Clinical Outcomes and Factors Associated with Neuroleptic Malignant Syndrome in Older Patients: A Case Control Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Study Design, Setting and Participants
2.2.2. Data Collection and Measurement Tools
Baseline Characteristics
Healthcare Services
Documented Clinical Measurement
Biochemical Profiles
Prescribed Medications and Drugs Related to NMS
Diagnostic Criteria of NMS
Severity and Management of NMS
Adverse Clinical Outcomes of NMS
Preventability of NMS
2.2.3. Statistical Analysis
2.2.4. Ethical Considerations
3. Results
3.1. Baseline Characteristics, and Clinical and Biochemical Profiles
3.2. Factors Associated with NMS
3.3. NMS Cases
4. Discussion
4.1. Strengths and Limitations
4.2. Further Research and Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| NMS | Neuroleptic Malignant Syndrome |
| DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, fifth edition |
| EMR | Electronic Medical Record |
| ICD-10 | International Statistical Classification of Diseases and Related Health Problems 10th Revision |
| BMI | Body Mass Index |
| LOS | Length of Hospital Stay |
| OPD | Outpatient Department |
| CK | Creatinine Kinase |
| DDDs | Defined Daily Doses |
| ATC | Anatomical Therapeutic Chemical |
| DDI | Drug–Drug Interactions |
| CCI | Charlson Comorbidity Index |
References
- World Health Organization. Ageing and Health; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 12 January 2025).
- World Health Organization. World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015; Available online: https://www.who.int/publications/i/item/9789241565042 (accessed on 12 January 2025).
- Institute for Population and Social Research. Foundation of Thai Gerontology Research and Development Institute (TGRI). In Situation of the Thai Older Persons 2021; Mahidol University: Nakhon Pathom, Thailand, 2021; p. 120. [Google Scholar]
- Milić, J. Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends; IntechOpen: London, UK, 2022. [Google Scholar]
- Tampi, R.R.; Tampi, D.J.; Rogers, K.; Alagarsamy, S. Antipsychotics in the management of behavioral and psychological symptoms of dementia: Maximizing gain and minimizing harm. Neurodegener. Dis. Manag. 2020, 10, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Ramadas, S.; TN, N.M.; Krishnan, J.; Andrade, C. Neuroleptic Malignant Syndrome with Low Dose Lithium, Without Concomitant Antipsychotics. Indian. J. Psychol. Med. 2023, 45, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Lornstad, M.T.; Aarøen, M.; Bergh, S.; Benth, J.Š.; Helvik, A.S. Prevalence and persistent use of psychotropic drugs in older adults receiving domiciliary care at baseline. BMC Geriatr. 2019, 19, 119. [Google Scholar] [CrossRef] [PubMed]
- Koschel, J.; Ray Chaudhuri, K.; Tönges, L.; Thiel, M.; Raeder, V.; Jost, W.H. Implications of dopaminergic medication withdrawal in Parkinson’s disease. J. Neural. Transm. 2022, 129, 1169–1178. [Google Scholar] [CrossRef]
- Simon, L.V.; Hashmi, M.F.; Callahan, A.L. Neuroleptic Malignant Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Kyotani, Y.; Zhao, J.; Nakahira, K.; Yoshizumi, M. The role of antipsychotics and other drugs on the development and progression of neuroleptic malignant syndrome. Sci. Rep. 2023, 13, 18459. [Google Scholar] [CrossRef]
