Mechanisms, Biomarkers, and Treatment Approaches for Diabetic Kidney Disease: Current Insights and Future Perspectives
Abstract
:1. Introduction
2. Methods and Results
3. Discussion
3.1. Primary and Initiating Mechanisms of DKD
3.1.1. Pathological Mechanism
- Hyperglycemia
- Advanced Glycation End Products (AGEs)
- Renin–Angiotensin–Aldosterone System (RAAS)
3.1.2. Biomarkers
- Advanced Glycation End Products (AGEs)
- ß2 microglobulin (ß2M)
3.1.3. Treatments and Therapies
- Glucose Control
- SGLT2 Inhibitors
3.2. Oxidative Stress and Associated Mechanisms in DKD
3.2.1. Pathological Mechanism
- Oxidative Stress
- Mitochondrial dysfunction
- Renal Hypoxia
- Glucotoxicity in DKD
3.2.2. Biomarkers
- Vascular Endothelial Growth Factor (VEGF) and Receptor (VEGFR)
- Advanced Glycation End Products (AGE)
- Soluble Klotho (α-Klotho)
3.2.3. Treatments and Therapies
- Mineralocorticoid Antagonists
- Dietary Intervention
3.3. Hemodynamic Impacts
3.3.1. Pathological Mechanism
- Hemodynamic Changes
- Glomerular Hypertension
3.3.2. Biomarkers
- Albuminuria and Proteinuria
- Creatinine and Estimated Glomerular Filtration Rate (eGFR)
- Fibroblast Growth Factor-23 (FGF-23)
- Cystatin C (CysC)
3.3.3. Treatments and Therapies
- Blood Pressure Control
- Statins
- Bone Health
3.4. Cellular and Structural Injuries
3.4.1. Pathological Mechanism
- Podocyte Injury
- ECM Accumulation and GBM Thickening
- Epithelial–Mesenchymal Transition (EMT)
- Proteinuria
3.4.2. Biomarkers
- Kidney Injury Molecule-1 (KIM-1)
- Transforming growth factor β (TGF-β)
- Connective Tissue Growth Factor (CTGF)
- Neutrophil gelatinase-associated lipocalin (NGAL)
- Osteopontin (OPN)
- Hepcidin
3.4.3. Treatments and Therapies
- Medications to Reduce Proteinuria
- Smoking Cessation
3.5. Inflammation and Immunological Cycles
3.5.1. Pathological Mechanism
- Immune System Involvement
- The role of autophagy
3.5.2. Biomarkers
- Interleukin-6 (IL-6)
- Monocyte chemoattractant protein 1 (MCP-1)
- TNF-α and TNF-α receptors (TNFR) system
- Podocyte membrane protein urokinase receptor (uPAR) and its circulating form (suPAR)
3.5.3. Treatments and Therapies
- Kidney Replacement Therapy (KRT) and Kidney transplantation (KT)
3.6. Emerging and Regulatory Factors
3.6.1. Pathological Mechanism
- Genetic and Epigenetic Factors and Predisposition
- Metabolic Disturbances and Gut Microbiota Imbalance
- Urinary Exosomes
3.6.2. Biomarkers
- MicroRNAs
- Circular RNAs (circRNAs)
- Urinary Exosomes
3.6.3. Treatments and Therapies
- Gut Microbiota Supplements
- Treatment with Exosomes
4. Future Directions
- DKD and the Cardiovascular System
- DKD and Liver
- DKD and Bones
5. Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, S.M.; Bonventre, J.V. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv. Chronic Kidney Dis. 2018, 25, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol. 2019, 15, 327–345. [Google Scholar] [CrossRef]
- Abdelmaksoud, N.M.; Al-Noshokaty, T.M.; Abdelhamid, R.; Abdellatif, N.; Mansour, A.; Mohamed, R.; Mohamed, A.H.; Khalil, N.A.E.; Abdelhamid, S.S.; Mohsen, A.; et al. Deciphering the role of MicroRNAs in diabetic nephropathy: Regulatory mechanisms and molecular insights. Pathol. Res. Pract. 2024, 256, 155237. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Devi Rajeswari, V.; Venkatraman, G.; Elumalai, R.; Dhanasekaran, S.; Ramanathan, G. Current updates on metabolites and its interlinked pathways as biomarkers for diabetic kidney disease: A systematic review. Transl. Res. 2024, 265, 71–87. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, C. Recent Advances in the Management of Diabetic Kidney Disease: Slowing Progression. Int. J. Mol. Sci. 2024, 25, 3086. [Google Scholar] [CrossRef]
