Sodium-Glucose Cotransporter 2 Inhibitor Use in Adults Undergoing Peritoneal Dialysis: A Propensity-Matched Real-World Data Analysis
Abstract
1. Introduction
- (1)
- Are SGLT2is associated with changes in all-cause mortality or major adverse cardiac events (MACE) in patients undergoing PD?
- (2)
- Is SGLT2i therapy safe in patients undergoing PD?
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Outcomes
2.4. Covariates and Statistical Analysis
2.5. Use of Artificial Intelligence
3. Results
3.1. Identification of PD Patients Treated with SGLT2is
3.2. SGLT2is Showed No Significant Association with Mortality and Cardiovascular Events
3.3. SGLT2is Showed No Increase in Complications in PD Patients
3.4. Sensitivity Analysis Confirmed the Robustness of Findings
4. Discussion
4.1. No Difference in All-Cause Mortality and MACE
4.2. SGLT2is Are Safe in Peritoneal Dialysis Patients
4.3. No Evident Impact on Transition to Hemodialysis
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SGLT2i | Sodium-glucose cotransporter 2 inhibitor |
| PD | Peritoneal dialysis |
| HD | Hemodialysis |
| KF | Kidney failure |
| KRT | Kidney replacement therapy |
| HF | Heart failure |
| CKD | Chronic kidney disease |
| T2DM | Type 2 diabetes mellitus |
| EHR | Electronic health records |
| PSM | Propensity score matching |
| MACE | Major adverse cardiovascular events |
| SNOMED | Systematized Nomenclature of Medicine |
| ICD-10 | International Classification of Diseases, 10th Revision |
| HCO | Health care organization |
| IQR | Interquartile range |
| SD | Standard deviation |
| CI | Confidence interval |
| HR | Hazard ratio |
| CIHD | Chronic ischemic heart disease |
| CLRD | Chronic lower respiratory disease |
| BMI | Body mass index |
| GFR | Glomerular filtration rate |
| SBP | Systolic blood pressure |
| DBP | Diastolic blood pressure |
| BNP | B-type natriuretic peptide |
| TG | Triglycerides |
| HDL | High-density lipoprotein |
| LDL | Low-density lipoprotein |
| AST | Aspartate aminotransferase |
| ALT | Alanine aminotransferase |
| RASi | Renin–angiotensin system inhibition |
| HbA1c | Hemoglobin A1c |
| STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
References
- Mavrakanas, T.A.; Tsoukas, M.A.; Brophy, J.M.; Sharma, A.; Gariani, K. SGLT-2 inhibitors improve cardiovascular and renal outcomes in patients with CKD: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 15922. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- The EMPA-KIDNEY Collaborative Group; Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2023, 388, 117–127. [Google Scholar]
- Thomas, M.C.; Cherney, D.Z.I. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 2018, 61, 2098–2107. [Google Scholar] [CrossRef]
- Dyck, J.R.; Sossalla, S.; Hamdani, N.; Coronel, R.; Weber, N.C.; Light, P.E.; Zuurbier, C.J. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: Evidence for potential off-target effects. J. Mol. Cell Cardiol. 2022, 167, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Nadeau-Fredette, A.-C.; Sukul, N.; Lambie, M.; Perl, J.; Davies, S.; Johnson, D.W.; Robinson, B.; Van Biesen, W.; Kramer, A.; Jager, K.J. Mortality Trends After Transfer From Peritoneal Dialysis to Hemodialysis. Kidney Int. Rep. Mai 2022, 7, 1062–1073. [Google Scholar] [CrossRef] [PubMed]
