Major Bleeding in the Emergency Department: A Practical Guide for Optimal Management
Abstract
:1. Introduction
2. Definition
3. Epidemiology
4. General Pathophysiological Concepts
5. Management
5.1. Initial Assessment
5.1.1. ABCDE Approach
5.1.2. Blood Tests
5.1.3. Risk Stratification Scores
5.2. Resuscitation
- A.
- Airway
- B.
- Breathing
- C.
- Circulation
- C1.
- Fluids
- C2.
- Vasoactive agents
- C3.
- Transfusion strategies
- (i)
- Massive transfusion protocols
- (ii)
- Goal directed transfusion strategy
- Address anemia
- 2.
- Address coagulopathy
- C4.
- Supplemental therapies to blood products
- (i)
- Calcium supplementation
- (ii)
- Tranexamic acid
- D.
- Drugs—Reversal of antithrombotic agents
- D1.
- Anticoagulants
- (i)
- Direct oral anticoagulants (DOACs)
- (ii)
- Vitamin K antagonists
- (iii)
- Unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) and fondaparinux
- D2.
- Antiplatelet agents
- E.
- Exposure
5.3. Imaging
5.3.1. Point of Care Ultrasonography (POCUS)
5.3.2. Computed Tomography (CT)
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Green, L.; Stanworth, S.; McQuilten, Z.; Lin, V.; Tucker, H.; Jackson, B.; Badawi, M.; Hindawi, S.; Chaurasia, R.; Patidar, G.; et al. International Forum on the Management of Major Haemorrhage: Summary. Vox Sang. 2022, 117, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S.; Kearon, C. Definition of Major Bleeding in Clinical Investigations of Antihemostatic Medicinal Products in Non-surgical Patients. J. Thromb. Haemost. 2005, 3, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.; Hill, M.; Lecky, F.; Shaw, G. Defining Major Trauma: A Delphi Study. Scand. J. Trauma Resusc. Emerg. Med. 2021, 29, 63. [Google Scholar] [CrossRef]
- Rossaint, R.; Afshari, A.; Bouillon, B.; Cerny, V.; Cimpoesu, D.; Curry, N.; Duranteau, J.; Filipescu, D.; Grottke, O.; Grønlykke, L.; et al. The European Guideline on Management of Major Bleeding and Coagulopathy Following Trauma: Sixth Edition. Crit. Care 2023, 27, 80. [Google Scholar] [CrossRef]
- Subcommittee, A.T.L.S. Advanced Trauma Life Support: Student Course Manual, 10th ed.; American College of Surgeons: Chicago, IL, USA, 2018; ISBN 978-0-9968262-3-5. [Google Scholar]
- Mutschler, M.; Nienaber, U.; Brockamp, T.; Wafaisade, A.; Wyen, H.; Peiniger, S.; Paffrath, T.; Bouillon, B.; Maegele, M. A Critical Reappraisal of the ATLS Classification of Hypovolaemic Shock: Does It Really Reflect Clinical Reality? Resuscitation 2013, 84, 309–313. [Google Scholar] [CrossRef]
- Siau, K.; Hearnshaw, S.; Stanley, A.J.; Estcourt, L.; Rasheed, A.; Walden, A.; Thoufeeq, M.; Donnelly, M.; Drummond, R.; Veitch, A.M.; et al. British Society of Gastroenterology (BSG)-Led Multisociety Consensus Care Bundle for the Early Clinical Management of Acute Upper Gastrointestinal Bleeding. Frontline Gastroenterol. 2020, 11, 311–323. [Google Scholar] [CrossRef]
- Oakland, K.; Chadwick, G.; East, J.E.; Guy, R.; Humphries, A.; Jairath, V.; McPherson, S.; Metzner, M.; Morris, A.J.; Murphy, M.F.; et al. Diagnosis and Management of Acute Lower Gastrointestinal Bleeding: Guidelines from the British Society of Gastroenterology. Gut 2019, 68, 776–789. [Google Scholar] [CrossRef]
- Gralnek, I.M.; Stanley, A.J.; Morris, A.J.; Camus, M.; Lau, J.; Lanas, A.; Laursen, S.B.; Radaelli, F.; Papanikolaou, I.S.; Cúrdia Gonçalves, T.; et al. Endoscopic Diagnosis and Management of Nonvariceal Upper Gastrointestinal Hemorrhage (NVUGIH): European Society of Gastrointestinal Endoscopy (ESGE) Guideline—Update 2021. Endoscopy 2021, 53, 300–332. [Google Scholar] [CrossRef]
- Triantafyllou, K.; Gkolfakis, P.; Gralnek, I.M.; Oakland, K.; Manes, G.; Radaelli, F.; Awadie, H.; Camus Duboc, M.; Christodoulou, D.; Fedorov, E.; et al. Diagnosis and Management of Acute Lower Gastrointestinal Bleeding: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2021, 53, 850–868. [Google Scholar] [CrossRef]
- Lin, V.S.; Sun, E.; Yau, S.; Abeyakoon, C.; Seamer, G.; Bhopal, S.; Tucker, H.; Doree, C.; Brunskill, S.J.; McQuilten, Z.K.; et al. Definitions of Massive Transfusion in Adults with Critical Bleeding: A Systematic Review. Crit. Care 2023, 27, 265. [Google Scholar] [CrossRef]
- Mitra, B.; Cameron, P.A.; Gruen, R.L.; Mori, A.; Fitzgerald, M.; Street, A. The Definition of Massive Transfusion in Trauma: A Critical Variable in Examining Evidence for Resuscitation. Eur. J. Emerg. Med. 2011, 18, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Stanworth, S.J.; Dowling, K.; Curry, N. Haematological Management of Major Haemorrhage: A British Society for Haematology Guideline. Br. J. Haematol. 2022, 198, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Mitra, B.; Jorgensen, M.; Reade, M.C.; Keegan, A.; Holley, A.; Farmer, S.; Harvey, N.; Winearls, J.; Parr, M.; French, C.J.; et al. Patient Blood Management Guideline for Adults with Critical Bleeding. Med. J. Aust. 2024, 220, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Emergency Framework for Rationing of Blood for Massively Bleeding Patients During a Red Phase Blood Shortage. Available online: https://professionaleducation.blood.ca/en/transfusion/publications/emergency-framework-rationing-blood-massively-bleeding-patients-during-red (accessed on 3 December 2024).
