectives. Endocr. Relat. Cancer 2019, 26, R499–R518. [Google Scholar] [CrossRef] [PubMed]
- Modigliani, E.; Cohen, R.; Campos, J.M.; Conte-Devolx, B.; Maes, B.; Boneu, A.; Schlumberger, M.; Bigorgne, J.C.; Dumontier, P.; Leclerc, L.; et al. Prognostic Factors for Survival and for Biochemical Cure in Medullary Thyroid Carcinoma: Results in 899 Patients. The GETC Study Group. Clin. Endocrinol. 1998, 48, 265–273. [Google Scholar] [CrossRef]
- Boichard, A.; Croux, L.; Al Ghuzlan, A.; Broutin, S.; Dupuy, C.; Leboulleux, S.; Schlumberger, M.; Bidart, J.M.; Lacroix, L. Somatic RAS Mutations Occur in a Large Proportion of Sporadic RET-Negative Medullary Thyroid Carcinomas and Extend to a Previously Unidentified Exon. J. Clin. Endocrinol. Metab. 2012, 97, E2031–E2035. [Google Scholar] [CrossRef] [PubMed]
- Shonka, D.C.; Ho, A.; Chintakuntlawar, A.V.; Geiger, J.L.; Park, J.C.; Seetharamu, N.; Jasim, S.; Abdelhamid Ahmed, A.H.; Bible, K.C.; Brose, M.S.; et al. American Head and Neck Society Endocrine Surgery Section and International Thyroid Oncology Group Consensus Statement on Mutational Testing in Thyroid Cancer: Defining Advanced Thyroid Cancer and Its Targeted Treatment. Head Neck 2022, 44, 1277–1300. [Google Scholar] [CrossRef]
- Gotink, K.J.; Verheul, H.M.W. Anti-Angiogenic Tyrosine Kinase Inhibitors: What Is Their Mechanism of Action? Angiogenesis 2010, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.A.; Robinson, B.G.; Gagel, R.F.; Dralle, H.; Fagin, J.A.; Santoro, M.; Baudin, E.; Elisei, R.; Jarzab, B.; Vasselli, J.R.; et al. Vandetanib in Patients with Locally Advanced or Metastatic Medullary Thyroid Cancer: A Randomized, Double-Blind Phase III Trial. J. Clin. Oncol. 2012, 30, 134–141. [Google Scholar] [CrossRef]
- Hescot, S.; Al Ghuzlan, A.; Henry, T.; Sheikh-Alard, H.; Lamartina, L.; Borget, I.; Hadoux, J.; Baudin, E.; Dupuy, C.; Nikitski, A.V.; et al. Prognostic of Recurrence and Survival in Poorly Differentiated Thyroid Cancer. Endocr. Relat. Cancer 2022, 29, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Skaugen, J.M.; Taneja, C.; Liu, J.B.; Wald, A.I.; Nikitski, A.V.; Chiosea, S.I.; Seethala, R.R.; Ohori, N.P.; Karslioglu-French, E.; Carty, S.E.; et al. Performance of a Multigene Genomic Classifier in Thyroid Nodules with Suspicious for Malignancy Cytology. Thyroid 2022, 32, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Bindea, G.; Mlecnik, B.; Fridman, W.H.; Pagès, F.; Galon, J. Natural Immunity to Cancer in Humans. Curr. Opin. Immunol. 2010, 22, 215–222. [Google Scholar] [CrossRef]
- Ding, P.; Guo, H.; Sun, C.; Yang, P.; Kim, N.H.; Tian, Y.; Liu, Y.; Liu, P.; Li, Y.; Zhao, Q. Combined Systemic Immune-Inflammatory Index (SII) and Prognostic Nutritional Index (PNI) Predicts Chemotherapy Response and Prognosis in Locally Advanced Gastric Cancer Patients Receiving Neoadjuvant Chemotherapy with PD-1 Antibody Sintilimab and XELOX: A Prospective Study. BMC Gastroenterol. 2022, 22, 121. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, T. Prognostic and Clinicopathological Value of Systemic Inflammation Response Index (SIRI) in Patients with Breast Cancer: A Meta-Analysis. Ann. Med. 2024, 56, 2337729. [Google Scholar] [CrossRef] [PubMed]