- Tse, L.; Barr, A.M.; Scarapicchia, V.; Vila-Rodriguez, F. Neuroleptic Malignant Syndrome: A Review from a Clinically Oriented Perspective. Curr. Neuropharmacol. 2015, 13, 395–406. [Google Scholar] [CrossRef]
- Wijdicks, E.F.M.; Ropper, A.H. Neuroleptic Malignant Syndrome. N. Engl. J. Med. 2024, 391, 1130–1138. [Google Scholar] [CrossRef]
- Wadoo, O.; Ouanes, S.; Firdosi, M. Neuroleptic malignant syndrome: A guide for psychiatrists. BJPsych. Adv. 2021, 27, 373–382. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Arlington, V.A., Ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Levenson, J.L. Neuroleptic malignant syndrome. Am. J. Psychiatry 1985, 142, 1137–1145. [Google Scholar]
- Camacho Velásquez, J.L.; Rivero Sanz, E.; Cruz Tabuenca, H.; López Del Val, J.; Mauri Llerda, J.A. Parkinsonism hyperpyrexia syndrome. Síndrome de parkinsonismo-hiperpirexia. Neurologia 2018, 33, 133–135. [Google Scholar] [CrossRef]
- Foster, A.; Wang, Z.; Usman, M.; Stirewalt, E.; Buckley, P. Pharmacogenetics of antipsychotic adverse effects: Case studies and a literature review for clinicians. Neuropsychiatr. Dis. Treat. 2007, 3, 965–973. [Google Scholar] [CrossRef]
- Dean, L.; Kane, M. Aripiprazole Therapy and CYP2D6 Genotype. In Medical Genetics Summaries; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2016. [Google Scholar]
- Pfister, B.; Jonsson, J.; Gustafsson, M. Drug-related problems and medication reviews among old people with dementia. BMC Pharmacol. Toxicol. 2017, 18, 52. [Google Scholar] [CrossRef] [PubMed]
- Gronich, N. Central nervous system medications: Pharmacokinetic and pharmacodynamic considerations for older adults. Drugs Aging 2024, 41, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Martorana, A.; Koch, G. Is dopamine involved in Alzheimer’s disease? Front. Aging Neurosci. 2014, 6, 252. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, H.; Kaita, W. Neuroleptic malignant syndrome induced by donepezil in a patient treated with risperidone and trazodone. BMJ Case Rep. 2025, 18, e263250. [Google Scholar] [CrossRef]
- Pileggi, D.J.; Cook, A.M. Neuroleptic Malignant Syndrome. Ann. Pharmacother. 2016, 50, 973–981. [Google Scholar] [CrossRef]
- van Rensburg, R.; Decloedt, E.H. An Approach to the Pharmacotherapy of Neuroleptic Malignant Syndrome. Psychopharmacol. Bull 2019, 49, 84–91. [Google Scholar] [CrossRef]
- Dean, A.G. OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version 2.3.1; OpenEpi: Atlanta, GA, USA, 2010; Available online: http://www.openepi.com (accessed on 12 January 2025).
- Viejo, L.F.; Morales, V.; Puñal, P.; Pérez, J.L.; Sancho, R.A. Risk factors in neuroleptic malignant syndrome. A case-control study. Acta. Psychiatr. Scand. 2003, 107, 45–49. [Google Scholar] [CrossRef]
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef]
- World Health Organization; Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC Classification and DDD Assignment; WHO: Oslo, Norway, 2019; Available online: https://atcddd.fhi.no/atc_ddd_index_and_guidelines/guidelines/ (accessed on 12 January 2025).
- Patel, M.X.; Arista, I.A.; Taylor, M.; Barnes, T.R. How to compare doses of different antipsychotics: A systematic review of methods. Schizophr. Res. 2013, 149, 141–148. [Google Scholar] [CrossRef]
- Micromedex® HealthCare Series (Internet Database), Version 2.0; Thomson Healthcare Inc.: Greenwood Village, CO, USA, 2013. Available online: http://www.micromedexsolutions.com (accessed on 25 January 2025).
