Peripheral Defocus in Orthokeratology Myopia Correction: Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Study Selection
2.3. Data Extraction and Quality Assessments
2.4. Statistical Analysis
3. Results
Author, Year, Journal | Study Type, Time | Methodology | Country (City), n | Age Mean ± SD (Min, Max, Years) | M_Baseline (Min, Max, (D) |
---|---|---|---|---|---|
Chen [27], 2023, Frontiers | Prospectively designed, self-controlled observational study, 12 months | Open-field autorefractor WAM-5500 (GrandSeiko Co., Ltd., Hiroshima, Japan) Cycloplegic autorefraction 30 N to 30 T, 5° increment; eye rotate | China (Chengdu), 19 | 9.84 ± 1.64 (8 to 14) | −2.73 ± 1.09 (−1.00 to −5.00) |
Gifford [23], 2020, Contact Lens and Anterior Eye | Prospective, From 1 month to 12 months | Open-field autorefractor Shin-Nippon SRW-5000 (Rexxam Co., Ltd., Osaka, Japan) Non-Cycloplegic autorefraction 30 N to 30 T, 10° increment; eye rotate | Australia (Queensland), 8 | 13.2 ± 2.1 (8 to 16) | −2.55 ± 1.32 (−0.75 to −5.00) |
Australia (Queensland), 11 | 23.4 ± 3.5 (19 to 29) | −2.19 ± 0.96 (−1.00 to −3.25) | |||
Huang [28], 2022, GACEO | Prospective, nonrandomized, controlled study, 12 months | Open-field autorefractor WAM-5500 (GrandSeiko Co., Ltd., Hiroshima, Japan) Cycloplegic autorefraction 30 N to 30 T, 10° increment; eye rotate | China (Wenzhou), 30 | 9.90 ± 1.27 (8 to 13) | −2.63 ± 0.71 (−1.00 to −5.00) |
Jakobsen [29], 2023, Acta Ophthal. | Randomized controlled clinical trial, 12 months | Open-field autorefractor Shin-Nippon Nvision-K 5001 (Rexxam Co., Ltd., Osaka, Japan.) Cycloplegic autorefraction 30 N to 30 T, 10° increment; eye rotate | Scandinavian (Danish), 20 | 9.96 ± 1.54 (6 to 12) | −2.10 ± 1.16 (−0.50 to −4.75) |
Kang [24], 2011, OVS | Randomly fitted, 3 months | Open-field autorefractor Shin-Nippon N-Vision K5001 autorefractor (Rexxam Co., Ltd., Osaka, Japan) Non-cycloplegic autorefraction 35 N to 35 T, 10° increment; X | East Asian, 16 | x (11 to 16) | −2.37 ± 1.10 (−1.00 to −4.00) |
Kang [25], 2013, OPO | Randomly fitted, 14 days | Open-field autorefractor Shin-Nippon NVision-K 5001 autorefractor (Rexxam Co., Ltd., Osaka, Japan) Non-cycloplegic autorefraction 30 N to 30 T, 10° increment, and 35°N,T; X | East Asian, 17 | 24.2 (18 to 38) | −2.33 ± 1.15 (−1.00 to −4.00) |
Liu [26], 2023, CLAE | Randomized, controlled single-masked clinical trial, 3 months | Open-field autorefractor WAM-5500 (GrandSeiko Co., Ltd., Hiroshima, Japan) Cycloplegic autorefraction 30 N to 30 T, 10° increment; X | China (Chengdu), 33 | 9.43 ± 1.94 (8 to 12) | −2.65 ± 0.80 (−0.75 to −4.00) |
China (Chengdu), 29 | 9.62 ± 1.08 (8 to 12) | −2.55 ± 0.90 (−0.75 to −4.00) | |||
Low [30], 2024, Clin Optom | Cross sectional study, 12 months | Open-field autorefractor WAM-5500 (GrandSeiko Co., Ltd., Hiroshima, Japan) Cycloplegic autorefraction 30 N to 30 T, 10° increment; eye rotate | Malaysia (Kuala Lumpur), 45 | 8.38 ± 0.49 (8 to 9) | −2.92 ± 1.07 (−0.75 to −4.00) |
Queirós [21], 2010, OVS | Nonrandomized, controlled study, 1 month | Open-field autorefractor WAM-5500 (GrandSeiko Co., Ltd., Hiroshima, Japan) Non-cycloplegic autorefraction 35 N to 35 T, 10° increment; eye rotate | Portugal (Braga), 28 | 24.6 ± 6.3 (20 to 41) | −1.95 ± 1.27 (−0.88 to −5.25) |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Ferreira, A.; Hughes, R.; Carter, G.; Mitchell, P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: An evidence-based systematic review. Am. J. Ophthalmol. 2014, 157, 9–25.e12. [Google Scholar] [CrossRef] [PubMed]