- Flint, A.W.J.; McQuilten, Z.K.; Wood, E.M. Massive Transfusions for Critical Bleeding: Is Everything Old New Again? Transfus. Med. 2018, 28, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Savage, S.A.; Sumislawski, J.J.; Zarzaur, B.L.; Dutton, W.P.; Croce, M.A.; Fabian, T.C. The New Metric to Define Large-Volume Hemorrhage: Results of a Prospective Study of the Critical Administration Threshold. J. Trauma Acute Care Surg. 2015, 78, 224–230. [Google Scholar] [CrossRef]
- Meyer, D.E.; Cotton, B.A.; Fox, E.E.; Stein, D.; Holcomb, J.B.; Cohen, M.; Inaba, K.; Rahbar, E. A Comparison of Resuscitation Intensity and Critical Administration Threshold in Predicting Early Mortality among Bleeding Patients: A Multicenter Validation in 680 Major Transfusion Patients. J. Trauma Acute Care Surg. 2018, 85, 691–696. [Google Scholar] [CrossRef]
- Abhilash, K.P.; Sivanandan, A. Early Management of Trauma: The Golden Hour. Curr. Med. Issues 2020, 18, 36. [Google Scholar] [CrossRef]
- Conti, A.; Renzi, N.; Molesti, D.; Bianchi, S.; Bogazzi, I.; Bongini, G.; Pepe, G.; Frosini, F.; Bertini, A.; Santini, M. Short and Long-Term Mortality of Patients Presenting with Bleeding Events to the Emergency Department. Am. J. Emerg. Med. 2017, 35, 1867–1872. [Google Scholar] [CrossRef]
- Green, L.; Brohi, K.; Allen, E.; Grant-Casey, J.; Doughty, H.; Estcourt, L.; Hearnshaw, S.; Klein, A.; Shanmugaranjan, S.; Phillips, S.; et al. UK Audit of the Management of Major Bleeding and Time Taken to Deliver Blood Products. Br. J. Anaesth. 2022, 129, e111–e114. [Google Scholar] [CrossRef]
- Curry, N.S.; Davenport, R. Transfusion Strategies for Major Haemorrhage in Trauma. Br. J. Haematol. 2019, 184, 508–523. [Google Scholar] [CrossRef]
- DiMaggio, C.; Ayoung-Chee, P.; Shinseki, M.; Wilson, C.; Marshall, G.; Lee, D.C.; Wall, S.; Maulana, S.; Leon Pachter, H.; Frangos, S. Traumatic Injury in the United States: In-Patient Epidemiology 2000–2011. Injury 2016, 47, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Zatta, A.J.; McQuilten, Z.K.; Mitra, B.; Roxby, D.J.; Sinha, R.; Whitehead, S.; Dunkley, S.; Kelleher, S.; Hurn, C.; Cameron, P.A.; et al. Elucidating the Clinical Characteristics of Patients Captured Using Different Definitions of Massive Transfusion. Vox Sang. 2014, 107, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Ruseckaite, R.; McQuilten, Z.K.; Oldroyd, J.C.; Richter, T.H.; Cameron, P.A.; Isbister, J.P.; Wood, E.M. Descriptive Characteristics and In-hospital Mortality of Critically Bleeding Patients Requiring Massive Transfusion: Results from the Australian and New Zealand Massive Transfusion Registry. Vox Sang. 2017, 112, 240–248. [Google Scholar] [CrossRef]
- Halmin, M.; Chiesa, F.; Vasan, S.K.; Wikman, A.; Norda, R.; Rostgaard, K.; Vesterager Pedersen, O.B.; Erikstrup, C.; Nielsen, K.R.; Titlestad, K.; et al. Epidemiology of Massive Transfusion: A Binational Study From Sweden and Denmark. Crit. Care Med. 2016, 44, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Green, L.; Tan, J.; Grist, C.; Kaur, M.; MacCallum, P. Aetiology and Outcome of Massive Transfusion in Two Large London Teaching Hospitals over a 3-year Period (2012–2014). Transfus. Med. 2017, 27, 342–347. [Google Scholar] [CrossRef]
- Gutierrez, G.; Reines, H.D.; Wulf-Gutierrez, M.E. Clinical Review: Hemorrhagic Shock. Crit. Care 2004, 8, 373. [Google Scholar] [CrossRef]
- Matzek, L.J.; Kurian, E.B.; Frank, R.D.; Weister, T.J.; Gajic, O.; Kor, D.J.; Warner, M.A. Plasma, Platelet and Red Blood Cell Transfusion Ratios for Life-threatening Non-traumatic Haemorrhage in Medical and Post-surgical Patients: An Observational Study. Vox Sang. 2022, 117, 361–370. [Google Scholar] [CrossRef]
- Rubboli, A.; Becattini, C.; Verheugt, F.W. Incidence, Clinical Impact and Risk of Bleeding during Oral Anticoagulation Therapy. World J. Cardiol. 2011, 3, 351–358. [Google Scholar] [CrossRef]
- Piran, S.; Schulman, S. Treatment of Bleeding Complications in Patients on Anticoagulant Therapy. Blood 2019, 133, 425–435. [Google Scholar] [CrossRef]
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.-B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global Causes of Maternal Death: A WHO Systematic Analysis. Lancet Glob. Health 2014, 2, e323–e333. [Google Scholar] [CrossRef]
- CDC. Pregnancy Mortality Surveillance System. Available online: https://www.cdc.gov/maternal-mortality/php/pregnancy-mortality-surveillance/index.html (accessed on 4 December 2024).
- Van Leerdam, M.E. Epidemiology of Acute Upper Gastrointestinal Bleeding. Best. Pract. Res. Clin. Gastroenterol. 2008, 22, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Oakland, K. Changing Epidemiology and Etiology of Upper and Lower Gastrointestinal Bleeding. Best. Pract. Res. Clin. Gastroenterol. 2019, 42–43, 101610. [Google Scholar] [CrossRef] [PubMed]
- Saydam, Ş.S.; Molnar, M.; Vora, P. The Global Epidemiology of Upper and Lower Gastrointestinal Bleeding in General Population: A Systematic Review. World J. Gastrointest. Surg. 2023, 15, 723–739. [Google Scholar] [CrossRef]
- Hearnshaw, S.A.; Logan, R.F.A.; Lowe, D.; Travis, S.P.L.; Murphy, M.F.; Palmer, K.R. Acute Upper Gastrointestinal Bleeding in the UK: Patient Characteristics, Diagnoses and Outcomes in the 2007 UK Audit. Gut 2011, 60, 1327–1335. [Google Scholar] [CrossRef]
- Oakland, K.; Guy, R.; Uberoi, R.; Hogg, R.; Mortensen, N.; Murphy, M.F.; Jairath, V. Acute Lower GI Bleeding in the UK: Patient Characteristics, Interventions and Outcomes in the First Nationwide Audit. Gut 2017, 67, 654–662. [Google Scholar] [CrossRef]
- Atchinson, P.R.A.; Hatton, C.J.; Roginski, M.A.; Backer, E.D.; Long, B.; Lentz, S.A. The Emergency Department Evaluation and Management of Massive Hemoptysis. Am. J. Emerg. Med. 2021, 50, 148–155. [Google Scholar] [CrossRef]
- Geller, A.I.; Shehab, N.; Lovegrove, M.C.; Weidle, N.J.; Budnitz, D.S. Bleeding Related to Oral Anticoagulants: Trends in US Emergency Department Visits, 2016–2020. Thromb. Res. 2023, 225, 110–115. [Google Scholar] [CrossRef]
- Ballestri, S.; Romagnoli, E.; Arioli, D.; Coluccio, V.; Marrazzo, A.; Athanasiou, A.; Di Girolamo, M.; Cappi, C.; Marietta, M.; Capitelli, M. Risk and Management of Bleeding Complications with Direct Oral Anticoagulants in Patients with Atrial Fibrillation and Venous Thromboembolism: A Narrative Review. Adv. Ther. 2023, 40, 41–66. [Google Scholar] [CrossRef]
- Tepper, P.G.; Mardekian, J.; Masseria, C.; Phatak, H.; Kamble, S.; Abdulsattar, Y.; Petkun, W.; Lip, G.Y.H. Real-World Comparison of Bleeding Risks among Non-Valvular Atrial Fibrillation Patients Prescribed Apixaban, Dabigatran, or Rivaroxaban. PLoS ONE 2018, 13, e0205989. [Google Scholar] [CrossRef]
- Chai-Adisaksopha, C.; Crowther, M.; Isayama, T.; Lim, W. The Impact of Bleeding Complications in Patients Receiving Target-Specific Oral Anticoagulants: A Systematic Review and Meta-Analysis. Blood 2014, 124, 2450–2458. [Google Scholar] [CrossRef]
- Cannon, J.W. Hemorrhagic Shock. N. Engl. J. Med. 2018, 378, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Duque, P.; Calvo, A.; Lockie, C.; Schöchl, H. Pathophysiology of Trauma-Induced Coagulopathy. Transfus. Med. Rev. 2021, 35, 80–86. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, J.B.A.; Winkler, A.M.; McCoy, C.C.; Hillyer, C.D.; Shaz, B.H. Early Trauma Induced Coagulopathy (ETIC): Prevalence across the Injury Spectrum. Injury 2014, 45, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Faria, I.; Thivalapill, N.; Makin, J.; Puyana, J.C.; Raykar, N. Bleeding, Hemorrhagic Shock, and the Global Blood Supply. Crit. Care Clin. 2022, 38, 775–793. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Ziai, W.C.; Cordonnier, C.; Dowlatshahi, D.; Francis, B.; Goldstein, J.N.; Hemphill, J.C.; Johnson, R.; Keigher, K.M.; Mack, W.J.; et al. 2022 Guideline for the Management of Patients With Spontaneous Intracerebral Hemorrhage: A Guideline From the American Heart Association/American Stroke Association. Stroke 2022, 53, e282–e361. [Google Scholar] [CrossRef]