- Abdelsattar, Z.M.; Shen, K.R.; Yendamuri, S.; Cassivi, S.; Nichols, F.C.; Wigle, D.A.; Allen, M.S.; Blackmon, S.H. Outcomes After Sleeve Lung Resections Versus Pneumonectomy in the United States. Ann. Thorac. Surg. 2017, 104, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Bernard, A.; Deschamps, C.; Allen, M.S.; Miller, D.L.; Trastek, V.F.; Jenkins, G.D.; Pairolero, P.C. Pneumonectomy for Malignant Disease: Factors Affecting Early Morbidity and Mortality. J. Thorac. Cardiovasc. Surg. 2001, 121, 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Guarino, V.; Castellone, M.D.; Avilla, E.; Melillo, R.M. Thyroid Cancer and Inflammation. Mol. Cell Endocrinol. 2010, 321, 94–102. [Google Scholar] [CrossRef]
- Pagano, L.; Mele, C.; Sama, M.T.; Zavattaro, M.; Caputo, M.; De Marchi, L.; Paggi, S.; Prodam, F.; Aimaretti, G.; Marzullo, P. Thyroid Cancer Phenotypes in Relation to Inflammation and Autoimmunity. Front. Biosci. (Landmark Ed.) 2018, 23, 2267–2282. [Google Scholar] [CrossRef] [PubMed]
- Reber, E.; Schönenberger, K.A.; Vasiloglou, M.F.; Stanga, Z. Nutritional Risk Screening in Cancer Patients: The First Step Toward Better Clinical Outcome. Front. Nutr. 2021, 8, 603936. [Google Scholar] [CrossRef] [PubMed]
- Senesse, P.; Bachmann, P.; Bensadoun, R.J.; Besnard, I.; Bourdel-Marchasson, I.; Bouteloup, C.; Crenn, P.; Goldwasser, F.; Guérin, O.; Latino-Martel, P.; et al. Clinical Nutrition Guidelines of the French Speaking Society of Clinical Nutrition and Metabolism (SFNEP): Summary of Recommendations for Adults Undergoing Non-Surgical Anticancer Treatment. Dig. Liver Dis. 2014, 46, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Arends, J.; Aapro, M. From Guidelines to Clinical Practice: A Roadmap for Oncologists for Nutrition Therapy for Cancer Patients. Ther. Adv. Med. Oncol. 2019, 11, 1758835919880084. [Google Scholar] [CrossRef]
- Friesen, D.E.; Baracos, V.E.; Tuszynski, J.A. Modeling the Energetic Cost of Cancer as a Result of Altered Energy Metabolism: Implications for Cachexia. Theor. Biol. Med. Model. 2015, 12, 17. [Google Scholar] [CrossRef]
- Sun, K.; Chen, S.; Xu, J.; Li, G.; He, Y. The Prognostic Significance of the Prognostic Nutritional Index in Cancer: A Systematic Review and Meta-Analysis. J. Cancer Res. Clin. Oncol. 2014, 140, 1537–1549. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Chen, G.; Hu, H.; Pang, L.; Chen, Z. Low Pretherapeutic Serum Albumin as a Risk Factor for Poor Outcome in Esophageal Squamous Cell Carcinomas. Nutr. Cancer 2015, 67, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yin, Y.; Yang, Z.; Zhang, Q.; Wang, W.; Liu, J. Prognostic Effect of the Pretreatment Prognostic Nutritional Index in Cervical, Ovarian, and Endometrial Cancer: A Meta-Analysis. BMC Womens Health 2024, 24, 464. [Google Scholar] [CrossRef]
- Chen, X.L.; Xue, L.; Wang, W.; Chen, H.N.; Zhang, W.H.; Liu, K.; Chen, X.Z.; Yang, K.; Zhang, B.; Chen, Z.X.; et al. Prognostic Significance of the Combination of Preoperative Hemoglobin, Albumin, Lymphocyte and Platelet in Patients with Gastric Carcinoma: A Retrospective Cohort Study. Oncotarget 2015, 6, 41370–41382. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Han, X.; Yu, J.; Shu, W.; Qiu, F.; Han, J. Hemoglobin, Albumin, Lymphocyte, and Platelet Score and Neutrophil-to-Lymphocyte Ratio Are Novel Significant Prognostic Factors for Patients with Small-Cell Lung Cancer Undergoing Chemotherapy. J. Cancer Res. Ther. 2020, 16, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zhang, C.J.; Gong, Y.Q.; Hao, H.; Guan, B.; Li, X.S.; Zhou, L.Q. Prognostic Significance of HALP (Hemoglobin, Albumin, Lymphocyte and Platelet) in Patients with Bladder Cancer after Radical Cystectomy. Sci. Rep. 2018, 8, 794. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zhang, C.J.; Tang, Q.; Zhang, L.; Yang, K.W.; Yu, X.T.; Gong, Y.; Li, X.S.; He, Z.S.; Zhou, L.Q. Prognostic Significance of the Combination of Preoperative Hemoglobin and Albumin Levels and Lymphocyte and Platelet Counts (HALP) in Patients with Renal Cell Carcinoma After Nephrectomy. BMC Urol. 2018, 18, 20. [Google Scholar] [CrossRef] [PubMed]
- Güç, Z.G.; Alacacıoğlu, A.; Kalender, M.E.; Oflazoğlu, U.; Ünal, S.; Yıldız, Y.; Salman, T.; Küçükzeybek, Y.; Tarhan, M.O. HALP Score and GNRI: Simple and Easily Accessible Indexes for Predicting Prognosis in Advanced Stage NSCLC Patients. The İzmir Oncology Group (IZOG) Study. Front. Nutr. 2022, 9, 905292. [Google Scholar] [CrossRef]
- Toshida, K.; Itoh, S.; Kayashima, H.; Nagao, Y.; Yoshiya, S.; Tomino, T.; Fujimoto, Y.K.; Tsutsui, Y.; Nakayama, Y.; Harada, N.; et al. The Hemoglobin, Albumin, Lymphocyte, and Platelet Score Is a Prognostic Factor for Child-Pugh A Patients Undergoing Curative Hepatic Resection for Single and Small Hepatocellular Carcinoma. Hepatol. Res. 2023, 53, 522–530. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, G.; Zeng, Y.; Ju, M.; Chen, X.; He, C.; Liang, L.; Ge, X.; Sun, X.; Di, X. Predictive Values of the Hemoglobin, Albumin, Lymphocyte and Platelet Score (HALP) and the Modified -Gustave Roussy Immune Score for Esophageal Squamous Cell Carcinoma Patients Undergoing Concurrent Chemoradiotherapy. Int. Immunopharmacol. 2023, 123, 110773. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Sun, H.; Xue, S.; Xu, T.; Xia, W.; Wang, Y.; Guo, L.; Lin, H. Prognostic Significance of Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score in Breast Cancer: A Propensity Score-Matching Study. Cancer Cell Int. 2024, 24, 230. [Google Scholar] [CrossRef] [PubMed]
- Galdiero, M.R.; Varricchi, G.; Marone, G. The Immune Network in Thyroid Cancer. Oncoimmunology 2016, 5, e1168556. [Google Scholar] [CrossRef]
- Ferrari, S.M.; Fallahi, P.; Galdiero, M.R.; Ruffilli, I.; Elia, G.; Ragusa, F.; Paparo, S.R.; Patrizio, A.; Mazzi, V.; Varricchi, G.; et al. Immune and Inflammatory Cells in Thyroid Cancer Microenvironment. Int. J. Mol. Sci. 2019, 20, 4413. [Google Scholar] [CrossRef] [PubMed]
- Valkenburg, K.C.; De Groot, A.E.; Pienta, K.J. Targeting the Tumour Stroma to Improve Cancer Therapy. Nat. Rev. Clin. Oncol. 2018, 15, 366–381. [Google Scholar] [CrossRef] [PubMed]
- Pęczek, P.; Gajda, M.; Rutkowski, K.; Fudalej, M.; Deptała, A.; Badowska-Kozakiewicz, A.M. Cancer-Associated Inflammation: Pathophysiology and Clinical Significance. J. Cancer Res. Clin. Oncol. 2023, 149, 2657–2672. [Google Scholar] [CrossRef] [PubMed]
- Pu, W.; Shi, X.; Yu, P.; Zhang, M.; Liu, Z.; Tan, L.; Han, P.; Wang, Y.; Ji, D.; Gan, H.; et al. Single-Cell Transcriptomic Analysis of the Tumor Ecosystems Underlying Initiation and Progression of Papillary Thyroid Carcinoma. Nat. Commun. 2021, 12, 6058. [Google Scholar] [CrossRef]