- Wolffsohn, J.S.; Calossi, A.; Cho, P.; Gifford, K.; Jones, L.; Jones, D.; Guthrie, S.; Li, M.; Lipener, C.; Logan, N.S.; et al. Global trends in myopia management attitudes and strategies in clinical practice—2019 Update. Contact Lens Anterior Eye 2020, 43, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kurupp, A.R.C.; Raju, A.; Luthra, G.; Shahbaz, M.; Almatooq, H.; Foucambert, P.; Esbrand, F.D.; Zafar, S.; Panthangi, V.; Khan, S. The Impact of the COVID-19 Pandemic on Myopia Progression in Children: A Systematic Review. Cureus 2022, 14, e28444. [Google Scholar] [CrossRef]
- Smith, E.L., III; Kee, C.S.; Ramamirtham, R.; Qiao-Grider, Y.; Hung, L.F. Peripheral vision can influence eye growth and refractive development in infant monkeys. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3965–3972. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L., III; Ramamirtham, R.; Qiao-Grider, Y.; Hung, L.-F.; Huang, J.; Kee, C.-S.; Coats, D.; Paysse, E. Effects of foveal ablation on emmetropization and form-deprivation myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3914–3922. [Google Scholar] [CrossRef]
- Diether, S.; Schaeffel, F. Local changes in eye growth induced by imposed local refractive error despite active accommodation. Vis. Res. 1997, 37, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Bakaraju, R.C.; Ehrmann, K.; Papas, E.; Ho, A. Do peripheral refraction and aberrations profiles vary with the type of myopia?—An illustration using a ray-tracing approach. J. Optom. 2009, 2, 29–38. [Google Scholar] [CrossRef]
- Fedtke, C.; Ehrmann, K.; Holden, B.A. A review of peripheral refraction techniques. Optom. Vis. Sci. 2009, 86, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Hoogerheide, J.; Rempt, F.; Hoogenboom, W.P. Acquired myopia in young pilots. Ophthalmologica 1971, 163, 209–215. [Google Scholar] [CrossRef]
- Atchison, D.A.; Jones, C.E.; Schmid, K.L.; Pritchard, N.; Pope, J.; Strugnell, W.E.; Riley, R.A. Eye shape in emmetropia and myopia. Investig. Ophthalmol. Vis. Sci. 2004, 45, 3380–3386. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.A.; Sinnott, L.T.; Mutti, D.O.; Mitchell, G.L.; Moeschberger, M.L.; Zadnik, K. Parental history of myopia, sports and outdoor activities, and future myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3524–3532. [Google Scholar] [CrossRef]
- Seidemann, A.; Schaeffel, F.; Guirao, A.; Lopez-Gil, N.; Artal, P. Peripheral refractive errors in myopic, emmetropic, and hyperopic young subjects. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2002, 19, 2363–2373. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Lopes-Ferreira, D.; González-Méijome, J.M. Astigmatic Peripheral Defocus with Different Contact Lenses: Review and Meta-Analysis. Curr. Eye Res. 2016, 41, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Mutti, D.O.; Hayes, J.R.; Mitchell, G.L.; Jones, L.A.; Moeschberger, M.L.; Cotter, S.A.; Kleinstein, R.N.; Manny, R.E.; Twelker, J.D.; Zadnik, K. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2510–2519. [Google Scholar] [CrossRef]
- Mutti, D.O.; Sinnott, L.T.; Jones, L.A.; Cotter, S.A.; Kleinstein, R.N.; Manny, R.E.; Twelker, J.D.; Zadnik, K.; CLEERE Study Group. Relative Peripheral Refractive Error and the Risk of Juvenile-Onset Myopia. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5426. [Google Scholar]