- Thim, T.; Krarup, N.H.V.; Grove, E.L.; Rohde, C.V.; Løfgren, B. Initial Assessment and Treatment with the Airway, Breathing, Circulation, Disability, Exposure (ABCDE) Approach. IJGM 2012, 44, 117–121. [Google Scholar] [CrossRef]
- D’Amore, K.; Swaminathan, A. Massive Gastrointestinal Hemorrhage. Emerg. Med. Clin. 2020, 38, 871–889. [Google Scholar] [CrossRef]
- Wilson, M.; Davis, D.P.; Coimbra, R. Diagnosis and Monitoring of Hemorrhagic Shock during the Initial Resuscitation of Multiple Trauma Patients: A Review. J. Emerg. Med. 2003, 24, 413–422. [Google Scholar] [CrossRef]
- El-Kersh, K.; Chaddha, U.; Sinha, R.S.; Saad, M.; Guardiola, J.; Cavallazzi, R. Predictive Role of Admission Lactate Level in Critically Ill Patients with Acute Upper Gastrointestinal Bleeding. J. Emerg. Med. 2015, 49, 318–325. [Google Scholar] [CrossRef]
- Strzałka, M.; Winiarski, M.; Dembiński, M.; Pędziwiatr, M.; Matyja, A.; Kukla, M. Predictive Role of Admission Venous Lactate Level in Patients with Upper Gastrointestinal Bleeding: A Prospective Observational Study. J. Clin. Med. 2022, 11, 335. [Google Scholar] [CrossRef]
- Baxter, J.; Cranfield, K.R.; Clark, G.; Harris, T.; Bloom, B.; Gray, A.J. Do Lactate Levels in the Emergency Department Predict Outcome in Adult Trauma Patients? A Systematic Review. J. Trauma Acute Care Surg. 2016, 81, 555–566. [Google Scholar] [CrossRef] [PubMed]
- Yunus Emre Arik, S.K. Effectiveness of Lactate Clearance to Predict In-Hospital Mortality in Patients with Upper Gastrointestinal Bleeding. J. Coll. Physicians Surg. Pak. 2023, 33, 1136–1140. [Google Scholar] [CrossRef]
- Fukuma, H.; Nakada, T.; Shimada, T.; Shimazui, T.; Aizimu, T.; Nakao, S.; Watanabe, H.; Mizushima, Y.; Matsuoka, T. Prehospital Lactate Improves Prediction of the Need for Immediate Interventions for Hemorrhage after Trauma. Sci. Rep. 2019, 9, 13755. [Google Scholar] [CrossRef] [PubMed]
- Zadorozny, E.V.; Weigel, T.; Stone, A.; Gruen, D.S.; Galvagno, S.M.; Yazer, M.H.; Brown, J.B.; Guyette, F.X. Prehospital Lactate Is Associated with the Need for Blood in Trauma. Prehospital Emerg. Care 2022, 26, 590–599. [Google Scholar] [CrossRef]
- Hofer, S.; Schlimp, C.J.; Casu, S.; Grouzi, E. Management of Coagulopathy in Bleeding Patients. J. Clin. Med. 2021, 11, 1. [Google Scholar] [CrossRef]
- Wikkelsø, A.; Wetterslev, J.; Møller, A.M.; Afshari, A. Thromboelastography (TEG) or Rotational Thromboelastometry (ROTEM) to Monitor Haemostatic Treatment in Bleeding Patients: A Systematic Review with Meta-analysis and Trial Sequential Analysis. Anaesthesia 2017, 72, 519–531. [Google Scholar] [CrossRef]
- Wool, G.D.; Carll, T. Viscoelastic Testing: Critical Appraisal of New Methodologies and Current Literature. Int. J. Lab. Hematol. 2023, 45, 643–658. [Google Scholar] [CrossRef]
- Gonzalez, E.; Moore, E.E.; Moore, H.B.; Chapman, M.P.; Chin, T.L.; Ghasabyan, A.; Wohlauer, M.V.; Barnett, C.C.; Bensard, D.D.; Biffl, W.L.; et al. Goal-Directed Hemostatic Resuscitation of Trauma-Induced Coagulopathy: A Pragmatic Randomized Clinical Trial Comparing a Viscoelastic Assay to Conventional Coagulation Assays. Ann. Surg. 2016, 263, 1051–1059. [Google Scholar] [CrossRef]
- Kumar, M.; Ahmad, J.; Maiwall, R.; Choudhury, A.; Bajpai, M.; Mitra, L.G.; Saluja, V.; Mohan Agarwal, P.; Bihari, C.; Shasthry, S.M.; et al. Thromboelastography-Guided Blood Component Use in Patients With Cirrhosis With Nonvariceal Bleeding: A Randomized Controlled Trial. Hepatology 2020, 71, 235–246. [Google Scholar] [CrossRef]
- Pommerening, M.J.; Goodman, M.D.; Holcomb, J.B.; Wade, C.E.; Fox, E.E.; Del Junco, D.J.; Brasel, K.J.; Bulger, E.M.; Cohen, M.J.; Alarcon, L.H.; et al. Clinical Gestalt and the Prediction of Massive Transfusion after Trauma. Injury 2015, 46, 807–813. [Google Scholar] [CrossRef]
- Carsetti, A.; Antolini, R.; Casarotta, E.; Damiani, E.; Gasparri, F.; Marini, B.; Adrario, E.; Donati, A. Shock Index as Predictor of Massive Transfusion and Mortality in Patients with Trauma: A Systematic Review and Meta-Analysis. Crit. Care 2023, 27, 85. [Google Scholar] [CrossRef] [PubMed]
- Vang, M.; Østberg, M.; Steinmetz, J.; Rasmussen, L.S. Shock Index as a Predictor for Mortality in Trauma Patients: A Systematic Review and Meta-Analysis. Eur. J. Trauma Emerg. Surg. 2022, 48, 2559–2566. [Google Scholar] [CrossRef] [PubMed]
- Cotton, B.A.; Dossett, L.A.; Haut, E.R.; Shafi, S.; Nunez, T.C.; Au, B.K.; Zaydfudim, V.; Johnston, M.; Arbogast, P.; Young, P.P. Multicenter Validation of a Simplified Score to Predict Massive Transfusion in Trauma. J. Trauma Inj. Infect. Crit. Care 2010, 69, S33–S39. [Google Scholar] [CrossRef]
- Nunez, T.C.; Voskresensky, I.V.; Dossett, L.A.; Shinall, R.; Dutton, W.D.; Cotton, B.A. Early Prediction of Massive Transfusion in Trauma: Simple as ABC (Assessment of Blood Consumption)? J. Trauma Inj. Infect. Crit. Care 2009, 66, 346–352. [Google Scholar] [CrossRef]
- Baird, E.W.; Lammers, D.T.; Abraham, P.; Hashmi, Z.G.; Griffin, R.L.; Stephens, S.W.; Jansen, J.O.; Holcomb, J.B. Diagnostic Performance of the ABC Score in the PROPPR Trial. Injury 2024, 55, 111656. [Google Scholar] [CrossRef]
- McDaniel, L.M.; Neal, M.D.; Sperry, J.L.; Alarcon, L.H.; Forsythe, R.M.; Triulzi, D.; Peitzman, A.B.; Raval, J.S. Use of a Massive Transfusion Protocol in Nontrauma Patients: Activate Away. J. Am. Coll. Surg. 2013, 216, 1103–1109. [Google Scholar] [CrossRef]
- McPherson, S.J.; Sinclair, M.T.; Smith, N.C.E. Severe Gastrointestinal Haemorrhage: Summary of a National Quality of Care Study with Focus on Radiological Services. Cardiovasc. Interv. Radiol. 2017, 40, 223–230. [Google Scholar] [CrossRef]
- Rassameehiran, S.; Teerakanok, J.; Suchartlikitwong, S.; Nugent, K. Utility of the Shock Index for Risk Stratification in Patients with Acute Upper Gastrointestinal Bleeding. South Med. J. 2017, 110, 738–743. [Google Scholar] [CrossRef]
- Blatchford, O.; Murray, W.R.; Blatchford, M. A Risk Score to Predict Need for Treatment for Uppergastrointestinal Haemorrhage. Lancet 2000, 356, 1318–1321. [Google Scholar] [CrossRef]
- Escobar, M.F.; Nassar, A.H.; Theron, G.; Barnea, E.R.; Nicholson, W.; Ramasauskaite, D.; Lloyd, I.; Chandraharan, E.; Miller, S.; Burke, T.; et al. FIGO Recommendations on the Management of Postpartum Hemorrhage 2022. Int. J. Gynecol. Obs. 2022, 157, 3–50. [Google Scholar] [CrossRef]
- Rodrigues, A.; Carrilho, A.; Almeida, N.; Baldaia, C.; Alves, Â.; Gomes, M.; Gonçalves, L.; Nunes, A.R.; Pereira, C.L.; Silva, M.J.; et al. Interventional Algorithm in Gastrointestinal Bleeding—An Expert Consensus Multimodal Approach Based on a Multidisciplinary Team. Clin. Appl. Thromb. Hemost. 2020, 26, 107602962093194. [Google Scholar] [CrossRef] [PubMed]
- Charya, A.V.; Holden, V.K.; Pickering, E.M. Management of Life-Threatening Hemoptysis in the ICU. J. Thorac. Dis. 2021, 13, 5139–5158. [Google Scholar] [CrossRef] [PubMed]
- Weingart, S.; FCCM MD. EMCrit 5—Intubating the Critical GI Bleeder. EMCrit Project 2009. Available online: https://emcrit.org/emcrit/intubating-gi-bleeds/ (accessed on 15 December 2024).