- İslam, M.M.; Akça, H.Ş.; Tengerek, D. Sertraline Related Neuroleptic Malignant Syndrome: Case Report. Anatol. J. Emerg. Med. 2018, 1, 25–26. [Google Scholar]
- Schultz, A.R.; Singh, S.; Linek-Rajapaksha, C.E.; Goode, H.R.; Fusick, A.J. A Case of Neuroleptic Malignant Syndrome in the Context of Lithium Toxicity and Aripiprazole Use. Clin. Neuropharmacol. 2024, 47, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Elyasi, F.; Aarabi, M.; Adelani, M.; Fariborzifar, A.; Azizi, M. Neuroleptic Malignant Syndrome: A Case Report of the Oldest Man in Literature. Clin. Case Rep. 2025, 13, e71206. [Google Scholar] [CrossRef] [PubMed]
- Guinart, D.; Taipale, H.; Rubio, J.M.; Tanskanen, A.; Correll, C.U.; Tiihonen, J.; Kane, J.M. Risk Factors, Incidence, and Outcomes of Neuroleptic Malignant Syndrome on Long-Acting Injectable vs Oral Antipsychotics in a Nationwide Schizophrenia Cohort. Schizophr. Bull. 2021, 47, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Manu, P.; Lapitskaya, Y.; Shaikh, A.; Nielsen, J. Clozapine Rechallenge After Major Adverse Effects: Clinical Guidelines Based on 259 Cases. Am. J. Ther. 2018, 25, e218–e223. [Google Scholar] [CrossRef]
- Srisuma, S.; Cao, D.; Kleinschmidt, K.; Heffner, A.C.; Lavonas, E.J. Missed opportunities? An evaluation of potentially preventable poisoning deaths. Clin. Toxicol. 2016, 54, 441–446. [Google Scholar] [CrossRef]
- Langan, J.; Martin, D.; Shajahan, P.; Smith, D.J. Antipsychotic dose escalation as a trigger for neuroleptic malignant syndrome (NMS): Literature review and case series report. BMC Psychiatry 2012, 12, 214. [Google Scholar] [CrossRef]
- Sirisuwannarat, S. Risk Factors in Neuroleptic Malignant Syndrome: A 10-year Case-control Study of Neuroleptic Use in Patients in Charoenkrung Pracharak Hospital. Siriraj. Med. J. 2025, 77, 466–475. [Google Scholar] [CrossRef]
- Özdemir, İ.; Kuru, E.; Safak, Y.; Tulacı, R.G. A Neuroleptic Malignant Syndrome Without Rigidity. Psychiatry Investig. 2018, 15, 226–229. [Google Scholar] [CrossRef]
- Suraweera, C.; Hanwella, R.; De Silva, V. Second generation antipsychotics causing neuroleptic malignant syndrome. Sri Lanka J. Psychiatry 2016, 7, 20–22. [Google Scholar] [CrossRef]
- Nisijima, K.; Shioda, K. A rare case of neuroleptic malignant syndrome without elevated serum creatine kinase. Neuropsychiatr. Dis. Treat. 2014, 10, 403–407. [Google Scholar] [CrossRef]
- Christodoulou, C.; Margaritis, D.; Makris, G.; Kavatha, D.; Efstathiou, V.; Papageorgiou, C.; Douzenis, A. Quetiapine and clarithromycin-induced neuroleptic malignant syndrome. Clin. Neuropharmacol. 2015, 38, 36–37. [Google Scholar]
- El-Gaaly, S.; St John, P.; Dunsmore, S.; Bolton, J.M. Atypical neuroleptic malignant syndrome with quetiapine: A case report and review of the literature. J. Clin. Psychopharmacol. 2009, 29, 497–499. [Google Scholar]
- Kuhlwilm, L.; Schönfeldt-Lecuona, C.; Gahr, M.; Connemann, B.J.; Keller, F.; Sartorius, A. The neuroleptic malignant syndrome-a systematic case series analysis focusing on therapy regimes and outcome. Acta Psychiatr. Scand. 2020, 142, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Dharaiya, D.; Schultz, L.; Varelas, P. Neuroleptic Malignant Syndrome: Complications, Outcomes, and Mortality. Neurocrit. Care 2016, 24, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Lam, Y.F. Drug-associated neuroleptic malignant syndrome. Brown Univ. Psychopharmacol. Update 2025, 36, 2. [Google Scholar]