- Arends, J. Malnutrition in Cancer Patients: Causes, Consequences and Treatment Options. Eur. J. Surg. Oncol. 2024, 50, 107074. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Kim, E.H.; Kim, B.H.; Kim, J.H.; Park, S.B.; Nam, Y.J.; Ahn, K.H.; Oh, M.Y.; Kim, W.J.; Jeon, Y.K.; et al. Association of the Preoperative Neutrophil-to-Ymphocyte Count Ratio and Platelet-to-Lymphocyte Count Ratio with Clinicopathological Characteristics in Patients with Papillary Thyroid Cancer. Endocrinol. Metab. 2015, 30, 494–501. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Y.; Shan, G.; Gao, L. Clinical and Prognostic Value of Neutrophil-Lymphocyte Ratio for Patients with Thyroid Cancer: A Meta-Analysis. Medicine 2020, 99, e19686. [Google Scholar] [CrossRef]
- Modica, R.; Minotta, R.; Liccardi, A.; Cannavale, G.; Benevento, E.; Colao, A. Evaluation of Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR) and Systemic Immune-Inflammation Index (SII) as Potential Biomarkers in Patients with Sporadic Medullary Thyroid Cancer (MTC). J. Pers. Med. 2023, 13, 953. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chang, J.; Hu, B.; Yang, S. Systemic Immune-Inflammation Index and Systemic Inflammation Response Index Predict the Response to Radioiodine Therapy for Differentiated Thyroid Cancer. J. Inflamm. Res. 2024, 17, 8531–8541. [Google Scholar] [CrossRef]
- Dalmiglio, C.; Brilli, L.; Campanile, M.; Ciuoli, C.; Cartocci, A.; Castagna, M.G. CONUT Score: A New Tool for Predicting Prognosis in Patients with Advanced Thyroid Cancer Treated with TKI. Cancers 2022, 14, 724. [Google Scholar] [CrossRef]
- Yamazaki, H.; Sugino, K.; Matsuzu, K.; Masaki, C.; Akaishi, J.; Hames, K.; Tomoda, C.; Suzuki, A.; Uruno, T.; Ohkuwa, K.; et al. Sarcopenia Is a Prognostic Factor for TKIs in Metastatic Thyroid Carcinomas. Endocrine 2020, 68, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.S.; Oduyebo, T.; Cobb, L.P.; Cholakian, D.; Kong, X.; Fader, A.N.; Levinson, K.L.; Tanner, E.J.; Stone, R.L.; Piotrowski, A.; et al. Lymphopenia and Its Association with Survival in Patients with Locally Advanced Cervical Cancer. Gynecol. Oncol. 2016, 140, 76–82. [Google Scholar] [CrossRef]
- Diakos, C.I.; Charles, K.A.; McMillan, D.C.; Clarke, S.J. Cancer-Related Inflammation and Treatment Effectiveness. Lancet Oncol. 2014, 15, e493–e503. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-Related Inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Rabold, K.; Gielen, P.R.; Kers-Rebel, E.D.; Netea, M.G.; Smit, J.W.A.; Adema, G.J.; Netea-Maier, R.T. T-Cell Lymphopenia in Patients with Advanced Thyroid Carcinoma Is Associated with Poor Prognosis. Oncologist 2019, 24, e106–e110. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.K.; Dworacki, G.; Tsukihiro, T.; Meidenbauer, N.; Gooding, W.; Johnson, J.T.; Whiteside, T.L. Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin. Cancer Res. 2002, 8, 2553–2562. [Google Scholar]
- Dworacki, G.; Meidenbauer, N.; Kuss, I.; Hoffmann, T.K.; Gooding, W.; Lotze, M.; Whiteside, T.L. Decreased zeta chain expression and apoptosis in CD3+ peripheral blood T lymphocytes of patients with melanoma. Clin. Cancer Res. 2001, 7 (Suppl. S3), 947s–957s. [Google Scholar] [PubMed]
- Erdem, D.; Yucel, I.; Buyuksimsek, M.; Yilmaz, B.; Demirag, G. The Annals of Clinical and Analytical Medicine the Annals of Clinical & Analytical Medicine Original Research Prognostic Significance of Pretreatment Lymphopenia in Colorectal Cancer. Ann. Clin. Anal. Med. 2020, 11, 95–98. [Google Scholar] [CrossRef]