- Sinha, S.K.; Nicholas, S.B. Pathomechanisms of Diabetic Kidney Disease. J. Clin. Med. 2023, 12, 7349. [Google Scholar] [CrossRef]
- Jung, C.Y.; Yoo, T.H. Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease. Diabetes Metab. J. 2022, 46, 181–197. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chang, Y.H.; Yang, S.Y.; Wu, K.D.; Chu, T.S. Update of pathophysiology and management of diabetic kidney disease. J. Formos. Med. Assoc. 2018, 117, 662–675. [Google Scholar] [CrossRef]
- Wei, P.Z.; Szeto, C.C. Mitochondrial dysfunction in diabetic kidney disease. Clin. Chim. Acta 2019, 496, 108–116. [Google Scholar] [CrossRef]
- Pichler, R.; Afkarian, M.; Dieter, B.P.; Tuttle, K.R. Immunity and inflammation in diabetic kidney disease: Translating mechanisms to biomarkers and treatment targets. Am. J. Physiol. Ren. Physiol. 2017, 312, F716–F731. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Agarwal, R.; Alpers, C.E.; Bakris, G.L.; Brosius, F.C.; Kolkhof, P.; Uribarri, J. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. 2022, 102, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Yan, J.; Li, X.; Liu, N.; Zheng, R.; Zhong, Y. Update on the Mechanisms of Tubular Cell Injury in Diabetic Kidney Disease. Front. Med. 2021, 8, 661076. [Google Scholar] [CrossRef] [PubMed]
- VR, A.L.B.V.R.; Tan, S.H.; Candasamy, M.; Bhattamisra, S.K. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab. Syndr. 2019, 13, 754–762. [Google Scholar] [CrossRef]
- de Oliveira, E.S.U.T.; Ramalho, B.J.; Laurindo, L.F.; Tofano, R.J.; Rubira, C.J.; Guiguer, E.L.; Barbalho, S.M.; Flato, U.A.P.; Sloan, K.P.; Araujo, A.C. Effects of Vitamin D Supplementation in Diabetic Kidney Disease: A Systematic Review. J. Ren. Nutr. 2023, 33, 618–628. [Google Scholar] [CrossRef]
- Darenskaya, M.; Kolesnikov, S.; Semenova, N.; Kolesnikova, L. Diabetic Nephropathy: Significance of Determining Oxidative Stress and Opportunities for Antioxidant Therapies. Int. J. Mol. Sci. 2023, 24, 12378. [Google Scholar] [CrossRef]
- Podgórski, P.; Konieczny, A.; Lis, Ł.; Witkiewicz, W.; Hruby, Z. Glomerular podocytes in diabetic renal disease. Adv. Clin. Exp. Med. 2019, 28, 1711–1715. [Google Scholar] [CrossRef]
- Patel, D.M.; Bose, M.; Cooper, M.E. Glucose and Blood Pressure-Dependent Pathways-The Progression of Diabetic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 2218. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Wang, W.; An, X.; Luo, L.; Yu, D.; Sun, W. Epigenetic modification in diabetic kidney disease. Front. Endocrinol. 2023, 14, 1133970. [Google Scholar] [CrossRef]
- Rico-Fontalvo, J.; Aroca-Martínez, G.; Daza-Arnedo, R.; Cabrales, J.; Rodríguez-Yanez, T.; Cardona-Blanco, M.; Montejo-Hernández, J.; Rodelo Barrios, D.; Patiño-Patiño, J.; Osorio Rodríguez, E. Novel Biomarkers of Diabetic Kidney Disease. Biomolecules 2023, 13, 633. [Google Scholar] [CrossRef]
- Swaminathan, S.M.; Rao, I.R.; Shenoy, S.V.; Prabhu, A.R.; Mohan, P.B.; Rangaswamy, D.; Bhojaraja, M.V.; Nagri, S.K.; Nagaraju, S.P. Novel biomarkers for prognosticating diabetic kidney disease progression. Int. Urol. Nephrol. 2023, 55, 913–928. [Google Scholar] [CrossRef]