- Hudson, A.J.; Strandenes, G.; Bjerkvig, C.K.; Svanevik, M.; Glassberg, E. Airway and Ventilation Management Strategies for Hemorrhagic Shock. To Tube, or Not to Tube, That Is the Question! J. Trauma Acute Care Surg. 2018, 84, S77–S82. [Google Scholar] [CrossRef]
- Dunton, Z.; Seamon, M.J.; Subramanian, M.; Jopling, J.; Manukyan, M.; Kent, A.; Sakran, J.V.; Stevens, K.; Haut, E.; Byrne, J.P. Emergency Department versus Operating Room Intubation of Patients Undergoing Immediate Hemorrhage Control Surgery. J. Trauma Acute Care Surg. 2023, 95, 69–77. [Google Scholar] [CrossRef]
- Orpen-Palmer, J.; Stanley, A.J. Update on the Management of Upper Gastrointestinal Bleeding. BMJ Med. 2022, 1, e000202. [Google Scholar] [CrossRef]
- Tripathi, D.; Stanley, A.J.; Hayes, P.C.; Patch, D.; Millson, C.; Mehrzad, H.; Austin, A.; Ferguson, J.W.; Olliff, S.P.; Hudson, M.; et al. UK Guidelines on the Management of Variceal Haemorrhage in Cirrhotic Patients. Gut 2015, 64, 1680–1704. [Google Scholar] [CrossRef]
- Mutimer, C.A.; Yassi, N.; Wu, T.Y. Blood Pressure Management in Intracerebral Haemorrhage: When, How Much, and for How Long? Curr. Neurol. Neurosci. Rep. 2024, 24, 181–189. [Google Scholar] [CrossRef]
- Bonanno, F.G. Management of Hemorrhagic Shock: Physiology Approach, Timing and Strategies. J. Clin. Med. 2022, 12, 260. [Google Scholar] [CrossRef]
- Wang, C.-H.; Hsieh, W.-H.; Chou, H.-C.; Huang, Y.-S.; Shen, J.-H.; Yeo, Y.H.; Chang, H.-E.; Chen, S.-C.; Lee, C.-C. Liberal Versus Restricted Fluid Resuscitation Strategies in Trauma Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Observational Studies. Crit. Care Med. 2014, 42, 954–961. [Google Scholar] [CrossRef]
- Safiejko, K.; Smereka, J.; Filipiak, K.J.; Szarpak, A.; Dabrowski, M.; Ladny, J.R.; Jaguszewski, M.J.; Szarpak, L. Effectiveness and Safety of Hypotension Fluid Resuscitation in Traumatic Hemorrhagic Shock: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cardiol. J. 2022, 29, 463–471. [Google Scholar] [CrossRef]
- Kasotakis, G.; Sideris, A.; Yang, Y.; De Moya, M.; Alam, H.; King, D.R.; Tompkins, R.; Velmahos, G. Aggressive Early Crystalloid Resuscitation Adversely Affects Outcomes in Adult Blunt Trauma Patients: An Analysis of the Glue Grant Database. J. Trauma Acute Care Surg. 2013, 74, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Li, T.; Liu, L. Efficacy of Limited Fluid Resuscitation in Patients with Hemorrhagic Shock: A Meta-Analysis. Int. J. Clin. Exp. Med. 2015, 8, 11645–11656. [Google Scholar] [PubMed]
- Hammond, N.E.; Zampieri, F.G.; Di Tanna, G.L.; Garside, T.; Adigbli, D.; Cavalcanti, A.B.; Machado, F.R.; Micallef, S.; Myburgh, J.; Ramanan, M.; et al. Balanced Crystalloids versus Saline in Critically Ill Adults—A Systematic Review with Meta-Analysis. NEJM Evid. 2022, 1, EVIDoa2100010. [Google Scholar] [CrossRef]
- Semler, M.W.; Self, W.H.; Wanderer, J.P.; Ehrenfeld, J.M.; Wang, L.; Byrne, D.W.; Stollings, J.L.; Kumar, A.B.; Hughes, C.G.; Hernandez, A.; et al. Balanced Crystalloids versus Saline in Critically Ill Adults. N. Engl. J. Med. 2018, 378, 829–839. [Google Scholar] [CrossRef]
- Lu, B.; Li, M.; Li, J. The Use of Limited Fluid Resuscitation and Blood Pressure-Controlling Drugs in the Treatment of Acute Upper Gastrointestinal Hemorrhage Concomitant with Hemorrhagic Shock. Cell Biochem. Biophys. 2015, 72, 461–463. [Google Scholar] [CrossRef]
- Kietaibl, S.; Ahmed, A.; Afshari, A.; Albaladejo, P.; Aldecoa, C.; Barauskas, G.; De Robertis, E.; Faraoni, D.; Filipescu, D.C.; Fries, D.; et al. Management of Severe Peri-Operative Bleeding: Guidelines from the European Society of Anaesthesiology and Intensive Care: Second Update 2022. Eur. J. Anaesthesiol. 2023, 40, 226–304. [Google Scholar] [CrossRef]
- Meyer, D.E.; Vincent, L.E.; Fox, E.E.; O’Keeffe, T.; Inaba, K.; Bulger, E.; Holcomb, J.B.; Cotton, B.A. Every Minute Counts: Time to Delivery of Initial Massive Transfusion Cooler and Its Impact on Mortality. J. Trauma Acute Care Surg. 2017, 83, 19–24. [Google Scholar] [CrossRef]
- Cotton, B.A.; Gunter, O.L.; Isbell, J.; Au, B.K.; Robertson, A.M.; Morris, J.A.; St. Jacques, P.; Young, P.P. Damage Control Hematology: The Impact of a Trauma Exsanguination Protocol on Survival and Blood Product Utilization. J. Trauma Inj. Infect. Crit. Care 2008, 64, 1177–1183. [Google Scholar] [CrossRef]
- Cotton, B.A.; Au, B.K.; Nunez, T.C.; Gunter, O.L.; Robertson, A.M.; Young, P.P. Predefined Massive Transfusion Protocols Are Associated With a Reduction in Organ Failure and Postinjury Complications. J. Trauma Inj. Infect. Crit. Care 2009, 66, 41–49. [Google Scholar] [CrossRef]
- Cantle, P.M.; Cotton, B.A. Prediction of Massive Transfusion in Trauma. Crit. Care Clin. 2017, 33, 71–84. [Google Scholar] [CrossRef]
- Jacqueline, D.T.; Dawe, P.; Shih, A.W. Massive Hemorrhage and Emergency Transfusion. Available online: https://professionaleducation.blood.ca/en/transfusion/clinical-guide/massive-hemorrhage-and-emergency-transfusion (accessed on 6 October 2024).