- Logan, N.S.; Bullimore, M.A. Optical interventions for myopia control. Eye 2024, 38, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Lipson, M.J. The Role of Orthokeratology in Myopia Management. Eye Contact Lens 2022, 48, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Charman, W.N.; Mountford, J.; Atchison, D.A.; Markwell, E.L. Peripheral refraction in orthokeratology patients. Optom. Vis. Sci. 2006, 83, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Amorim-De-Sousa, A.; Lopes-Ferreira, D.; Villa-Collar, C.; Gutiérrez, Á.R.; González-Méijome, J.M. Relative peripheral refraction across 4 meridians after orthokeratology and LASIK surgery. Eye Vis. 2018, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; González-Méijome, J.M.; Jorge, J.; Villa-Collar, C.; Gutiérrez, A.R. Peripheral refraction in myopic patients after orthokeratology. Optom. Vis. Sci. 2010, 87, 323–329. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Gifford, K.L.; Gifford, P.; Hendicott, P.L.; Schmid, K.L. Stability of peripheral refraction changes in orthokeratology for myopia. Contact Lens Anterior Eye 2020, 43, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Swarbrick, H. Peripheral refraction in myopic children wearing orthokeratology and gas-permeable lenses. Optom. Vis. Sci. 2011, 88, 476–482. [Google Scholar] [CrossRef]
- Kang, P.; Swarbrick, H. Time course of the effects of orthokeratology on peripheral refraction and corneal topography. Ophthalmic Physiol. Opt. 2013, 33, 277–282. [Google Scholar] [CrossRef]
- Liu, T.; Ma, W.; Wang, J.; Yang, B.; Dong, G.; Chen, C.; Wang, X.; Liu, L. The effects of base curve aspheric orthokeratology lenses on corneal topography and peripheral refraction: A randomized prospective trial. Contact Lens Anterior Eye 2023, 46, 101814. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xiong, Y.; Qi, X.; Liu, L. Nasal-temporal asymmetric changes in retinal peripheral refractive error in myopic adolescents induced by overnight orthokeratology lenses. Front. Neurol. 2022, 13, 1006112. [Google Scholar] [CrossRef]
- Huang, Y.; Li, X.; Ding, C.; Chen, Y.; Mao, X.; Chen, H.; Bao, J. Comparison of peripheral refraction and higher-order aberrations between orthokeratology and multifocal soft contact lens designed with highly addition. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, T.M.; Søndergaard, A.P.; Møller, F. Peripheral refraction, relative peripheral refraction, and axial growth: 18-month data from the randomised study—Clinical study Of Near-sightedness; Treatment with Orthokeratology Lenses (CONTROL study). Acta Ophthalmol. 2023, 101, e69–e80. [Google Scholar] [CrossRef]
- Low, Y.C.; Mohd-Ali, B.; Shahimin, M.M.; Mohidin, N.; Abdul-Hamid, H.; Mokri, S.S. Peripheral Eye Length Evaluation in Myopic Children Undergoing Orthokeratology Treatment for 12 Months Using MRI. Clin. Optom. 2024, 16, 35–44. [Google Scholar] [CrossRef]
- Singh, K.; Bhattacharyya, M.; Goel, A.; Arora, R.; Gotmare, N.; Aggarwal, H. Orthokeratology in Moderate Myopia: A Study of Predictability and Safety. J. Ophthalmic Vis. Res. 2020, 15, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Villa-Collar, C.; Gutiérrez, Á.R.M.; Jorge, J.; Ribeiro-Queirós, M.S.D.; Peixoto-De-Matos, S.C.O.; González-Méijome, J.M.F. Anterior and posterior corneal elevation after orthokeratology and standard and customized LASIK surgery. Eye Contact Lens 2011, 37, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; le Moal, P.R.; Angioi-Duprez, K.; Berrod, J.-P.; Conart, J.-B.; Chaume, A.; Pauné, J. Efficacy of the DRL orthokeratology lens in slowing axial elongation in French children. Front. Med. 2023, 10, 1323851. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Villa-Collar, C.; Gutiérrez, A.R.; Jorge, J.; González-Méijome, J.M. Quality of life of myopic subjects with different methods of visual correction using the NEI RQL-42 questionnaire. Eye Contact Lens 2012, 38, 116–121. [Google Scholar] [CrossRef]