- Argyropoulos, C.P.; Chen, S.S.; Ng, Y.H.; Roumelioti, M.E.; Shaffi, K.; Singh, P.P.; Tzamaloukas, A.H. Rediscovering Beta-2 Microglobulin As a Biomarker across the Spectrum of Kidney Diseases. Front. Med. 2017, 4, 73. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.B.; Thieme, K.; Santos-Bezerra, D.P.; Queiroz, M.S.; Woronik, V.; Passarelli, M.; Machado, U.F.; Giannella-Neto, D.; Oliveira-Souza, M.; Corrêa-Giannella, M.L. Beta-2-microglobulin (B2M) expression in the urinary sediment correlates with clinical markers of kidney disease in patients with type 1 diabetes. Metabolism 2016, 65, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Ekrikpo, U.E.; Effa, E.E.; Akpan, E.E.; Obot, A.S.; Kadiri, S. Clinical Utility of Urinary β2-Microglobulin in Detection of Early Nephropathy in African Diabetes Mellitus Patients. Int. J. Nephrol. 2017, 2017, 4093171. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Cox, E.J.; Neumiller, J.J.; Tuttle, K.R. Incretin drugs in diabetic kidney disease: Biological mechanisms and clinical evidence. Nat. Rev. Nephrol. 2021, 17, 227–244. [Google Scholar] [CrossRef]
- Hartman, R.E.; Rao, P.S.S.; Churchwell, M.D.; Lewis, S.J. Novel therapeutic agents for the treatment of diabetic kidney disease. Expert Opin. Investig. Drugs 2020, 29, 1277–1293. [Google Scholar] [CrossRef]
- Eboh, C.; Chowdhury, T.A. Management of diabetic renal disease. Ann. Transl. Med. 2015, 3, 154. [Google Scholar] [CrossRef]
- Bayne, S.; LeFevre, J.; Olstinske, K.; Ravindran, S.; Munusamy, S. Renoprotective Effects of Mineralocorticoid Receptor Antagonists Against Diabetic Kidney Disease. Adv. Biol. 2024, 8, e2300496. [Google Scholar] [CrossRef]
- Ravindran, S.; Munusamy, S. Renoprotective mechanisms of sodium-glucose co-transporter 2 (SGLT2) inhibitors against the progression of diabetic kidney disease. J. Cell Physiol. 2022, 237, 1182–1205. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Jiang, X.; Song, S.; Zou, W.; Yang, Q.; Liu, S.; Chen, S.; Wang, C. Inhibition of SGLT2 protects podocytes in diabetic kidney disease by rebalancing mitochondria-associated endoplasmic reticulum membranes. Cell Commun. Signal 2024, 22, 534. [Google Scholar] [CrossRef]
- Terami, N.; Ogawa, D.; Tachibana, H.; Hatanaka, T.; Wada, J.; Nakatsuka, A.; Eguchi, J.; Horiguchi, C.S.; Nishii, N.; Yamada, H.; et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS ONE 2014, 9, e100777. [Google Scholar] [CrossRef]
- Nagata, T.; Fukuzawa, T.; Takeda, M.; Fukazawa, M.; Mori, T.; Nihei, T.; Honda, K.; Suzuki, Y.; Kawabe, Y. Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice. Br. J. Pharmacol. 2013, 170, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.C.; Brownlee, M.; Susztak, K.; Sharma, K.; Jandeleit-Dahm, K.A.; Zoungas, S.; Rossing, P.; Groop, P.H.; Cooper, M.E. Diabetic kidney disease. Nat. Rev. Dis. Primers 2015, 1, 15018. [Google Scholar] [CrossRef] [PubMed]
- Stanigut, A.M.; Pana, C.; Enciu, M.; Deacu, M.; Cimpineanu, B.; Tuta, L.A. Hypoxia-Inducible Factors and Diabetic Kidney Disease-How Deep Can We Go? Int. J. Mol. Sci. 2022, 23, 10413. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Kalra, S.; Punyani, H.; Deshmukh, S.; Taur, S. ‘Oxidative stress’-A new target in the management of diabetes mellitus. J. Fam. Med. Prim. Care 2023, 12, 2552–2557. [Google Scholar] [CrossRef]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef]
- Hu, S.; Hang, X.; Wei, Y.; Wang, H.; Zhang, L.; Zhao, L. Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: An updated review. Cell Commun. Signal 2024, 22, 136. [Google Scholar] [CrossRef]