- Jaar, B.G.; Plantinga, L.C.; Crews, D.C.; Fink, N.E.; Hebah, N.; Coresh, J.; Kliger, A.S. Timing, causes, predictors and prognosis of switching from peritoneal dialysis to hemodialysis: A prospective study. BMC Nephrol. 2009, 10, 3. [Google Scholar] [CrossRef]
- de Jager, D.J.; Grootendorst, D.C.; Jager, K.J.; van Dijk, P.C.; Tomas, L.M.J.; Ansell, D.; Collart, F.; Finne, P.; Heaf, J.G.; De Meester, J.; et al. Cardiovascular and Noncardiovascular Mortality Among Patients Starting Dialysis. JAMA 2009, 302, 1782–1789. [Google Scholar] [CrossRef]
- McLean, P.; Bennett, J.; Woods, E.T.; Chandrasekhar, S.; Newman, N.; Mohammad, Y.; Khawaja, M.; Rizwan, A.; Siddiqui, R.; Birnbaum, Y.; et al. SGLT2 inhibitors across various patient populations in the era of precision medicine: The multidisciplinary team approach. npj Metab. Health Dis. 2025, 3, 29. [Google Scholar] [CrossRef]
- Jeong, S.J.; Lee, S.E.; Shin, D.H.; Park, I.B.; Lee, H.S.; Kim, K.A. Barriers to initiating SGLT2 inhibitors in diabetic kidney disease: A real-world study. BMC Nephrol. 2021, 22, 177. [Google Scholar] [CrossRef]
- Siddiqui, R.; Obi, Y.; Dossabhoy, N.R.; Shafi, T. Is There a Role for SGLT2 Inhibitors in Patients with End-Stage Kidney Disease? Curr. Hypertens Rep. 2024, 26, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, N. SGLT2 inhibitors in peritoneal dialysis: A promising frontier toward improved patient outcomes. Ren. Replace Ther. 2024, 10, 5. [Google Scholar] [CrossRef]
- Ludwig, R.J.; Anson, M.; Zirpel, H.; Thaci, D.; Olbrich, H.; Bieber, K.; Kridin, K.; Dempfle, A.; Curman, P.; Zhao, S.S.; et al. A comprehensive review of methodologies and application to use the real-world data and analytics platform TriNetX. Front. Pharmacol. 2025, 16, 1516126. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.J. Landmark analysis: A primer. J. Nucl. Cardiol. 2019, 26, 391–393. [Google Scholar] [CrossRef]
- Mi, X.; Hammill, B.G.; Curtis, L.H.; Lai, E.C.C.; Setoguchi, S. Use of the landmark method to address immortal person-time bias in comparative effectiveness research: A simulation study. Stat. Med. 2016, 35, 4824–4836. [Google Scholar] [CrossRef]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar Behav. Res. Mai 2011, 46, 399–424. [Google Scholar] [CrossRef]
- Andrade, C. Mean Difference, Standardized Mean Difference (SMD), and Their Use in Meta-Analysis: As Simple as It Gets. J. Clin. Psychiatry 2020, 81, 20f13681. [Google Scholar] [CrossRef]
- Andersen, P.K.; Gill, R.D. Cox’s Regression Model for Counting Processes: A Large Sample Study. Ann. Stat. 1982, 10, 1100–1120. [Google Scholar] [CrossRef]