- Bullimore, M.A.; Jong, M.; Brennan, N.A. Myopia control: Seeing beyond efficacy. Optom. Vis. Sci. 2024, 101, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Lin, Z.; Wu, H.; Xu, Q.; Wen, L.; Luo, Z.; Hu, Z.; Li, X.; Yang, Z. Two-Dimensional Peripheral Refraction and Higher-Order Wavefront Aberrations Induced by Orthokeratology Lenses Decentration. Transl. Vis. Sci. Technol. 2023, 12, 8. [Google Scholar] [CrossRef]
- Li, T.; Chen, Z.; She, M.; Zhou, X. Relative peripheral refraction in myopic children wearing orthokeratology lenses using a novel multispectral refraction topographer. Clin. Exp. Optom. 2023, 106, 746–751. [Google Scholar] [CrossRef]
- Faria-Ribeiro, M.; Queirós, A.; Lopes-Ferreira, D.; Jorge, J.; González-Méijome, J.M. Peripheral refraction and retinal contour in stable and progressive myopia. Optom. Vis. Sci. 2013, 90, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Cheung, S.W.; Edwards, M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: A pilot study on refractive changes and myopic control. Curr. Eye Res. 2005, 30, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, T.; Kakita, T.; Okamoto, F.; Takahashi, H.; Oshika, T. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: A 5-year follow-up study. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3913–3919. [Google Scholar] [CrossRef]
- Walline, J.J.; Jones, L.A.; Sinnott, L.T. Corneal reshaping and myopia progression. Br. J. Ophthalmol. 2009, 93, 1181–1185. [Google Scholar] [CrossRef]
- Santodomingo-Rubido, J.; Villa-Collar, C.; Gilmartin, B.; Gutiérrez-Ortega, R. Myopia control with orthokeratology contact lenses in Spain: Refractive and biometric changes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5060–5065. [Google Scholar] [CrossRef] [PubMed]
- Erdinest, N.; London, N.; Lavy, I.; Berkow, D.; Landau, D.; Levinger, N.; Morad, Y. Peripheral defocus as it relates to myopia progression: A mini-review. Taiwan J. Ophthalmol. 2023, 13, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Zheleznyak, L. Peripheral optical anisotropy in refractive error groups. Ophthalmic Physiol. Opt. 2023, 43, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Osuagwu, U.L.; Suheimat, M.; Atchison, D.A. Peripheral aberrations in adult hyperopes, emmetropes and myopes. Ophthalmic Physiol. Opt. 2017, 37, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.T.; Cho, P. Repeatability of relative peripheral refraction in untreated and orthokeratology-treated eyes. Optom. Vis. Sci. 2012, 89, 1477–1486. [Google Scholar] [CrossRef]
- Radhakrishnan, H.; Charman, W.N. Peripheral refraction measurement: Does it matter if one turns the eye or the head? Ophthalmic Physiol. Opt. 2008, 28, 73–82. [Google Scholar] [CrossRef]
- Yelagondula, V.K.M.; Achanta, D.S.R.; Panigrahi, S.B.; Panthadi, S.K.; Verkicharla, P.K. Asymmetric Peripheral Refraction Profile in Myopes along the Horizontal Meridian. Optom. Vis. Sci. 2022, 99, 350–357. [Google Scholar] [CrossRef]