- Majumder, S.; Advani, A. VEGF and the diabetic kidney: More than too much of a good thing. J. Diabetes Complicat. 2017, 31, 273–279. [Google Scholar] [CrossRef]
- Fu, J.; Lee, K.; Chuang, P.Y.; Liu, Z.; He, J.C. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am. J. Physiol. Ren. Physiol. 2015, 308, F287–F297. [Google Scholar] [CrossRef]
- Buchanan, S.; Combet, E.; Stenvinkel, P.; Shiels, P.G. Klotho, Aging, and the Failing Kidney. Front. Endocrinol. 2020, 11, 560. [Google Scholar] [CrossRef]
- Piwkowska, A.; Zdrojewski, Ł.; Heleniak, Z.; Dębska-Ślizień, A. Novel Markers in Diabetic Kidney Disease-Current State and Perspectives. Diagnostics 2022, 12, 1205. [Google Scholar] [CrossRef]
- Tang, A.; Zhang, Y.; Wu, L.; Lin, Y.; Lv, L.; Zhao, L.; Xu, B.; Huang, Y.; Li, M. Klotho’s impact on diabetic nephropathy and its emerging connection to diabetic retinopathy. Front. Endocrinol. 2023, 14, 1180169. [Google Scholar] [CrossRef] [PubMed]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Ghosal, S.; Sinha, B. Finerenone in type 2 diabetes and renal outcomes: A random-effects model meta-analysis. Front. Endocrinol. 2023, 14, 1114894. [Google Scholar] [CrossRef]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef]
- Agarwal, R.; Joseph, A.; Anker, S.D.; Filippatos, G.; Rossing, P.; Ruilope, L.M.; Pitt, B.; Kolkhof, P.; Scott, C.; Lawatscheck, R.; et al. Hyperkalemia Risk with Finerenone: Results from the FIDELIO-DKD Trial. J. Am. Soc. Nephrol. 2022, 33, 225–237. [Google Scholar] [CrossRef]
- Escobar Vasco, M.A.; Fantaye, S.H.; Raghunathan, S.; Solis-Herrera, C. The potential role of finerenone in patients with type 1 diabetes and chronic kidney disease. Diabetes Obes. Metab. 2024, 26, 4135–4146. [Google Scholar] [CrossRef]
- Thuzar, M.; Stowasser, M. The mineralocorticoid receptor-an emerging player in metabolic syndrome? J. Hum. Hypertens. 2021, 35, 117–123. [Google Scholar] [CrossRef]
- Ohishi, M. Hypertension with diabetes mellitus: Physiology and pathology. Hypertens. Res. 2018, 41, 389–393. [Google Scholar] [CrossRef]
- Yang, M.; Luo, S.; Yang, J.; Chen, W.; He, L.; Liu, D.; Zhao, L.; Wang, X. Bone-kidney axis: A potential therapeutic target for diabetic nephropathy. Front. Endocrinol. 2022, 13, 996776. [Google Scholar] [CrossRef]
- Takashi, Y.; Kawanami, D. The Role of Bone-Derived Hormones in Glucose Metabolism, Diabetic Kidney Disease, and Cardiovascular Disorders. Int. J. Mol. Sci. 2022, 23, 2376. [Google Scholar] [CrossRef]
- Li, Y.; Gu, Z.; Wang, J.; Wang, Y.; Chen, X.; Dong, B. The Emerging Role of Bone-Derived Hormones in Diabetes Mellitus and Diabetic Kidney Disease. Front. Endocrinol. 2022, 13, 938830. [Google Scholar] [CrossRef]
- Kanakalakshmi, S.T.; Swaminathan, S.M.; Basthi Mohan, P.; Nagaraju, S.P.; Bhojaraja, M.V.; Koulmane Laxminarayana, S.L. Microparticles in diabetic kidney disease. Clin. Chim. Acta 2022, 531, 418–425. [Google Scholar] [CrossRef]
- Cho, J.H.; Min, T.H.; Chun, D.I.; Won, S.H.; Park, S.Y.; Kim, K.; Yi, Y. Bone Mineral Density in Diabetes Mellitus Foot Patients for Prediction of Diabetic Neuropathic Osteoarthropathic Fracture. J. Bone Metab. 2020, 27, 207–215. [Google Scholar] [CrossRef]
- Noh, J.Y.; Yang, Y.; Jung, H. Molecular Mechanisms and Emerging Therapeutics for Osteoporosis. Int. J. Mol. Sci. 2020, 21, 7623. [Google Scholar] [CrossRef]
- Sharma, S.; Smyth, B. From Proteinuria to Fibrosis: An Update on Pathophysiology and Treatment Options. Kidney Blood Press. Res. 2021, 46, 411–420. [Google Scholar] [CrossRef]