- Wang, C.A.; Lin, L.C.; Chen, J.Y.; Wang, W.J.; Wu, V.C. Exploring the mortality and cardiovascular outcomes with SGLT-2 inhibitors in patients with T2DM at dialysis commencement: A health global federated network analysis. Cardiovasc. Diabetol. 2024, 23, 327. [Google Scholar] [CrossRef] [PubMed]
- Schönberger, E.; Mihaljević, V.; Steiner, K.; Šarić, S.; Kurevija, T.; Majnarić, L.T.; Ćurčić, I.B.; Canecki-Varžić, S. Immunomodulatory Effects of SGLT2 Inhibitors—Targeting Inflammation and Oxidative Stress in Aging. Int. J. Environ. Res. Public Health 2023, 20, 6671. [Google Scholar] [CrossRef] [PubMed]
- Scisciola, L.; Cataldo, V.; Taktaz, F.; Fontanella, R.A.; Pesapane, A.; Ghosh, P.; Franzese, M.; Puocci, A.; De Angelis, A.; Sportiello, L.; et al. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: Data from basic science and clinical trials. Front. Cardiovasc. Med. 2022, 9, 1008922. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.E.; Butt, J.H.; Strange, J.E.; Falkentoft, A.C.; Jensen, J.; Andersson, C.; Zahir, D.; Fosbøl, E.; McMurray, P.J.J.V. Initiation of SGLT2 inhibitors and GLP-1 receptor agonists according to level of frailty in people with type 2 diabetes and cardiovascular disease in Denmark: A cross-sectional, nationwide study. Lancet Healthy Longev. 2023, 4, e552–e560. [Google Scholar] [CrossRef]
- Mascolo, A.; Di Napoli, R.; Balzano, N.; Cappetta, D.; Urbanek, K.; De Angelis, A.; Scisciola, L.; Di Meo, I.; Sullo, M.G.; Rafaniello, C.; et al. Safety profile of sodium glucose co-transporter 2 (SGLT2) inhibitors: A brief summary. Front. Cardiovasc. Med. 2022, 9, 1010693. [Google Scholar] [CrossRef]
- Puckrin, R.; Saltiel, M.P.; Reynier, P.; Azoulay, L.; Yu, O.H.Y.; Filion, K.B. SGLT-2 inhibitors and the risk of infections: A systematic review and meta-analysis of randomized controlled trials. Acta Diabetol. 2018, 55, 503–514. [Google Scholar] [CrossRef]
- Barski, L.; Eshkoli, T.; Brandstaetter, E.; Jotkowitz, A. Euglycemic diabetic ketoacidosis. Eur. J. Intern. Med. 2019, 63, 9–14. [Google Scholar] [CrossRef]
- Ogawa, W.; Sakaguchi, K. Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors: Possible mechanism and contributing factors. J. Diabetes Investig. März 2016, 7, 135–138. [Google Scholar] [CrossRef]
- Scheen, A.J. Real-life underuse of SGLT2 inhibitors for patients with type 2 diabetes at high cardiorenal risk. Diabetes Epidemiol. Manag. 2024, 13, 100184. [Google Scholar] [CrossRef]
- Lai, J.W.; Wang, C.C.N.; Chou, C.Y. SGLT-2 inhibitors in chronic peritoneal dialysis patients: A follow-up study. BMC Nephrol. 2024, 25, 238. [Google Scholar] [CrossRef]
- Martus, G.; Bergling, K.; de Arteaga, J.; Öberg, C.M. SGLT2 inhibition does not reduce glucose absorption during experimental peritoneal dialysis. Perit. Dial. Int. 2021, 41, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Bakker, W.M.; Heerspink, H.J.L.; Berger, S.P.; Wanner, C.; Badve, S.V.; Arnott, C.; Abrahams, A.C.; van den Born, J.C.; Gaillard, C.A.J.M.; Gelens, M.A.C.J.; et al. Rationale and design of the Renal Lifecycle trial assessing the effect of dapagliflozin on cardiorenal outcomes in severe chronic kidney disease. Nephrol. Dial. Transplant. 2025, 40, 1746–1755. [Google Scholar] [CrossRef]