- Holcomb, J.B.; Tilley, B.C.; Baraniuk, S.; Fox, E.E.; Wade, C.E.; Podbielski, J.M.; Del Junco, D.J.; Brasel, K.J.; Bulger, E.M.; Callcut, R.A.; et al. Transfusion of Plasma, Platelets, and Red Blood Cells in a 1:1:1 vs a 1:1:2 Ratio and Mortality in Patients With Severe Trauma: The PROPPR Randomized Clinical Trial. JAMA 2015, 313, 471. [Google Scholar] [CrossRef] [PubMed]
- Meneses, E.; Boneva, D.; McKenney, M.; Elkbuli, A. Massive Transfusion Protocol in Adult Trauma Population. Am. J. Emerg. Med. 2020, 38, 2661–2666. [Google Scholar] [CrossRef]
- Baumann Kreuziger, L.M.; Morton, C.T.; Subramanian, A.T.; Anderson, C.P.; Dries, D.J. Not Only in Trauma Patients: Hospital-wide Implementation of a Massive Transfusion Protocol. Transfus. Med. 2014, 24, 162–168. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, L.M.; Etchill, E.W.; Raval, J.S.; Neal, M.D. State of the Art: Massive Transfusion. Transfus. Med. 2014, 24, 138–144. [Google Scholar] [CrossRef]
- Etchill, E.W.; Myers, S.P.; McDaniel, L.M.; Rosengart, M.R.; Raval, J.S.; Triulzi, D.J.; Peitzman, A.B.; Sperry, J.L.; Neal, M.D. Should All Massively Transfused Patients Be Treated Equally? An Analysis of Massive Transfusion Ratios in the Nontrauma Setting. Crit. Care Med. 2017, 45, 1311–1316. [Google Scholar] [CrossRef]
- Donovan, K.; Stanworth, S.; Jairath, V. The Optimal Use of Blood Components in the Management of Gastrointestinal Bleeding. Best Pract. Res. Clin. Gastroenterol. 2019, 42–43, 101600. [Google Scholar] [CrossRef]
- Blood-Essentials-v1-April-2024.Pdf. Available online: https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/33257/blood-essentials-v1-april-2024.pdf (accessed on 15 December 2024).
- Vlaar, A.P.J.; Dionne, J.C.; Bruin, S. Transfusion Strategies in Bleeding Critically Ill Adults: A Clinical Practice Guideline from the European Society of Intensive Care Medicine. Intensive Care Med. 2021, 47, 1368–1392. [Google Scholar] [CrossRef]
- Sibrowski, W.; Bein, G.; Bundesärztekammer (Eds.) Cross-Sectional Guidelines for Therapy with Blood Components and Plasma Derivatives, 4th ed.; Transfusion medicine and hemotherapy Series 36; Karger: Freiburg, Germany, 2009; ISBN 978-3-8055-9392-2. [Google Scholar]
- Arynov, A.; Kaidarova, D.; Kabon, B. Alternative Blood Transfusion Triggers: A Narrative Review. BMC Anesth. 2024, 24, 71. [Google Scholar] [CrossRef]
- Harris, C.T.; Totten, M.; Davenport, D.; Ye, Z.; O’Brien, J.; Williams, D.; Bernard, A.; Boral, L. Experience with Uncrossmatched Blood Refrigerator in Emergency Department. Trauma Surg. Acute Care Open 2018, 3, e000184. [Google Scholar] [CrossRef]
- Callum, J.L.; Yeh, C.H.; Petrosoniak, A.; McVey, M.J.; Cope, S.; Thompson, T.; Chin, V.; Karkouti, K.; Nathens, A.B.; Murto, K.; et al. A Regional Massive Hemorrhage Protocol Developed through a Modified Delphi Technique. Can. Med. Assoc. Open Access J. 2019, 7, E546–E561. [Google Scholar] [CrossRef]
- NHSBT. National Comparative Audit of Blood Transfusion: 2018 Audit of the Management of Major Haemorrhage. 2018. Available online: https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/19130/2018-major-haemorrhage-audit-full-report.pdf (accessed on 15 December 2024).
- Johansson, P.; Oliveri, R.; Ostrowski, S. Hemostatic Resuscitation with Plasma and Platelets in Trauma. J. Emerg. Trauma Shock. 2012, 5, 120. [Google Scholar] [CrossRef] [PubMed]
- Jairath, V.; Kahan, B.C.; Stanworth, S.J.; Logan, R.F.A.; Hearnshaw, S.A.; Travis, S.P.L.; Palmer, K.R.; Murphy, M.F. Prevalence, Management, and Outcomes of Patients with Coagulopathy after Acute Nonvariceal Upper Gastrointestinal Bleeding in the United Kingdom. Transfusion 2013, 53, 1069–1076. [Google Scholar] [CrossRef]
- Drolz, A.; Ferlitsch, A.; Fuhrmann, V. Management of Coagulopathy during Bleeding and Invasive Procedures in Patients with Liver Failure. Visc. Med. 2018, 34, 254–258. [Google Scholar] [CrossRef]
- Drummond, J.C.; Petrovitch, C.T. The Massively Bleeding Patient. Anesthesiol. Clin. N. Am. 2001, 19, 633–649. [Google Scholar] [CrossRef]
- Johansson, P.; Stensballe, J.; Ostrowski, S. Shock Induced Endotheliopathy (SHINE) in Acute Critical Illness—A Unifying Pathophysiologic Mechanism. Crit. Care 2017, 21, 25. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.H.; Tanaka, K.A.; Dietrich, W. Perioperative Hemostatic Management of Patients Treated with Vitamin K Antagonists. Anesthesiology 2008, 109, 918–926. [Google Scholar] [CrossRef]
- Bolliger, D.; Görlinger, K.; Tanaka, K.A.; Warner, D.S. Pathophysiology and Treatment of Coagulopathy in Massive Hemorrhage and Hemodilution. Anesthesiology 2010, 113, 1205–1219. [Google Scholar] [CrossRef]
- Yadav, S.K.; Hussein, G.; Liu, B.; Vojjala, N.; Warsame, M.; El Labban, M.; Rauf, I.; Hassan, M.; Zareen, T.; Usama, S.M.; et al. A Contemporary Review of Blood Transfusion in Critically Ill Patients. Medicina 2024, 60, 1247. [Google Scholar] [CrossRef]
- Yazer, M.H. The How’s and Why’s of Evidence Based Plasma Therapy. Korean J. Hematol. 2010, 45, 152. [Google Scholar] [CrossRef]
- Chowdhury, P.; Saayman, A.G.; Paulus, U.; Findlay, G.P.; Collins, P.W. Efficacy of Standard Dose and 30 Ml/Kg Fresh Frozen Plasma in Correcting Laboratory Parameters of Haemostasis in Critically Ill Patients. Br. J. Haematol. 2004, 125, 69–73. [Google Scholar] [CrossRef]
- Holland, L.L.; Brooks, J.P. Toward Rational Fresh Frozen Plasma Transfusion: The Effect of Plasma Transfusion on Coagulation Test Results. Am. J. Clin. Pathol. 2006, 126, 133–139. [Google Scholar] [CrossRef]
- Liumbruno, G.M.; Bennardello, F.; Lattanzio, A.; Piccoli, P.L.; Rossetti, G. Recommendations for the Transfusion of Plasma and Platelets. Blood Transfus. 2009, 7, 132. [Google Scholar] [CrossRef]
- Goldstein, J.N.; Refaai, M.A.; Milling, T.J.; Lewis, B.; Goldberg-Alberts, R.; Hug, B.A.; Sarode, R. Four-Factor Prothrombin Complex Concentrate versus Plasma for Rapid Vitamin K Antagonist Reversal in Patients Needing Urgent Surgical or Invasive Interventions: A Phase 3b, Open-Label, Non-Inferiority, Randomised Trial. Lancet 2015, 385, 2077–2087. [Google Scholar] [CrossRef]
- Riastap-Prescribing-Information.Pdf. Available online: https://labeling.cslbehring.com/pi/us/riastap/en/riastap-prescribing-information.pdf (accessed on 15 December 2024).