- Shu, H.; Zhang, Z.; Liu, J.; Chen, P.; Yang, C.; Wu, Y.; Wu, D.; Cao, Y.; Chu, Y.; Li, L. Circular RNAs: An emerging precise weapon for diabetic nephropathy diagnosis and therapy. Biomed. Pharmacother. 2023, 168, 115818. [Google Scholar] [CrossRef]
- Garcia-Fernandez, N.; Jacobs-Cachá, C.; Mora-Gutiérrez, J.M.; Vergara, A.; Orbe, J.; Soler, M.J. Matrix Metalloproteinases in Diabetic Kidney Disease. J. Clin. Med. 2020, 9, 472. [Google Scholar] [CrossRef]
- Ramazani, Y.; Knops, N.; Elmonem, M.A.; Nguyen, T.Q.; Arcolino, F.O.; van den Heuvel, L.; Levtchenko, E.; Kuypers, D.; Goldschmeding, R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol. 2018, 68–69, 44–66. [Google Scholar] [CrossRef]
- Toda, N.; Mukoyama, M.; Yanagita, M.; Yokoi, H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm. Regen. 2018, 38, 14. [Google Scholar] [CrossRef]
- Kaleta, B. The role of osteopontin in kidney diseases. Inflamm. Res. 2019, 68, 93–102. [Google Scholar] [CrossRef]
- Sinha, S.K.; Mellody, M.; Carpio, M.B.; Damoiseaux, R.; Nicholas, S.B. Osteopontin as a Biomarker in Chronic Kidney Disease. Biomedicines 2023, 11, 1356. [Google Scholar] [CrossRef]
- Wagner, M.; Ashby, D.R.; Kurtz, C.; Alam, A.; Busbridge, M.; Raff, U.; Zimmermann, J.; Heuschmann, P.U.; Wanner, C.; Schramm, L. Hepcidin-25 in diabetic chronic kidney disease is predictive for mortality and progression to end stage renal disease. PLoS ONE 2015, 10, e0123072. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Yee, J. Hepcidin. Adv. Chronic Kidney Dis. 2019, 26, 298–305. [Google Scholar] [CrossRef]
- Ali, T.M.; Genina, A.M.; Abo-Salem, O.M. The determinants of hepcidin level in chronic kidney disease and hemodialysis Saudi patients. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 133–139. [Google Scholar] [CrossRef]
- van der Weerd, N.C.; Grooteman, M.P.; Nubé, M.J.; ter Wee, P.M.; Swinkels, D.W.; Gaillard, C.A. Hepcidin in chronic kidney disease: Not an anaemia management tool, but promising as a cardiovascular biomarker. Neth. J. Med. 2015, 73, 108–118. [Google Scholar]
- Nakanishi, T.; Hasuike, Y.; Otaki, Y.; Kida, A.; Nonoguchi, H.; Kuragano, T. Hepcidin: Another culprit for complications in patients with chronic kidney disease? Nephrol. Dial. Transplant. 2011, 26, 3092–3100. [Google Scholar] [CrossRef]
- Lawler, P.R.; Derde, L.P.G.; van de Veerdonk, F.L.; McVerry, B.J.; Huang, D.T.; Berry, L.R.; Lorenzi, E.; van Kimmenade, R.; Gommans, F.; Vaduganathan, M.; et al. Effect of Angiotensin-Converting Enzyme Inhibitor and Angiotensin Receptor Blocker Initiation on Organ Support-Free Days in Patients Hospitalized With COVID-19: A Randomized Clinical Trial. JAMA 2023, 329, 1183–1196. [Google Scholar] [CrossRef]
- Fried, L.F.; Emanuele, N.; Zhang, J.H.; Brophy, M.; Conner, T.A.; Duckworth, W.; Leehey, D.J.; McCullough, P.A.; O’Connor, T.; Palevsky, P.M.; et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J. Med. 2013, 369, 1892–1903. [Google Scholar] [CrossRef]
- Alicic, R.Z.; Johnson, E.J.; Tuttle, K.R. Inflammatory Mechanisms as New Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Adv. Chronic Kidney Dis. 2018, 25, 181–191. [Google Scholar] [CrossRef]
- Maiti, A.K. Development of Biomarkers and Molecular Therapy Based on Inflammatory Genes in Diabetic Nephropathy. Int. J. Mol. Sci. 2021, 22, 9985. [Google Scholar] [CrossRef]
- Khan, N.U.; Lin, J.; Liu, X.; Li, H.; Lu, W.; Zhong, Z.; Zhang, H.; Waqas, M.; Shen, L. Insights into predicting diabetic nephropathy using urinary biomarkers. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140475. [Google Scholar] [CrossRef]