- Shukri, A.; Mettang, T.; Scheckel, B.; Schellartz, I.; Simic, D.; Scholten, N.; Mülleru, M.; Stock, S. Hemodialysis and Peritoneal Dialysis in Germany from a Health Economic View—A Propensity Score Matched Analysis. Int. J. Environ. Res. Public Health 2022, 19, 14007. [Google Scholar] [CrossRef] [PubMed]



| Characteristic | SGLT2is Users Before PSM (n = 412) | SGLT2is Non-Users Before PSM (n = 19,459) | SMD Before PSM | SGLT2is Users After PSM (n = 367) | SGLT2is Non-Users After PSM (n = 367) | SMD After PSM |
|---|---|---|---|---|---|---|
| Age at Index | 58.7 ± 12.7 | 46.7 ± 19.3 | 0.728 | 58.8 ± 13.1 | 59.4 ± 14.4 | 0.04 |
| Not Hispanic or Latino | 380 (92.23%) | 15,893 (81.67%) | 0.317 | 338 (92.10%) | 339 (92.37%) | 0.01 |
| Male | 264 (64.08%) | 7604 (39.08%) | 0.517 | 232 (63.22%) | 232 (63.22%) | <0.0001 |
| White | 208 (50.49%) | 8341 (42.86%) | 0.153 | 189 (51.50%) | 194 (52.86%) | 0.027 |
| Heart failure | 305 (74.03%) | 3129 (16.08%) | 14,327 | 261 (71.12%) | 260 (70.85%) | 0.006 |
| Type 2 diabetes mellitus | 256 (62.14%) | 3743 (19.24%) | 0.971 | 219 (59.67%) | 223 (60.76%) | 0.022 |
| Dyslipidemia | 231 (56.07%) | 3833 (19.70%) | 0.809 | 205 (55.86%) | 205 (55.86%) | <0.0001 |
| Hypertension | 221 (53.64%) | 5737 (29.48%) | 0.506 | 199 (54.22%) | 191 (52.04%) | 0.044 |
| CIHD | 230 (55.83%) | 3123 (16.05%) | 0.911 | 195 (53.13%) | 193 (52.59%) | 0.011 |
| Overweight and obesity | 181 (43.93%) | 3663 (18.82%) | 0.562 | 161 (43.87%) | 162 (44.14%) | 0.005 |
| Acute myocardial infarction | 169 (41.02%) | 1271 (6.53%) | 0.886 | 137 (37.33%) | 131 (35.70%) | 0.034 |
| Hypertensive heart disease | 173 (41.99%) | 1029 (5.29%) | 0.958 | 136 (37.06%) | 146 (39.78%) | 0.056 |
| Cardiomyopathy | 126 (30.58%) | 905 (4.65%) | 0.724 | 102 (27.79%) | 109 (29.70%) | 0.042 |
| CLRD | 88 (21.36%) | 2673 (13.74%) | 0.201 | 82 (22.34%) | 74 (20.16%) | 0.053 |
| Diseases of liver | 70 (16.99%) | 1482 (7.62%) | 0.288 | 58 (15.80%) | 54 (14.71%) | 0.03 |
| Neoplasms | 55 (13.35%) | 2111 (10.85%) | 0.077 | 53 (14.44%) | 10 (2.73%) | 0.008 |
| Peritonitis | 10 (2.43%) | 320 (1.64%) | 0.055 | 10 (2.73%) | 257 (70.03%) | <0.0001 |
| Beta blocking agents | 311 (75.49%) | 5391 (27.70%) | 10,886 | 268 (73.03%) | 241 (65.67%) | 0.066 |
| Diuretics | 305 (74.03%) | 4451 (22.87%) | 11,915 | 263 (71.66%) | 202 (55.04%) | 0.13 |
| Statins | 266 (64.56%) | 3744 (19.24%) | 10,341 | 229 (62.40%) | 185 (50.41%) | 0.034 |
| Insulins | 248 (60.19%) | 3324 (17.08%) | 0.987 | 215 (58.58%) | 117 (31.88%) | 0.072 |
| RASi | 232 (56.31%) | 3460 (17.78%) | 0.87 | 196 (53.41%) | 36 (9.81%) | 0.06 |
| Calcium channel blockers | 156 (37.86%) | 3289 (16.90%) | 0.484 | 137 (37.33%) | 14 (3.82%) | 0.115 |
| Biguanides | 55 (13.35%) | 764 (3.93%) | 0.34 | 46 (12.53%) | 15 (4.09%) | 0.087 |
| Sulfonylureas | 22 (5.34%) | 463 (2.38%) | 0.154 | 22 (6.00%) | 11 (3.00%) | 0.101 |