- Santodomingo-Rubido, J.; Villa-Collar, C.; Gilmartin, B.; Gutiérrez-Ortega, R.; Sugimoto, K. Long-term Efficacy of Orthokeratology Contact Lens Wear in Controlling the Progression of Childhood Myopia. Curr. Eye Res. 2017, 42, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Pauné, J.; Fonts, S.; Rodríguez, L.; Queirós, A. The role of back optic zone diameter in myopia control with orthokeratology lenses. J. Clin. Med. 2021, 10, 336. [Google Scholar] [CrossRef]
- Pauné, J.; Morales, H.; Armengol, J.; Quevedo, L.; Faria-Ribeiro, M.; González-Méijome, J.M. Myopia Control with a Novel Peripheral Gradient Soft Lens and Orthokeratology: A 2-Year Clinical Trial. Biomed. Res. Int. 2015, 2015, 507572. [Google Scholar] [CrossRef] [PubMed]
- Queirós, A.; Beaujeux, P.; Bloise, L.; Chaume, A.; Colliot, J.P.; Proust, D.P.; Rossi, P.; Tritsch, B.; Crinon, D.B.; Pauné, J. Assessment of the Clinical Effectiveness of DRL Orthokeratology Lenses vs. Single-Vision Spectacles in Controlling the Progression of Myopia in Children and Teenagers: 2 Year Retrospective Study. Children 2023, 10, 402. [Google Scholar] [CrossRef]
- Ortiz-Peregrina, S.; Casares-López, M.; Castro-Torres, J.J.; Anera, R.G.; Artal, P. Effect of peripheral refractive errors on driving performance. Biomed. Opt. Express 2022, 13, 5533. [Google Scholar] [CrossRef]
- García-Pedreño, C.; Tabernero, J.; Benito, A.; Artal, P. Impact of Peripheral Refractive Errors in Mobility Performance. Investig. Ophthalmol. Vis. Sci. 2024, 65, 42. [Google Scholar] [CrossRef] [PubMed]
- Fernandes PR, B.; Neves HI, F.; Lopes-Ferreira, D.P.; Jorge JM, M.; González-Meijome, J.M. Adaptation to multifocal and monovision contact lens correction. Optom. Vis. Sci. 2013, 90, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, A.; Dorronsoro, C.; Sawides, L.; Marcos, S. Short-term neural adaptation to simultaneous bifocal images. PLoS ONE 2014, 9, e93089. [Google Scholar] [CrossRef] [PubMed]
- Sanz, E.S.; Cerviño, A.; Queiros, A.; Villa-Collar, C.; Lopes-Ferreira, D.; González-Méijome, J.M. Short-term changes in light distortion in orthokeratology subjects. Biomed. Res. Int. 2015, 2015, 278425. [Google Scholar]
- Pepin, S.M. Neuroadaptation of presbyopia-correcting intraocular lenses. Curr. Opin. Ophthalmol. 2008, 19, 10–12. [Google Scholar] [CrossRef]
- Marcellán Vidosa, M.C.; Remón, L.; Ávila, F.J. Peripheral refraction under different levels of illuminance. Ophthalmic Physiol. Opt. 2024, 44, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Fedtke, C.; Ehrmann, K.; Falk, D.; Bakaraju, R.C.; Holden, B.A. The BHVI-eyemapper: Peripheral refraction and aberration profiles. Optom. Vis. Sci. 2014, 91, 1199–1207. [Google Scholar] [CrossRef]
- Calabuig, A.; Pinate, A.; Suchkov, N.; Wahl, S. Model eye assessment by 3D fast-scanning peripheral refraction wavefront sensor. In Unconventional Optical Imaging III; SPIE: Bellingham, WA, USA, 2022. [Google Scholar] [CrossRef]
- Li, Q.; Fang, F. Impacts of the gradient-index crystalline lens structure on its peripheral optical power profile. Adv. Opt. Technol. 2022, 11, 23–32. [Google Scholar] [CrossRef]
- Marcellán, M.C.; Ávila, F.J.; Ares, J.; Remón, L. Peripheral Refraction of Two Myopia Control Contact Lens Models in a Young Myopic Population. Int. J. Environ. Res. Public Health 2023, 20, 1258. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Friedman, I.B.; Medow, N.B.; Zhang, C. Update on orthokeratology in managing progressive myopia in children: Efficacy, mechanisms, and concerns. J. Pediatr. Ophthalmol. Strabismus 2017, 54, 142–148. [Google Scholar] [CrossRef]