- Zhao, Q.; Bi, Y.; Xue, J.; Liu, Y.; Zhu, J.; Qin, S. Prognostic Value of Absolute Lymphocyte Count in Patients with Advanced Esophageal Cancer Treated with Immunotherapy: A Retrospective Analysis. Ann. Transl. Med. 2022, 10, 744. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, Y.; Kawahara, S.; Kakuta, S.; Onodera, A.; Hara, K.; Kazama, K.; Numata, M.; Aoyama, T.; Tamagawa, A.; Tamagawa, H.; et al. Low Preoperative Albumin-to-Globulin Ratio Is a Marker of Poor Prognosis in Patients with Esophageal Cancer. In Vivo 2021, 35, 3555–3561. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kawada, K.; Obama, K. Inflammation-Related Biomarkers for the Prediction of Prognosis in Colorectal Cancer Patients. Int. J. Mol. Sci. 2021, 22, 8002. [Google Scholar] [CrossRef]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. JPEN J. Parenter. Enter. Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, D.; Strilic, B.; Sivaraj, K.K.; Wettschureck, N.; Offermanns, S. Platelet-Derived Nucleotides Promote Tumor-Cell Transendothelial Migration and Metastasis via P2Y2 Receptor. Cancer Cell 2013, 24, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Jurasz, P.; Alonso-Escolano, D.; Radomski, M.W. Platelet—Cancer Interactions: Mechanisms and Pharmacology of Tumour Cell-Induced Platelet Aggregation. Br. J. Pharmacol. 2004, 143, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and Cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- McCranor, B.J.; Kim, M.J.; Cruz, N.M.; Xue, Q.L.; Berger, A.E.; Walston, J.D.; Civin, C.I.; Roy, C.N. Interleukin-6 Directly Impairs the Erythroid Development of Human TF-1 Erythroleukemic Cells. Blood Cells Mol. Dis. 2014, 52, 126–133. [Google Scholar] [CrossRef]
- Madu, A.J.; Ughasoro, M.D. Anaemia of Chronic Disease: An In-Depth Review. Med. Princ. Pr. 2017, 26, 1–9. [Google Scholar] [CrossRef]
- Belcher, D.A.; Ju, J.A.; Baek, J.H.; Yalamanoglu, A.; Buehler, P.W.; Gilkes, D.M.; Palmer, A.F. The Quaternary State of Polymerized Human Hemoglobin Regulates Oxygenation of Breast Cancer Solid Tumors: A Theoretical and Experimental Study. PLoS ONE 2018, 13, e0191275. [Google Scholar] [CrossRef] [PubMed]
- Watine, J.; Bouarioua, N.; Caro, J.J.; Salas, M.; Ward, A.; Goss, G. Anemia as an Independent Prognostic Factor for Survival in Patients with Cancer. Cancer 2002, 94, 2793–2796. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Shi, D.; Zhang, J.; Mao, S.; Wang, L.; Zhang, W.; Zhang, Z.; Jin, L.; Yang, B.; Ye, L.; et al. The Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score Is a Novel Significant Prognostic Factor for Patients with Metastatic Prostate Cancer Undergoing Cytoreductive Radical Prostatectomy. J. Cancer 2019, 10, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Karakousis, G.; Yang, R.; Xu, X. Circulating Melanoma Cells as a Predictive Biomarker. J. Invest. Dermatol. 2013, 133, 1460–1462. [Google Scholar] [CrossRef] [PubMed]
- Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of Tumor-Associated Neutrophil Phenotype by TGF-Beta: “N1” Versus “N2” TAN. Cancer Cell 2009, 16, 183–194. [Google Scholar] [CrossRef]
- Kim, K.H.; Sim, N.S.; Chang, J.S.; Kim, Y.B. Tumor Immune Microenvironment in Cancer Patients with Leukocytosis. Cancer Immunol. Immunother. 2020, 69, 1265–1277. [Google Scholar] [CrossRef] [PubMed]
- Bossi, P.; Delrio, P.; Mascheroni, A.; Zanetti, M. The Spectrum of Malnutrition/Cachexia/Sarcopenia in Oncology According to Different Cancer Types and Settings: A Narrative Review. Nutrients 2021, 13, 1980. [Google Scholar] [CrossRef]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN Guidelines on Nutrition in Cancer Patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef]