- Barutta, F.; Bruno, G.; Grimaldi, S.; Gruden, G. Inflammation in diabetic nephropathy: Moving toward clinical biomarkers and targets for treatment. Endocrine 2015, 48, 730–742. [Google Scholar] [CrossRef]
- Ntrinias, T.; Papasotiriou, M.; Balta, L.; Kalavrizioti, D.; Vamvakas, S.; Papachristou, E.; Goumenos, D.S. Biomarkers in Progressive Chronic Kidney Disease. Still a Long Way to Go. Prilozi 2019, 40, 27–39. [Google Scholar] [CrossRef]
- Dande, R.R.; Peev, V.; Altintas, M.M.; Reiser, J. Soluble Urokinase Receptor and the Kidney Response in Diabetes Mellitus. J. Diabetes Res. 2017, 2017, 3232848. [Google Scholar] [CrossRef]
- Ortiz, A.; Ferro, C.J.; Balafa, O.; Burnier, M.; Ekart, R.; Halimi, J.M.; Kreutz, R.; Mark, P.B.; Persu, A.; Rossignol, P.; et al. Mineralocorticoid receptor antagonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. Nephrol. Dial. Transplant. 2023, 38, 10–25. [Google Scholar] [CrossRef]
- Esmeijer, K.; Hoogeveen, E.K.; van den Boog, P.J.M.; Konijn, C.; Mallat, M.J.K.; Baranski, A.G.; Dekkers, O.M.; de Fijter, J.W. Superior Long-term Survival for Simultaneous Pancreas-Kidney Transplantation as Renal Replacement Therapy: 30-Year Follow-up of a Nationwide Cohort. Diabetes Care 2020, 43, 321–328. [Google Scholar] [CrossRef]
- Kuo, F.C.; Chao, C.T.; Lin, S.H. The Dynamics and Plasticity of Epigenetics in Diabetic Kidney Disease: Therapeutic Applications Vis-à-Vis. Int. J. Mol. Sci. 2022, 23, 843. [Google Scholar] [CrossRef]
- Hou, Q.; Yi, B. The role of long non-coding RNAs in the development of diabetic kidney disease and the involved clinical application. Diabetes Metab. Res. Rev. 2024, 40, e3809. [Google Scholar] [CrossRef]
- Mao, Z.H.; Gao, Z.X.; Liu, D.W.; Liu, Z.S.; Wu, P. Gut microbiota and its metabolites-molecular mechanisms and management strategies in diabetic kidney disease. Front. Immunol. 2023, 14, 1124704. [Google Scholar] [CrossRef]
- Wen, J.; Zeng, M.; Yang, Y.; Liang, Y.; Fu, P.; Dong, Z. Exosomes in Diabetic Kidney Disease. Kidney Dis. 2023, 9, 131–142. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Liu, D.; Liu, Z. Exosomes: Advances, development and potential therapeutic strategies in diabetic nephropathy. Metabolism 2021, 122, 154834. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Wu, Y.; Mai, Y.; Bu, S. Noncoding RNAs in Diabetic Nephropathy: Pathogenesis, Biomarkers, and Therapy. J. Diabetes Res. 2020, 2020, 3960857. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, S.; Ma, C.; Chen, X.; Li, X.; Li, S.; Wang, P.; Chen, P.; Wang, Z.; Li, W.; et al. Research progress on exosomes in podocyte injury associated with diabetic kidney disease. Front. Endocrinol. 2023, 14, 1129884. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.Z.; Du, B.X.; Zhu, X.Y.; Wang, Y.Z.; Zheng, H.J.; Liu, W.J. Lipid metabolism disorder in diabetic kidney disease. Front. Endocrinol. 2024, 15, 1336402. [Google Scholar] [CrossRef] [PubMed]
- Tziomalos, K.; Athyros, V.G. Diabetic Nephropathy: New Risk Factors and Improvements in Diagnosis. Rev. Diabet. Stud. 2015, 12, 110–118. [Google Scholar] [CrossRef]
- Habiba, U.E.; Khan, N.; Greene, D.L.; Shamim, S.; Umer, A. The therapeutic effect of mesenchymal stem cells in diabetic kidney disease. J. Mol. Med. 2024, 102, 537–570. [Google Scholar] [CrossRef]
Biomarker | Function | Role in DKD |
---|---|---|