- Callum, J.; Farkouh, M.E.; Scales, D.C.; Heddle, N.M.; Crowther, M.; Rao, V.; Hucke, H.-P.; Carroll, J.; Grewal, D.; Brar, S.; et al. Effect of Fibrinogen Concentrate vs Cryoprecipitate on Blood Component Transfusion After Cardiac Surgery: The FIBRES Randomized Clinical Trial. JAMA 2019, 322, 1966. [Google Scholar] [CrossRef]
- FDA Approves Fibryga® for Acquired Fibrinogen Deficiency, Potentially Ushering in a New Standard of Care. Available online: https://www.octapharma.com/news/press-release/2024/fda-approves-fibryga-for-acquired-fibrinogen-deficiency (accessed on 16 December 2024).
- Leal-Noval, S.R.; Fernández Pacheco, J.; Casado Méndez, M.; Cuenca-Apolo, D.; Múñoz-Gómez, M. Current Perspective on Fibrinogen Concentrate in Critical Bleeding. Expert. Rev. Clin. Pharmacol. 2020, 13, 761–778. [Google Scholar] [CrossRef]
- Grottke, O.; Mallaiah, S.; Karkouti, K.; Saner, F.; Haas, T. Fibrinogen Supplementation and Its Indications. Semin. Thromb. Hemost. 2020, 46, 38–49. [Google Scholar] [CrossRef]
- Estcourt, L.J.; Birchall, J.; Allard, S.; Bassey, S.J.; Hersey, P.; Kerr, J.P.; Mumford, A.D.; Stanworth, S.J.; Tinegate, H. The British Committee for Standards in Haematology Guidelines for the Use of Platelet Transfusions. Br. J. Haematol. 2017, 176, 365–394. [Google Scholar] [CrossRef]
- Leal-Noval, S.R.; Rincón-Ferrari, M.D. A Strategy to Treat Coagulopathy in Patients with Massive Hemorrhage. Med. Intensiv. 2023, 47, 543–546. [Google Scholar] [CrossRef]
- Saner, F.H.; Kirchner, C. Monitoring and Treatment of Coagulation Disorders in End-Stage Liver Disease. Visc. Med. 2016, 32, 241–248. [Google Scholar] [CrossRef]
- Shah, N.L.; Intagliata, N.M.; Northup, P.G.; Argo, C.K.; Caldwell, S.H. Procoagulant Therapeutics in Liver Disease: A Critique and Clinical Rationale. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 675–682. [Google Scholar] [CrossRef]
- Estcourt, L.J.; Desborough, M.; Brunskill, S.J.; Doree, C.; Hopewell, S.; Murphy, M.F.; Stanworth, S.J. Antifibrinolytics (Lysine Analogues) for the Prevention of Bleeding in People with Haematological Disorders. Cochrane Database Syst. Rev. 2016, 3, CD009733. [Google Scholar] [CrossRef] [PubMed]
- Roberts, I.; Shakur, H.; Coats, T.; Hunt, B.; Balogun, E.; Barnetson, L.; Cook, L.; Kawahara, T.; Perel, P.; Prieto-Merino, D.; et al. The CRASH-2 Trial: A Randomised Controlled Trial and Economic Evaluation of the Effects of Tranexamic Acid on Death, Vascular Occlusive Events and Transfusion Requirement in Bleeding Trauma Patients. Health Technol. Assess. 2013, 17, 1–79. [Google Scholar] [CrossRef] [PubMed]
- Effects of Tranexamic Acid on Death, Disability, Vascular Occlusive Events and Other Morbidities in Patients with Acute Traumatic Brain Injury (CRASH-3): A Randomised, Placebo-Controlled Trial. Lancet 2019, 394, 1713–1723. [CrossRef] [PubMed]
- Perner, A.; Møller, M.H. Tranexamic Acid for Severe Gastrointestinal Bleeding. Lancet 2020, 395, 1885–1886. [Google Scholar] [CrossRef]
- Prutsky, G.; Domecq, J.P.; Salazar, C.A.; Accinelli, R. Antifibrinolytic Therapy to Reduce Haemoptysis from Any Cause. Cochrane Database Syst. Rev. 2016, 11, CD008711. [Google Scholar] [CrossRef]
- Shakur, H.; Beaumont, D.; Pavord, S.; Gayet-Ageron, A.; Ker, K.; Mousa, H.A. Antifibrinolytic Drugs for Treating Primary Postpartum Haemorrhage. Cochrane Database Syst. Rev. 2018, 2018, CD012964. [Google Scholar] [CrossRef]
- WHO Recommendations for the Prevention and Treatment of Postpartum Haemorrhage. Available online: https://www.who.int/publications/i/item/9789241548502 (accessed on 1 December 2024).
- O’Brien, J.W.; Rogers, M.; Gallagher, M.; Rockall, T. Management of Massive Gastrointestinal Haemorrhage. Surgery 2022, 40, 582–592. [Google Scholar] [CrossRef]
- Yee, J.; Kaide, C. Emergency Reversal of Anticoagulation. West. J. Emerg. Med. 2019, 20, 770–783. [Google Scholar] [CrossRef]
- Tomaselli, G.F.; Mahaffey, K.W.; Cuker, A.; Dobesh, P.P.; Doherty, J.U.; Eikelboom, J.W.; Florido, R.; Gluckman, T.J.; Hucker, W.J.; Mehran, R.; et al. 2020 ACC Expert Consensus Decision Pathway on Management of Bleeding in Patients on Oral Anticoagulants. J. Am. Coll. Cardiol. 2020, 76, 594–622. [Google Scholar] [CrossRef]
- De Marco, F.; Valli, G.; Ancona, C.; Ruggieri, M.P. Management of Bleeding in Patients on Direct Oral Anticoagulants in Emergency Department: Where We Are and Where We Are Going. Eur. Heart J. Suppl. 2023, 25, C15–C19. [Google Scholar] [CrossRef]
- Fuhr, L.M.; Hanke, N.; Meibohm, B.; Lehr, T. Effective Removal of Dabigatran by Idarucizumab or Hemodialysis: A Physiologically Based Pharmacokinetic Modeling Analysis. Clin. Pharmacokinet. 2020, 59, 809–825. [Google Scholar] [CrossRef]
- Levy, J.H.; Shaw, J.R.; Castellucci, L.A.; Connors, J.M.; Douketis, J.; Lindhoff-Last, E.; Rocca, B.; Samama, C.M.; Siegal, D.; Weitz, J.I. Reversal of Direct Oral Anticoagulants: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2024, 22, 2889–2899. [Google Scholar] [CrossRef]
- Pollack, C.V.; Reilly, P.A.; Van Ryn, J.; Eikelboom, J.W.; Glund, S.; Bernstein, R.A.; Dubiel, R.; Huisman, M.V.; Hylek, E.M.; Kam, C.-W.; et al. Idarucizumab for Dabigatran Reversal—Full Cohort Analysis. N. Engl. J. Med. 2017, 377, 431–441. [Google Scholar] [CrossRef]
- Holford, N.H.G. Clinical Pharmacokinetics and Pharmacodynamics of Warfarin: Understanding the Dose-Effect Relationship. Clin. Pharmacokinet. 1986, 11, 483–504. [Google Scholar] [CrossRef]
- Nesek Adam, V.; Bošan-Kilibarda, I. Prothrombin complex concentrate in emergency department. Acta Clin. Croat. 2022, 61, 53–58. [Google Scholar] [CrossRef]
- Zakko, L.; Rustagi, T.; Douglas, M.; Laine, L. No Benefit From Platelet Transfusion for Gastrointestinal Bleeding in Patients Taking Antiplatelet Agents. Clin. Gastroenterol. Hepatol. 2017, 15, 46–52. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, Y.; Liu, L.; Zhang, L.; Lin, Y.; Yu, J.; Yang, J. Platelet Transfusion for Spontaneous Intracerebral Hemorrhage with Prior Antiplatelet: A Systematic Review and Meta-Analysis. Medicine 2023, 102, e36072. [Google Scholar] [CrossRef]
- Alvikas, J.; Myers, S.P.; Wessel, C.B.; Okonkwo, D.O.; Joseph, B.; Pelaez, C.; Doberstein, C.; Guillotte, A.R.; Rosengart, M.R.; Neal, M.D. A Systematic Review and Meta-Analysis of Traumatic Intracranial Hemorrhage in Patients Taking Prehospital Antiplatelet Therapy: Is There a Role for Platelet Transfusions? J. Trauma Acute Care Surg. 2020, 88, 847–854. [Google Scholar] [CrossRef]