- Ishihara, H.; Kondo, T.; Omae, K.; Takagi, T.; Iizuka, J.; Kobayashi, H.; Tanabe, K. Sarcopenia and the Modified Glasgow Prognostic Score Are Significant Predictors of Survival Among Patients with Metastatic Renal Cell Carcinoma Who Are Receiving First-Line Sunitinib Treatment. Target. Oncol. 2016, 11, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and Classification of Cancer Cachexia: An International Consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; McCloskey, E.; Bruyère, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; Araujo de Carvalho, I.; Amuthavalli Thiyagarajan, J.; Bautmans, I.; Bertière, M.C.; et al. Sarcopenia in Daily Practice: Assessment and Management. BMC Geriatr. 2016, 16, 170. [Google Scholar] [CrossRef] [PubMed]
- De Leo, S.; Colombo, C.; Di Stefano, M.; Dubini, A.; Cozzi, S.; Persani, L.; Fugazzola, L. Body Composition and Leptin/Ghrelin Levels during Lenvatinib for Thyroid Cancer. Eur. Thyroid. J. 2020, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y. Clinical Effect of Psychological Nursing and Nutritional Intervention in Radiopharmaceutical Therapy of Patients with Thyroid Carcinoma. Pak. J. Med. Sci. 2024, 40, 1958. [Google Scholar] [CrossRef] [PubMed]
Papillary Carcinoma | Follicular Carcinoma | Medullary Carcinoma | p-Value | |
---|---|---|---|---|
n:19 | n:10 | n:15 | ||
Gender, n (%) | ||||
Male | 10 (52.7) | 4 (36.4) | 8 (57.1) | 0.324 a |
Female | 9 (47.3) | 7 (63.6) | 6 (42.9) | |
Age of TKI initiation (mean ± SD) | 59.4 (±9.6) | 60.4 (±14.4) | 58.5 (±9.9) | 0.980 b |
Time from diagnosis to TKI initiation, month (median) | 38.6 (7.7–199.4) | 33.7 (2.2–185.1) | 11.5 (4.7–164.6) | 0.158 c |
Visceral metastasis (%) | ||||
No | 3 (16) | 2 (20) | 6 (40) | 0.238 a |
Yes | 16 (84) | 8 (80) | 9 (60) | |
Hemoglobin, g/dL (mean ± SD) | 12.7 (±1.86) | 12.6 (±1.90) | 13.8 (±1.29) | 0.283 b |
Albumin, g/L (median) | 45 (29–51) | 40 (32–51) | 43 (31–46) | 0.445 c |
WBC, 109/L (median) | 7.9 (4.2–14) | 5.9 (3.9–32.9) | 6.4 (5.1–17) | 0.156 c |
Neutrophils, 109/L (median) | 5.3 (3–13.2) | 3.7 (2.8–31) | 4.1 (2.5–15.7) | 0.177 c |
Lymphocytes, 109/L (median) | 1.8 (0.2–2.6) | 1.1 (0.4–2.5) | 1.5 (0.9–7.4) | 0.172 c |
Platelets, 109/L (median) | 255 (128–542) | 209 (69–318) | 227 (143–305) | 0.080 c |
LDH 1, U/L (median) | 229 (181–489) | 245 (199–722) | 242 (160–782) | 0.899 c |
CRP 2, mg/L (median) | 6.5 (2–107) | 6.3 (2–56) | 2 (1–169) | 0.109 c |
Total cholesterol 3, (%) | ||||
<200 mg/dL | 5 (50) | 4 (80) | 5 (55.6) | 0.667 a |
≥200 mg/dL | 5 (50) | 1 (20) | 4 (44.4) | |
LDL cholesterol 3, (%) | ||||
<130 mg/dL | 5 (50) | 5 (100) | 7 (77.8) | 0.133 a |
≥130 mg/dL | 5 (50) | 0 | 2 (22.2) | |
Triglyceride 3, (%) | ||||
<150 mg/dL | 4 (40) | 5 (100) | 8 (88.9) | 0.029 a |
≥150 mg/dL | 6 (60) | 0 | 1 (11.1) | |
HDL cholesterol 3, (%) | ||||
<40 (male) or <50 (female) | 9 (90) | 5 (100) | 3 (33.3) | 0.008 a |
≥40 (male) or ≥50 (female) | 1 (10) | 0 | 6 (66.7) | |
PNI, (median) | 54.1 (30.4–59.8) | 45.3 (36.8–60.1) | 49.3 (35.5–79) | 0.282 c |
NLR, (median) | 3.1 (0.7–48.9) | 2.27 (1.2–4.6) | 2.9 (1.8–34.3) | 0.582 c |
PLR, (median) | 140.8 (23.7–1388.9) | 158.1 (100.9–202.3) | 142.8 (102.1–357.3) | 0.868 c |
SII, (median) | 696 (124.3–18,333.3) | 636.8 (359.1–1159.9) | 701.7 (294.2–10,919.2) | 0.953 c |