- Patil, V.; Gupta, R.; Verma, R.; Balhara, Y.P. Neuroleptic Malignant Syndrome Associated with Lithium Toxicity. Oman. Med. J. 2016, 31, 309–311. [Google Scholar] [CrossRef]
- Velamoor, R. Neuroleptic malignant syndrome: A neuro-psychiatric emergency: Recognition, prevention, and management. Asian J. Psychiatry 2017, 29, 106–109. [Google Scholar] [CrossRef]
| Baseline Characteristics | All (n = 54) | NMS (n =9) | Control (n = 45) | p-Value |
|---|---|---|---|---|
| n (%) | n (%) | |||
| Age in years, mean (SD) | 70.9 (6.2) | 70.4 (6.9) | 70.9 (6.2) | 1.000 # |
| <70 years | 24 (44.4) | 4 (44.4) | 20 (44.4) | |
| ≥70 years | 30 (55.6) | 5 (55.6) | 25 (55.6) | |
| Female | 24 (44.4) | 4 (44.4) | 20 (44.4) | 1.000 * |
| Marital status | ||||
| Single, widowed, or separated | 13 (24.1) | 3 (33.3) | 10 (22.2) | 0.670 * |
| Married | 41 (75.9) | 6 (66.7) | 35 (77.8) | |
| Lifestyle | ||||
| Alcohol drinking | 6 (11.1) | 0 (0) | 6 (13.3) | 0.020 * |
| Smoking | 10 (18.5) | 1 (11.1) | 9 (20.0) | 0.041 * |
| Healthcare services | ||||
| History of OPD visits > 10 within 1 year | 37 (68.5) | 0 (0.0) | 37 (82.2) | <0.001 * |
| History of hospital admission > 1 within 1 year | 14 (25.9) | 3 (3.33) | 11 (24.4) | 0.370 * |
| History of ER visits > 1 within 1 year | 9 (16.7) | 3 (3.33) | 6 (13.3) | 0.090 * |
| LOS, median (IQR) | 7 (3, 29.5) | 40 (13.5, 74.5) | 3 (6, 17) | 0.003 + |
| Physical profiles | ||||
| Significant weight loss | 5 (9.4) | 1 (11.1) | 4 (9.1) | 1.000 * |
| Ambulation with assistance | 22 (40.7) | 4 (44.4) | 18 (40.0) | 1.000 * |
| Body mass index (kg/m2), mean (SD) | 22.8 (4.4) | 23.3 (4.2) | 22.6 (4.4) | 0.670 # |
| Baseline Characteristics | All (n = 54) | NMS (n = 9) | Control (n = 45) | p-Value |
|---|---|---|---|---|
| n (%) | n (%) | |||
| Comorbidities | ||||
| No. of chronic diseases, median (IQR) | 5.5 (4, 8) | 8 (5, 8.5) | 5 (4, 7) | 0.068 + |
| CCI, median (IQR) | 3 (5, 6) | 4 (2.5, 5.5) | 5 (3, 6.5) | 0.133 + |
| Dyslipidemia | 27 (50.0) | 6 (66.7) | 21 (46.7) | 0.467 * |
| Hypertension | 38 (70.4) | 7 (77.8) | 31 (68.9) | 0.709 * |
| Diabetes mellitus | 19 (35.2) | 3 (33.3) | 16 (35.6) | 1.000 * |
| Coronary artery disease | 9 (16.7) | 0 (0.0) | 9 (20.0) | 0.328 * |
| Congestive heart failure | 2 (3.7) | 0 (0.0) | 2 (4.4) | 1.000 * |
| Arrhythmia | 4 (7.4) | 0 (0.0) | 4 (8.9) | 1.000 * |
| Dementia | 12 (22.2) | 4 (44.4) | 8 (17.8) | 0.098 * |
| BPSD | 10 (18.5) | 2 (22.2) | 8 (17.8) | 0.667 * |
| Hypothyroidism | 5 (9.3) | 1 (11.1) | 4 (8.9) | 1.000 * |
| Cerebrovascular disease | 10 (18.5) | 1 (11.1) | 9 (20.0) | 1.000 * |
| Parkinson’s disease | 22 (40.7) | 3 (33.3) | 19 (42.2) | 0.723 * |
| Cirrhosis | 4 (7.4) | 0 (0.0) | 4 (8.9) | 1.000 * |
| Chronic kidney disease | 11 (20.4) | 3 (33.3) | 8 (17.8) | 0.367 * |
| Depression | 16 (29.6) | 4 (44.4) | 12 (26.7) | 0.425 * |
| Malignancy | 14 (25.9) | 2 (22.2) | 12 (26.7) | 1.000 * |
| COPD | 4 (7.4) | 0 (0.0) | 4 (8.9) | 1.000 * |
| Obstructive sleep apnea | 4 (7.4) | 1 (11.1) | 3 (6.7) | 0.529 * |
| Baseline Characteristics | All (n = 54) | NMS (n = 9) | Control (n = 45) | p-Value |