- Shoamanesh, A.; Patrice Lindsay, M.; Castellucci, L.A.; Cayley, A.; Crowther, M.; De Wit, K.; English, S.W.; Hoosein, S.; Huynh, T.; Kelly, M.; et al. Canadian Stroke Best Practice Recommendations: Management of Spontaneous Intracerebral Hemorrhage, 7th Edition Update 2020. Int. J. Stroke 2021, 16, 321–341. [Google Scholar] [CrossRef]
- Kander, T.; Schött, U. Effect of Hypothermia on Haemostasis and Bleeding Risk: A Narrative Review. J. Int. Med. Res. 2019, 47, 3559–3568. [Google Scholar] [CrossRef]
- Campbell, G.; Alderson, P.; Smith, A.F.; Warttig, S. Warming of Intravenous and Irrigation Fluids for Preventing Inadvertent Perioperative Hypothermia. Cochrane Database Syst. Rev. 2015, 2015, CD009891. [Google Scholar] [CrossRef] [PubMed]
- Warttig, S.; Alderson, P.; Campbell, G.; Smith, A.F. Interventions for Treating Inadvertent Postoperative Hypothermia. Cochrane Database Syst. Rev. 2014, 2014, CD009892. [Google Scholar] [CrossRef] [PubMed]
- Shokoohi, H.; Boniface, K.S.; Pourmand, A.; Liu, Y.T.; Davison, D.L.; Hawkins, K.D.; Buhumaid, R.E.; Salimian, M.; Yadav, K. Bedside Ultrasound Reduces Diagnostic Uncertainty and Guides Resuscitation in Patients With Undifferentiated Hypotension*. Crit. Care Med. 2015, 43, 2562–2569. [Google Scholar] [CrossRef] [PubMed]
- Estoos, E.; Nakitende, D. Diagnostic Ultrasound Use in Undifferentiated Hypotension. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Seif, D.; Perera, P.; Mailhot, T.; Riley, D.; Mandavia, D. Bedside Ultrasound in Resuscitation and the Rapid Ultrasound in Shock Protocol. Crit. Care Res. Pract. 2012, 2012, 503254. [Google Scholar] [CrossRef] [PubMed]
- Stickles, S.P.; Carpenter, C.R.; Gekle, R.; Kraus, C.K.; Scoville, C.; Theodoro, D.; Tran, V.H.; Ubiñas, G.; Raio, C. The Diagnostic Accuracy of a Point-of-Care Ultrasound Protocol for Shock Etiology: A Systematic Review and Meta-Analysis. CJEM 2019, 21, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, Y.; Fukuma, S.; Tsuchiya, A.; Yamamoto, Y.; Fukuhara, S. Whole-Body Computed Tomography During Initial Management and Mortality Among Adult Severe Blunt Trauma Patients: A Nationwide Cohort Study. World J. Surg. 2018, 42, 3939–3946. [Google Scholar] [CrossRef] [PubMed]
- Huber-Wagner, S.; Biberthaler, P.; Häberle, S.; Wierer, M.; Dobritz, M.; Rummeny, E.; Van Griensven, M.; Kanz, K.-G.; Lefering, R.; the TraumaRegister DGU. Whole-Body CT in Haemodynamically Unstable Severely Injured Patients—A Retrospective, Multicentre Study. PLoS ONE 2013, 8, e68880. [Google Scholar] [CrossRef]
- Kimura, A.; Tanaka, N. Whole-Body Computed Tomography Is Associated with Decreased Mortality in Blunt Trauma Patients with Moderate-to-Severe Consciousness Disturbance: A Multicenter, Retrospective Study. J. Trauma Acute Care Surg. 2013, 75, 202–206. [Google Scholar] [CrossRef]
- Caputo, N.D.; Stahmer, C.; Lim, G.; Shah, K. Whole-Body Computed Tomographic Scanning Leads to Better Survival as Opposed to Selective Scanning in Trauma Patients: A Systematic Review and Meta-Analysis. J. Trauma Acute Care Surg. 2014, 77, 534–539. [Google Scholar] [CrossRef]
- Jiang, L.; Ma, Y.; Jiang, S.; Ye, L.; Zheng, Z.; Xu, Y.; Zhang, M. Comparison of Whole-Body Computed Tomography vs Selective Radiological Imaging on Outcomes in Major Trauma Patients: A Meta-Analysis. Scand. J. Trauma Resusc. Emerg. Med. 2014, 22, 54. [Google Scholar] [CrossRef]
- Davies, R.M.; Scrimshire, A.B.; Sweetman, L.; Anderton, M.J.; Holt, E.M. A Decision Tool for Whole-Body CT in Major Trauma That Safely Reduces Unnecessary Scanning and Associated Radiation Risks: An Initial Exploratory Analysis. Injury 2016, 47, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Olsen, K.M.; Manouchehr-pour, S.; Donnelly, E.F.; Henry, T.S.; Berry, M.F.; Boiselle, P.M.; Colletti, P.M.; Harrison, N.E.; Kuzniewski, C.T.; Laroia, A.T.; et al. ACR Appropriateness Criteria® Hemoptysis. J. Am. Coll. Radiol. 2020, 17, S148–S159. [Google Scholar] [CrossRef] [PubMed]
- Latimer, A.J.; Counts, C.R.; Van Dyke, M.; Bulger, N.; Maynard, C.; Rea, T.D.; Kudenchuk, P.J.; Utarnachitt, R.B.; Blackwood, J.; Arbabi, S.; et al. The Compensatory Reserve Index for Predicting Hemorrhagic Shock in Prehospital Trauma. Shock 2023, 60, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Shung, D.; Simonov, M.; Gentry, M.; Au, B.; Laine, L. Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review. Dig. Dis. Sci. 2019, 64, 2078–2087. [Google Scholar] [CrossRef]
- Erasu, V.; Novak, A.; Gibbs, V.N.; Champaneria, R.; Dorée, C.; Hafeez, A.; Moy, R.; Sandercock, J.; Brunskill, S.J.; Estcourt, L.J. Pharmacological Interventions for the Treatment of Bleeding in People Treated for Blunt Force or Penetrating Injury in an Emergency Department: A Systematic Review and Network Meta-Analysis. Cochrane Database Syst. Rev. 2022, 2022, CD014600. [Google Scholar] [CrossRef]
- George, C.E.; Saunders, C.V.; Morrison, A.; Scorer, T.; Jones, S.; Dempsey, N.C. Cold Stored Platelets in the Management of Bleeding: Is It about Bioenergetics? Platelets 2023, 34, 2188969. [Google Scholar] [CrossRef]
- Rabadà, Y.; Bosch-Sanz, O.; Biarnés, X.; Pedreño, J.; Caveda, L.; Sánchez-García, D.; Martorell, J.; Balcells, M. Unravelling the Antifibrinolytic Mechanism of Action of the 1,2,3-Triazole Derivatives. Int. J. Mol. Sci. 2024, 25, 7002. [Google Scholar] [CrossRef]
- Muldowney, M.; Aichholz, P.; Nathwani, R.; Stansbury, L.G.; Hess, J.R.; Vavilala, M.S. Advances in Hemorrhage Control Resuscitation. Curr. Opin. Anaesthesiol. 2022, 35, 176–181. [Google Scholar] [CrossRef]
Guidelines | Term | Definition |
---|---|---|
International Society on Thrombosis and Haemostasis, 2005 [2] | Major bleeding | 1. Fatal bleeding and/or 2. Symptomatic bleeding in a critical area or organ, such as intracranial, intraspinal, intraocular, retroperitoneal, intra-articular or pericardial, or intramuscular with compartment syndrome and/or 3. bleeding causing a fall in haemoglobin levels of 2 g/dL or more, or leading to a transfusion of ≥2 units of whole blood or RBCs |
British Society for Haematology, 2022 [13] | Major Haemorrhage | Bleeding that leads to HR > 110 bpm and/or SBP < 90 mmHg |
International Forum on the Management of Major Haemorrhage, 2022 [1] | Massive Transfusion | ≥10 units of RBCs within 24 h (most common) |