SIRI, (median) | 1.6 (0.2–19.1) | 1.1 (0.5–3.7) | 1.7 (0.7–37.8) | 0.362 c |
HALP score (median) | 40.1 (2.3–72.3) | 29.6 (13.6–57.8) | 42.2 (23.7–269.5) | 0.454 c |
First-line TKI (%) | ||||
Sorafenib | 19 (100) | 10 (100) | 1 (6.7) | <0.001 a |
Cabozantinib | 0 | 0 | 6 (40) | |
Vandetanib | 0 | 0 | 8 (53.3) |
HALPlow n (%) | HALPhigh n (%) | p-Value | |
---|---|---|---|
Gender, n (%) | |||
Male | 7 (43.8) | 15 (53.6) | 0.75 a |
Female | 9 (56.3) | 13 (46.4) | |
Age of TKI initiation, (mean ± SD) | 62.4 (±10.2) | 57.7 (±11) | 0.165 c |
Time from diagnosis to TKI initiation, month (median) | 29.1 (2.2–162.8) | 34.8 (4–199.4) | 0.510 b |
Visceral metastasis, n(%) | |||
No | 4 (25) | 7 (25) | >0.999 a |
Yes | 12 (75) | 21 (75) | |
Hemoglobin, g/dL (mean ± SD) | 11.8 (±1.5) | 13.7 (±1.6) | <0.001 c |
Albumin, g/L (median) | 39 (29–45) | 45.5 (35–51) | <0.001 b |
WBC, 109/L (median) | 7.1 (4.2–32.9) | 7.3 (3.9–13.2) | 0.600 b |
Neutrophils, 109/L (median) | 5.1 (3–31) | 4.4 (2.5–7.6) | 0.088 b |
Lymphocytes, 109/L (median) | 1 (0.2–2) | 1.9 (0.4–7.4) | <0.001 b |
Platelets, 109/L (median) | 215.5 (128–542) | 236.5 (69–308) | 0.961 b |
LDH 1, U/L (median) | 260 (175–782) | 216.5 (160–489) | 0.138 b |
CRP 2, mg/L (median) | 11.4 (2–107) | 2.7 (1–169) | 0.008 b |
Total cholesterol 3, (%) | |||
<200 mg/dL | 6 (66.7) | 8 (53.3) | 0.678 a |
≥200 mg/dL | 3 (33.3) | 7 (46.7) | |
LDL cholesterol 3, (%) | |||
<130 mg/dL | 6 (66.7) | 11 (73.3) | >0.999 a |
≥130 mg/dL | 3 (33.3) | 4 (26.7) | |
Triglyceride 3, (%) | |||
<150 mg/dL | 7 (77.8) | 10 (66.7) | 0.669 a |
≥150 mg/dL | 2 (22.2) | 5 (33.3) | |
HDL cholesterol 3, (%) | |||
<40 (male) or <50 (female) | 7 (77.8) | 10 (66.7) | 0.669 a |
≥40 (male) or ≥50 (female) | 2 (22.2) | 5 (33.3) | |
PNI, (median) | 45.6 (30.4–53.9) | 55.3 (40.5–79) | <0.001 b |
NLR, (median) | 3.1 (0.71–48.9) | 2.7 (1.1–34.3) | 0.373 b |
PLR, (median) | 156.3 (23.7–1388.9) | 142.6 (64.2–713.6) | 0.770 b |
SII, (median) | 636 (124.3–18,333.3) | 698.9 (187.5–10,919.1) | 0.714 b |
SIRI, (median) | 1.9 (0.21–19.07) | 1.6 (0.47–37.8) | 0.400 b |
Factor | Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |||
Lower | Upper | Lower | Upper | |||||
HALP (low [RC] vs. high) | 0.236 | 0.100 | 0.556 | <0.001 | 0.272 | 0.100 | 0.741 | 0.011 |
Age of TKI initiation | 1.023 | 0.985 | 1.063 | 0.242 | ||||
Gender | 0.904 | 0.428 | 1.909 | 0.792 | ||||
Diagnosis subgroup | 0.980 | 0.654 | 1.469 | 0.923 | ||||
Visceral metastasis | 0.833 | 0.349 | 1.991 | 0.682 | ||||
WBC | 1.213 | 1.075 | 1.369 | 0.002 | 1.185 | 1.052 | 1.335 | 0.005 |
Neutrophil | 1.227 | 1.087 | 1.384 | <0.001 | ||||
Monocyte | 3.156 | 0.488 | 20.396 | 0.227 | ||||
Hemoglobin | 0.771 | 0.632 | 0.942 | 0.011 | ||||
Lymphocyte | 0.890 | 0.528 | 1.501 | 0.662 | ||||
Platelet | 1.002 | 0.997 | 1.008 | 0.438 | ||||
LDH 1 | 1.003 | 1.000 | 1.005 | 0.089 | ||||
Albumin | 0.610 | 0.280 | 1.327 | 0.213 | ||||
CRP 2 | 0.986 | 0.970 | 1.003 | 0.103 | ||||
Time from onset of metastatic disease to TKI initiation | 0.978 | 0.955 | 1.002 | 0.074 | ||||
Total cholesterol 3 (high [RC] vs. low) | 0.614 | 0.230 | 1.639 | 0.330 | ||||
LDL cholesterol 3 (high [RC] vs. low) | 0.645 | 0.234 | 1.773 | 0.395 | ||||
Trigliyceride 3 (high [RC] vs. low) | 1.302 | 0.448 | 3.789 | 0.628 | ||||
HDL cholesterol 3 (high [RC] vs. low) | 1.439 | 0.478 | 4.333 | 0.518 | ||||