- Tang, W.-T.; Zhao, W.-J.; Liao, J.; Xu, X.-Y.; Zhang, H.-D.; Zhang, L.; Luo, X.-N. One-year results for myopia control of orthokeratology with different back optic zone diameters: A randomized trial using a novel multispectral-based topographer. Int. J. Ophthalmol. 2024, 17, 324–330. [Google Scholar] [CrossRef]
- Pauné, J.; Queiros, A.; Quevedo, L.; Neves, H.; Lopes-Ferreira, D.; González-Méijome, J. Peripheral myopization and visual performance with experimental rigid gas permeable and soft contact lens design. Contact Lens Anterior Eye 2014, 37, 455–460. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Zhang, S.; Li, L. Efficacy and security of orthokeratology lens on myopia progression in teenagers for 5 years. Recent Adv. Ophthalmol. 2021, 41, 236–239. [Google Scholar]
- Queirós, A.; Villa-Collar, C.; Amorim-De-Sousa, A.; Gargallo-Martinez, B.; Gutiérrez-Ortega, R.; González-Pérez, J.; González-Méijome, J.M. Corneal morphology and visual outcomes in LASIK patients after orthokeratology: A pilot study. Contact Lens Anterior Eye 2018, 41, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Sartor, L.; Hunter, D.S.; Vo, M.L.; Samarawickrama, C. Benefits and risks of orthokeratology treatment: A systematic review and meta-analysis. Int. Ophthalmol. 2024, 44, 239. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Wang, J.; Zhu, M.; Lin, Z.; Zhao, J.; Tang, Y.; Deng, H. Does Orthokeratology Wearing Affect the Tear Quality of Children? Front. Pediatr. 2022, 9, 773484. [Google Scholar] [CrossRef]
- Tse, J.S.-H.; Lam, T.C.; Cheung, J.K.-W.; Sze, Y.-H.; Wong, T.-K.; Chan, H.H.-L. Data on assessment of safety and tear proteome change in response to orthokeratology lens—Insight from integrating clinical data and next generation proteomics. Data Br. 2020, 29, 105186. [Google Scholar] [CrossRef]
- Cooper, J.; Tkatchenko, A.V. A Review of Current Concepts of the Etiology and Treatment of Myopia. Eye Contact Lens 2018, 44, 231–247. [Google Scholar] [CrossRef]
- Queirós, A. New Frontiers in Myopia Progression in Children. J. Clin. Med. 2024, 13, 7314. [Google Scholar] [CrossRef] [PubMed]
Study | Mean RPR @ 30°N/T (D) | Control Efficacy (%) | Effect Size in Axial Length (mm) |
---|---|---|---|
Chen_2023 [27] | −2.98 ± 1.32 | 69% | 0.17 |
Gifford_2020 [23] | −3.22 ± 0.41 | −36% | −0.09 |
Gifford_2020 [23] | −3.41 ± 0.53 | −24% | −0.06 |
Huang_2022 [28] | −2.45 ± 0.96 | 112% | 0.28 |
Jakobsen_2023 [29] | −2.58 ± 0.33 | 46% | 0.11 |
Low_2024 [30] | −2.64 ± 0.06 | −88% | −0.21 |
Mean | −2.88 ± 0.63 | 13% | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Queirós, A.; Pinheiro, I.; Fernandes, P. Peripheral Defocus in Orthokeratology Myopia Correction: Systematic Review and Meta-Analysis. J. Clin. Med. 2025, 14, 662. https://doi.org/10.3390/jcm14030662
Queirós A, Pinheiro I, Fernandes P. Peripheral Defocus in Orthokeratology Myopia Correction: Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2025; 14(3):662. https://doi.org/10.3390/jcm14030662
Chicago/Turabian StyleQueirós, António, Inês Pinheiro, and Paulo Fernandes. 2025. "Peripheral Defocus in Orthokeratology Myopia Correction: Systematic Review and Meta-Analysis" Journal of Clinical Medicine 14, no. 3: 662. https://doi.org/10.3390/jcm14030662
APA StyleQueirós, A., Pinheiro, I., & Fernandes, P. (2025). Peripheral Defocus in Orthokeratology Myopia Correction: Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 14(3), 662. https://doi.org/10.3390/jcm14030662