|---|---|---|---|---|
| n (%) | n (%) | |||
| Prescribed medications | ||||
| Number of prescribed medications per person, median (IQR) | 9 (6.8, 12) | 9 (7, 11) | 9 (6.5, 12) | 0.889 + |
| Number of newly prescribed medications within 12 months, median (IQR) | 1 (0, 2) | 3 (2, 4.5) | 0 (0, 1.5) | <0.001 + |
| Polypharmacy | 49 (90.7) | 8 (88.9) | 41 (91.1) | 1.000 * |
| DDDs of antipsychotics, median (IQR) | 0.1 (0.1, 0.5) | 1.1 (0.5, 2.1) | 0.1 (0.1, 0.2) | 0.001 + |
| Antipsychotic dose > 1 DDDs | 5 (13.9) | 3 (50.0) | 2 (6.7) | 0.024 * |
| Escalated doses of antipsychotics | 4 (11.1) | 2 (33.3) | 2 (6.7) | 0.121 * |
| Prescribed medication according to ATC classes and codes | ||||
| A06 Drugs for constipation | 11 (20.4) | 0 (0.0) | 11 (24.4) | 0.178 * |
| A10 Drug used in diabetes | 16 (29.6) | 2 (22.2) | 14 (31.1) | 0.709 * |
| B01 Antithrombotic agents | 25 (46.3) | 3 (33.3) | 22 (48.9) | 0.480 * |
| C02 Antihypertensives | 3 (5.6) | 0 (0.0) | 3 (6.7) | 1.000 * |
| C03 Diuretics | 3 (5.6) | 1 (11.1) | 2 (4.4) | 0.428 * |
| C07 Beta blocking agents | 15 (27.8) | 1 (11.1) | 14 (31.1) | 0.417 * |
| C08 Calcium channel blockers | 23 (42.6) | 6 (66.7) | 17 (37.8) | 0.148 * |
| C09 Agents acting on the renin-angiotensin system | 12 (22.2) | 2 (22.2) | 10 (22.2) | 1.000 * |
| C10 Lipid modifying agents | 31 (57.4) | 6 (66.7) | 25 (55.6) | 0.717 * |
| N03 Antiepileptics | 14 (25.9) | 4 (44.4) | 10 (22.2) | 0.216 * |
| N04 Anticholinergic agents | 6 (11.1) | 3 (33.3) | 3 (6.7) | 0.051 * |
| N05 Psycholeptics | 44 (81.5) | 9 (100) | 35 (77.8) | 0.183 * |
| N05A Antipsychotics | 41 (75.9) | 9 (100) | 32 (71.1) | 0.095 * |
| N05B-N05C Anxiolytics, sedatives and hypnotics | 22 (40.7) | 7 (77.8) | 15 (33.3) | 0.023 * |
| N06 Psychoanaleptics | 30 (55.6) | 6 (66.7) | 24 (53.3) | 0.715 * |
| N06A Antidepressants | 29 (53.7) | 6 (66.7) | 23 (51.1) | 0.480 * |
| N06D Anti-dementia drugs | 6 (11.1) | 1 (11.1) | 5 (11.1) | 1.000 * |
| R06 Antihistamines for systemic use | 2 (3.7) | 1 (11.1) | 1 (2.2) | 0.308 * |
| Associated Factors | Univariable Model OR (95%CI) | p-Value | Multivariable Model OR (95%CI) | p-Value |
|---|---|---|---|---|
| Antipsychotic dose > 1 DDDs | 14.00 (1.63–120.09) | 0.016 | 11.31 (1.05–121.84) | 0.045 |
| Number of newly prescribed medications within 12 months | 1.69 (1.13–2.52) | 0.010 | 1.51 (0.95–2.39) | 0.080 |
| Baseline Characteristics | All (n = 36) | NMS (n = 6) | Control (n = 30) | p-Value |
|---|---|---|---|---|
| n (%) | n (%) | |||
| Route of administration | ||||
| Depot route | 3 (8.3) | 3 (50.0) | 0 (0.0) | 0.003 * |
| Oral route | 36 (100.0) | 6 (100.0) | 30 (100.0) | 1.000 * |
| Classification of antipsychotics | ||||
| First-generation antipsychotics | 6 (16.7) | 4 (66.7) | 2 (6.7) | 0.003 * |
| Second-generation antipsychotics | ||||
| Antipsychotic dose | ||||
| Antipsychotic dose > 1 DDDs | 5 (13.9) | 3 (50.0) | 2 (6.7) | 0.024 * |
| Antipsychotic use > 1 agents | 4 (11.1) | 3 (50.0) | 1 (3.3) | 0.010 * |
| Associated Factors | Univariable Model OR (95%CI) | p-Value | Multivariable Model OR (95%CI) | p-Value |
|---|---|---|---|---|
| Antipsychotic dose > 1 DDDs | 14.00 (1.63–120.09) | 0.016 | 0.68 (0.01–38.19) | 0.851 |