Albuminuria and Proteinuria | Protein leakage due to glomerular damage |
|
Creatinine and eGFR | Measures kidney function through creatinine levels and GFR estimation |
|
Cystatin C | Cysteine protease, better GFR indicator than creatinine |
|
Kidney Injury Molecule-1 (KIM-1) | Transmembrane glycoprotein expressed in proximal tubule cells |
|
Neutrophil Gelatinase-Associated Lipocalin (NGAL) | Protein released upon nephron injury |
|
Interleukin-6 (IL-6) | Inflammatory cytokine regulating immune response |
|
Transforming Growth Factor β (TGF-β) | Growth factor involved in fibrosis and glomerular hypertrophy |
|
Advanced Glycation End Products (AGEs) | Accumulation of modified proteins due to oxidative stress |
|
Monocyte Chemoattractant Protein 1 (MCP-1) | Inflammatory chemokine promoting renal inflammation |
|
Tumor Necrosis Factor α (TNF-α) | Pro-inflammatory cytokine interacting with TNF receptors |
|
MicroRNAs | Small RNA sequences regulating gene expression |
|
Circular RNAs (circRNAs) | Stable RNA molecules influencing gene expression |
|
Fibroblast Growth Factor-23 (FGF-23) | Regulates phosphate levels, expressed by osteocytes and osteoblasts |
|
Vascular Endothelial Growth Factor (VEGF) | Growth factor regulating angiogenesis and kidney development |
|
Connective Tissue Growth Factor (CTGF) | Mediates fibrosis and collagen expression |
|
Hepcidin | Regulates iron hemeostasis by inhibiting iron absorption in the gut and its release from macrophages and liver stores |
|
Urinary exosomes | Intercellular cargo transport, function depends on cargo content which includes proteins and RNA |
|
Soluble Klotho | Product of cleavage of transmembrane α-Klotho protein, kidney is a major contributor to its levels. Implicated in aging through its role in phosphate homeostasis, integrity of blood vessels, and insulin signaling |
|
Osteopontin | Major sialoprotein in bone mineralization, remodeling, cellular adhesions, and various functions in various other cells, such as epithelial, endothelial, and renal cells |
|
suPAR | Soluble form of urokine (a serine protease) receptor |
|
ß2 microglobulin | Part of MHC1 class, found on nucleated cells |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joumaa, J.P.; Raffoul, A.; Sarkis, C.; Chatrieh, E.; Zaidan, S.; Attieh, P.; Harb, F.; Azar, S.; Ghadieh, H.E. Mechanisms, Biomarkers, and Treatment Approaches for Diabetic Kidney Disease: Current Insights and Future Perspectives. J. Clin. Med. 2025, 14, 727. https://doi.org/10.3390/jcm14030727
Joumaa JP, Raffoul A, Sarkis C, Chatrieh E, Zaidan S, Attieh P, Harb F, Azar S, Ghadieh HE. Mechanisms, Biomarkers, and Treatment Approaches for Diabetic Kidney Disease: Current Insights and Future Perspectives. Journal of Clinical Medicine. 2025; 14(3):727. https://doi.org/10.3390/jcm14030727
Chicago/Turabian StyleJoumaa, Jean Paule, Angela Raffoul, Charbel Sarkis, Elizabeth Chatrieh, Sally Zaidan, Philippe Attieh, Frederic Harb, Sami Azar, and Hilda E. Ghadieh. 2025. "Mechanisms, Biomarkers, and Treatment Approaches for Diabetic Kidney Disease: Current Insights and Future Perspectives" Journal of Clinical Medicine 14, no. 3: 727. https://doi.org/10.3390/jcm14030727
APA StyleJoumaa, J. P., Raffoul, A., Sarkis, C., Chatrieh, E., Zaidan, S., Attieh, P., Harb, F., Azar, S., & Ghadieh, H. E. (2025). Mechanisms, Biomarkers, and Treatment Approaches for Diabetic Kidney Disease: Current Insights and Future Perspectives. Journal of Clinical Medicine, 14(3), 727. https://doi.org/10.3390/jcm14030727