PNI, (median) | 0.970 | 0.918 | 1.025 | 0.277 | ||||
NLR, (median) | 1.025 | 0.985 | 1.066 | 0.231 | ||||
PLR, (median) | 1.001 | 0.999 | 1.003 | 0.286 | ||||
SII, (median) | 1.000 | 1.000 | 1.000 | 0.247 | ||||
SIRI, (median) | 1.028 | 0.979 | 1.081 | 0.268 |
Factor | Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |||
Lower | Upper | Lower | Upper | |||||
HALP (low [RC] vs high) | 0.071 | 0.020 | 0.253 | <0.001 | 0.208 | 0.052 | 0.842 | 0.028 |
Age of TKI initiation | 1.066 | 1.007 | 1.129 | 0.029 | ||||
Gender | 1.248 | 0.481 | 3.241 | 0.649 | ||||
Diagnosis subgroup | 0.690 | 0.396 | 1.201 | 0.189 | ||||
Visceral metastasis | 2.252 | 0.508 | 9.988 | 0.285 | ||||
WBC | 1.175 | 1.047 | 1.319 | 0.006 | 1.178 | 1.043 | 1.330 | 0.008 |
Neutrophil | 1.271 | 1.111 | 1.455 | <0.001 | ||||
Monocyte | 0.924 | 0.065 | 13.081 | 0.953 | ||||
Hemoglobin | 0.661 | 0.507 | 0.861 | 0.002 | ||||
Lymphocyte | 0.137 | 0.050 | 0.372 | <0.001 | 0.167 | 0.048 | 0.579 | 0.005 |
Platelet | 1.003 | 0.996 | 1.010 | 0.364 | ||||
LDH 1 | 1.004 | 1.000 | 1.007 | 0.024 | ||||
Albumin | 0.155 | 0.054 | 0.442 | <0.001 | ||||
CRP 2 | 0.997 | 0.980 | 1.013 | 0.684 | ||||
Time from onset of metastatic disease to TKI initiation | 0.992 | 0.963 | 1.022 | 0.589 | ||||
Total cholesterol 3 (high [RC] vs. low) | 1.285 | 0.385 | 4.292 | 0.683 | ||||
LDL cholesterol 3 (high [RC] vs. low) | 1.039 | 0.298 | 3.621 | 0.952 | ||||
Triglyceride 3 (high [RC] vs. low) | 1.052 | 0.278 | 3.983 | 0.941 | ||||
HDL cholesterol 3 (high [RC] vs. low) | 0.264 | 0.034 | 2.078 | 0.206 | ||||
PNI, (median) | 0.841 | 0.772 | 0.915 | <0.001 | ||||
NLR, (median) | 1.004 | 0.957 | 1.053 | 0.866 | ||||
PLR, (median) | 1.001 | 0.999 | 1.003 | 0.538 | ||||
SII, (median) | 1.000 | 1.000 | 1.000 | 0.950 | ||||
SIRI, (median) | 0.979 | 0.906 | 1.058 | 0.592 |
Condition Index | Tolerance | VIF | |
---|---|---|---|
Constant | |||
WBC | 3.285 | 0.994 | 1.006 |
Lymphocyte | 5.007 | 0.994 | 1.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Öztop, H.; Hunutlu, F.Ç.; Ekizoğlu, S.İ.; Gül, Ö.Ö.; Cander, S.; Şahin, A.B. Effect of Hemoglobin, Albumin, Lymphocyte Count, and Platelet (HALP) Score on Survival of Patients with Metastatic Thyroid Cancer Treated with Tyrosine Kinase Inhibitors. J. Clin. Med. 2025, 14, 1306. https://doi.org/10.3390/jcm14041306
Öztop H, Hunutlu FÇ, Ekizoğlu Sİ, Gül ÖÖ, Cander S, Şahin AB. Effect of Hemoglobin, Albumin, Lymphocyte Count, and Platelet (HALP) Score on Survival of Patients with Metastatic Thyroid Cancer Treated with Tyrosine Kinase Inhibitors. Journal of Clinical Medicine. 2025; 14(4):1306. https://doi.org/10.3390/jcm14041306
Chicago/Turabian StyleÖztop, Hikmet, Fazıl Çağrı Hunutlu, Selin İldemir Ekizoğlu, Özen Öz Gül, Soner Cander, and Ahmet Bilgehan Şahin. 2025. "Effect of Hemoglobin, Albumin, Lymphocyte Count, and Platelet (HALP) Score on Survival of Patients with Metastatic Thyroid Cancer Treated with Tyrosine Kinase Inhibitors" Journal of Clinical Medicine 14, no. 4: 1306. https://doi.org/10.3390/jcm14041306
APA StyleÖztop, H., Hunutlu, F. Ç., Ekizoğlu, S. İ., Gül, Ö. Ö., Cander, S., & Şahin, A. B. (2025). Effect of Hemoglobin, Albumin, Lymphocyte Count, and Platelet (HALP) Score on Survival of Patients with Metastatic Thyroid Cancer Treated with Tyrosine Kinase Inhibitors. Journal of Clinical Medicine, 14(4), 1306. https://doi.org/10.3390/jcm14041306