National Blood Authority of Australia, 2023 [14] | Critical bleeding | 1. Major haemorrhage that is life-threatening and is likely to result in the need for massive transfusion (≥5 units of RBCs in 4 h) 2. Haemorrhage of a smaller volume in a critical area or organ (e.g., intracranial, intraspinal or intraocular), resulting in patient morbidity or mortality. |
Working Group on Emergency Disposition of Blood during a Red Phase Blood Shortage, Canadian National Advisory Committee on Blood and Blood Products, 2012 [15] | Massive haemorrhage/Massive transfusion | 1. Expected blood loss of one BV over less than a 24-h period OR 2. 0.5 blood volume in 3 h OR 3. ≥4 units of RBCs in one hour |
Joint United Kingdom (UK) Blood Transfusion and Tissue Transplantation Services Professional Advisory Committee, 2018 [16] | Major haemorrhage | 1. Loss of over 1 BV (70 mL/kg or >5 L in a 70 kg adult) in 24 h OR 2. loss of 50% of TBV in <3 h OR 3. bleeding at a rate >150 mL/min |
Metric | Definition | Authors, Year |
---|---|---|
Critical Administration Threshold (CAT) | ≥3 units of RBCs in 1 h | Savage et al., 2015 [17] |
Resuscitation Intensity (RI) | ≥4 units of blood product (RBCs/plasma/crystalloid and colloid) | Meyer et al., 2018 [18] |
MT (FFP:PLT:PRBC) | RBC | COAGULOPATHY (GUIDED BY LAB VALUES/VET) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FFP | FC/cryo | PCC | Platelets | Calcium | TXA | Other | Definite Treatment | |||
TRAUMA [4] | 1:1:1–1:1:2 FC/cryo:PLT:pRBC OR FFP:PLT:pRBC Fibrinogen = 2 gr, FFP = 4 units, pRBC = 4 units | Target Hb 7–9 g/dL OR Hb 8 g/dL in CAD | 15–20 mL/kg (if PT and/or APTT > 1.5 times normal [13] | 3–4 g FC OR 15–20 single donor units of cryoprecipitate (if fibrinogen < 1.5 g/L OR guided by VET) | If fibrinogen is normal - >PCC 25–50 IU/kg (guided by VET) | Initial dose = 4–8 single PLT units OR 1 apheresis pack (target > 50 × 109/L, >100 × 109/L TBI) | CaCl2 (10 mL = 270 mg of elemental Ca2+) | TXA 1 g in 10 min within 3 h of trauma, 1 g over 8 h | Damage Control surgery | |
UGIB | 1:1:2 | Target Hb 7–9 g/dL OR Hb 8 g/dL in CAD [7,8,10,74,90,138] | *Caution* FFP↑ MORTALITY in CIRROTIC pts [90] - 12–15 mL/kg, if fibrinogen < 1 g/L OR INR/APTT > 1.5 [74,80] OR as indicated by coagulation tests [138] | 25–50 mg/kg (if fibrinogen < 1.5 g/L) [74] or as indicated by coagulation tests [138] | 20–30 IU/kg, as indicated by coagulation tests [74] | target > 50 × 109/L [7,74,80] 4–6 single PLT units or 1 apheresis unit per 60–70 kg [74] | 0.5–1.0 g per 500 mL of transfused blood [74] | Not recommended | PPI pantoprazole/esomeprazole 80 mg bolus, 8 mg/h [7,9,74,90] ANTIBIOTIC (ceftriaxone 1 g/24 h/erythromycin 250 mg IV 30–120 min before endoscopy) [7,74] | - Urgent Endoscopy in UNSTABLE pts or embolization if endoscopy fails [7,80] - Surgery |
LGIB | 1:1:2 | 1:1:2 | As indicated by coagulation tests [138] | As indicated by coagulation tests [138] | 20–30 IU/kg, as indicated by coagulation tests [74] | target > 50 × 109/L [138] | 0.5–1.0 g per 500 mL of transfused blood [74] | Not recommended | - Mesenteric embolization - Surgery | |
PPH [13,73] | 1:1:1 | Target Hb 7–9 g/dL OR Hb 8 g/dL in CAD | 15–20 mL/kg (if PT and/or APTT > 1.5 times normal | Target > 2 g/L 10 single donor units of cryoprecipitate | - TXA 1 g in 10 min within 3 h-repeat if bleeding continues after 1 g [13] | - Oxytocin 10 IU IV, IF unavailable/ineffective: methyl-ergometrine [0.2 mg IM/IV slowly, every 2–4 h (max 5 doses)], or ergometrine 0.5 mg IM/IV slowly, or prostaglandin drug (sublingual misoprostol, 800 µg) [137] | - Manipulations: uterine massage, intrauterine balloon tamponade, uterine artery embolization - Damage Control Surgery | |||
HAEMOPTYSIS | - TXA 1 g in 10 min within 3 h, 1 g over 8 h [39] | - Patient position to protect the well-aerated lung - CONSIDER early intubation if cough is not adequate | BAE | |||||||
MAJOR BLEEDING [13] | 1:2 FFP:pRBC | Target Hb 7–9 g/dL OR Hb 8 g/dL in CAD | 15–20 mL/kg (if PT and/or APTT > 1.5 times normal | 3–4 g FC (if fibrinogen < 1.5 g/L) | target > 50 × 109/L | |||||
ICH [48] | NA | NA | NA | NA | NA | target > 100 × 109/L | NA | ↓SBP 130–140 mmHg |
ANTICOAGULANTS | FFP | PCC | ANTIDOTES | |
---|---|---|---|---|
WARFARIN [140] | 15–30 mL/kg | 25 IU/kg (INR 2–4) 35 IU/kg (INR 4–6) 50 IU/kg (INR > 6) max dose 100 IU | vitamin K 5–10 mg IV in concomitance with PCC/FFP (because half-life of factor VII is only 6 h) | |
DIRECT XA INHIBITORS | 25–50 IU/kg (If Andexanet alfa not available) | Andexanet alfa low dose: 400 mg (15 min), followed by 480 mg in 2 h, when:
| ||
high dose: 800 mg (30 min), followed by 960 mg in 2 h, when:
| ||||
DIRECT THROMBIN INHIBITORS | 20 single donor units of cryoprecipitate, if fibrinogen < 2 g/L [139] | 25–50 IU/kg (max 4.000–5.000 IU) (if idarucizumab not available) | Idarucizumab 5 g (2 doses of 2.5 g with an interval of 15 min in between) | |
UFH | Protamine (max dose = 50 mg)
| |||
LMWH | Protamine (max dose = 50 mg)
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezati, S.; Ventoulis, I.; Verras, C.; Boultadakis, A.; Bistola, V.; Sbyrakis, N.; Fraidakis, O.; Papadamou, G.; Fyntanidou, B.; Parissis, J.; et al. Major Bleeding in the Emergency Department: A Practical Guide for Optimal Management. J. Clin. Med. 2025, 14, 784. https://doi.org/10.3390/jcm14030784
Bezati S, Ventoulis I, Verras C, Boultadakis A, Bistola V, Sbyrakis N, Fraidakis O, Papadamou G, Fyntanidou B, Parissis J, et al. Major Bleeding in the Emergency Department: A Practical Guide for Optimal Management. Journal of Clinical Medicine. 2025; 14(3):784. https://doi.org/10.3390/jcm14030784
Chicago/Turabian StyleBezati, Sofia, Ioannis Ventoulis, Christos Verras, Antonios Boultadakis, Vasiliki Bistola, Nikolaos Sbyrakis, Othon Fraidakis, Georgia Papadamou, Barbara Fyntanidou, John Parissis, and et al. 2025. "Major Bleeding in the Emergency Department: A Practical Guide for Optimal Management" Journal of Clinical Medicine 14, no. 3: 784. https://doi.org/10.3390/jcm14030784
APA StyleBezati, S., Ventoulis, I., Verras, C., Boultadakis, A., Bistola, V., Sbyrakis, N., Fraidakis, O., Papadamou, G., Fyntanidou, B., Parissis, J., & Polyzogopoulou, E. (2025). Major Bleeding in the Emergency Department: A Practical Guide for Optimal Management. Journal of Clinical Medicine, 14(3), 784. https://doi.org/10.3390/jcm14030784