| First-generation antipsychotic use | 28.00 (3.03–258.42) | 0.003 | 28.55 (1.08–752.93) | 0.045 |
| Antipsychotic use > 1 agents | 29.00 (2.25–373.77) | 0.010 | 3.36(0.09–121.68) | 0.508 |
| Number of newly prescribed medications within 12 months | 1.52 (1.00–2.31) | 0.049 | 1.47 (0.87–2.47) | 0.151 |
| Characteristics | NMS (n = 9) n (%) |
|---|---|
| Medications associated with NMS | |
| No. associated drugs per person, median (IQR) | 1 (1,2) |
| Dopaminergics (withdrawal) | 3 (100.0) |
| Levodopa/benserazide | 2 (66.7) |
| Levodopa/carbidopa | 1 (33.3) |
| No. of prescribed antipsychotics | 6 (100.0) |
| 1 | 3 (50.0) |
| 2 | 2 (33.3) |
| 3 | 1 (16.7) |
| Antipsychotics (agents) | 10 (100.0) |
| Typical antipsychotics | 4 (40.0) |
| Haloperidol (intramuscular) | 3 (30.0) |
| Haloperidol (oral) | 1 (10.0) |
| Atypical antipsychotics | 6 (60.0) |
| Olanzapine (oral) | 2 (20.0) |
| Quetiapine (oral) | 3 (30.0) |
| Paliperidone (oral) | 1 (10.0) |
| Antipsychotics dose at the events, median (IQR) | 1.1 (0.4, 2.4) |
| <0.25 DDDs | 0 (0) |
| 0.25–0.49 DDDs | 1 (16.7) |
| 0.50–0.74 DDDs | 2 (33.3) |
| >1 DDDs | 3 (50.0) |
| Admission due to NMS | 5 (55.6) |
| The Guideline for NMS Prevention |
|---|
| Pre-prescription assessment |
| Identify high-risk patients: dementia, dehydration, prior NMS, CKD, polypharmacy |
| Review drug interaction with antipsychotics: lithium, antidepressants (SSRI, SNRI) |
| Evaluate clinical baseline: consciousness, vital signs, renal and hepatic function |
| Initiation strategy |
| Start with low doses of antipsychotics |
| Avoid rapid dose escalation and high doses of antipsychotics |
| Avoid parenteral high-potency antipsychotics such as IM haloperidol |
| Consider initiating with second-generation antipsychotics |
| Early monitoring |
| Daily check: temperature, muscular rigidity, mental status, BP, HR, hydration |
| Immediately stop: fever, rigidity, mental status change, autonomic instability |
| Maintenance and long-term prevention |
| Maintain the lowest effective dose |
| Avoid polypharmacy and unnecessary medication |
| Ensure adequate hydration |
| Educate medical staff, patients, and caregivers on early NMS symptoms |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pewloungsawat, P.; Srisuma, S.; Ruangritchankul, S. Clinical Outcomes and Factors Associated with Neuroleptic Malignant Syndrome in Older Patients: A Case Control Study. J. Clin. Med. 2025, 14, 8901. https://doi.org/10.3390/jcm14248901
Pewloungsawat P, Srisuma S, Ruangritchankul S. Clinical Outcomes and Factors Associated with Neuroleptic Malignant Syndrome in Older Patients: A Case Control Study. Journal of Clinical Medicine. 2025; 14(24):8901. https://doi.org/10.3390/jcm14248901
Chicago/Turabian StylePewloungsawat, Pataraporn, Sahaphume Srisuma, and Sirasa Ruangritchankul. 2025. "Clinical Outcomes and Factors Associated with Neuroleptic Malignant Syndrome in Older Patients: A Case Control Study" Journal of Clinical Medicine 14, no. 24: 8901. https://doi.org/10.3390/jcm14248901
APA StylePewloungsawat, P., Srisuma, S., & Ruangritchankul, S. (2025). Clinical Outcomes and Factors Associated with Neuroleptic Malignant Syndrome in Older Patients: A Case Control Study. Journal of Clinical Medicine, 14(24), 8901. https://doi.org/10.3390/jcm14248901