| DPP-4 inhibitors | 22 (5.34%) | 254 (1.31%) | 0.227 | 20 (5.45%) | 132 (35.97%) | 0.064 |
| GLP-1 analogues | 17 (4.13%) | 183 (0.94%) | 0.204 | 15 (4.09%) | 75 (20.44%) | 0.059 |
| GFR mL/min/1.73 m2 | 65.4 ± 33.5 | 71.2 ± 52.5 | 0.133 | 64.6 ± 33.9 | 61 ± 36 | 0.097 |
| GFR 0–15 mL/min/1.73 m2 | 141 (34.22%) | 7503 (38.56%) | 0.09 | 138 (37.60%) | 142 (38.69%) | 0.034 |
| GFR 15–30 mL/min/1.73 m2 | 85 (20.63%) | 1461 (7.51%) | 0.384 | 74 (20.16%) | 157 (42.78%) | 0.007 |
| GFR 30–45 mL/min/1.73 m2 | 161 (39.08%) | 1958 (10.06%) | 0.716 | 140 (38.15%) | 213 (58.04%) | 0.011 |
| GFR 45–60 mL/min/1.73 m2 | 190 (46.12%) | 2547 (13.09%) | 0.776 | 160 (43.60%) | 157 (42.78%) | 0.017 |
| Potassium, mmol/L | 4.04 ± 0.5 | 4.0 ± 0.6 | 0.072 | 4.05 ± 0.5 | 4.04 ± 0.5 | 0.019 |
| SBP, mmHg | 105 ± 25.4 | 121 ± 22.5 | 0.653 | 106 ± 24.9 | 113.6 ± 28.1 | 0.258 |
| DBP, mmHg | 62 ± 16.1 | 71 ± 14.1 | 0.576 | 63 ± 15.7 | 65 ± 15.3 | 0.139 |
| BMI | 30.2 ± 7.8 | 30.7 ± 7.7 | 0.076 | 30.5 ± 7.7 | 31.3 ± 8.1 | 0.098 |
| Albumin, g/dL | 3.4 ± 0.5 | 3.5 ± 0.6 | 0.157 | 3.5 ± 0.5 | 3.5 ± 0.5 | 0.151 |
| AST, U/L | 34.9 ± 44.3 | 35.5 ± 20.0 | 0.004 | 34.7 ± 4.5 | 31 ± 36 | 0.089 |
| ALT, U/L | 31.0 ± 3.8 | 31 ± 15.2 | 0.009 | 30.0 ± 35.3 | 25.6 ± 28.4 | 0.136 |
| Hemoglobin A1c, % | 7.4 ± 2.2 | 6.7 ± 1.9 | 0.339 | 7.4 ± 2.2 | 7.3 ± 2 | 0.062 |
| BNP, pg/mL | 808 ± 852 | 584 ± 1274 | 0.207 | 766 ± 829 | 792 ± 915 | 0.03 |
| TG, mg/dL | 143 ± 183 | 160 ± 246 | 0.079 | 147 ± 198 | 157 ± 162 | 0.054 |
| HDL, mg/dL | 38.3 ± 15.1 | 43.3 ± 18.1 | 0.299 | 38.3 ± 15.3 | 39.2 ± 15.7 | 0.056 |
| LDL, mg/dL | 81.8 ± 38.1 | 90.4 ± 41.3 | 0.217 | 80.4 ± 36.7 | 88.4 ± 41.2 | 0.207 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amelunxen, E.; Wülfrath, H.S.; von Samson-Himmelstjerna, F.A.; Niehus, C.B.; Kolbrink, B.; Schulte, K.; Schmitt, R.; Sievers, L.K. Sodium-Glucose Cotransporter 2 Inhibitor Use in Adults Undergoing Peritoneal Dialysis: A Propensity-Matched Real-World Data Analysis. J. Clin. Med. 2025, 14, 8815. https://doi.org/10.3390/jcm14248815
Amelunxen E, Wülfrath HS, von Samson-Himmelstjerna FA, Niehus CB, Kolbrink B, Schulte K, Schmitt R, Sievers LK. Sodium-Glucose Cotransporter 2 Inhibitor Use in Adults Undergoing Peritoneal Dialysis: A Propensity-Matched Real-World Data Analysis. Journal of Clinical Medicine. 2025; 14(24):8815. https://doi.org/10.3390/jcm14248815
Chicago/Turabian StyleAmelunxen, Eric, Hauke S. Wülfrath, Friedrich A. von Samson-Himmelstjerna, Christoph B. Niehus, Benedikt Kolbrink, Kevin Schulte, Roland Schmitt, and Laura Katharina Sievers. 2025. "Sodium-Glucose Cotransporter 2 Inhibitor Use in Adults Undergoing Peritoneal Dialysis: A Propensity-Matched Real-World Data Analysis" Journal of Clinical Medicine 14, no. 24: 8815. https://doi.org/10.3390/jcm14248815
APA StyleAmelunxen, E., Wülfrath, H. S., von Samson-Himmelstjerna, F. A., Niehus, C. B., Kolbrink, B., Schulte, K., Schmitt, R., & Sievers, L. K. (2025). Sodium-Glucose Cotransporter 2 Inhibitor Use in Adults Undergoing Peritoneal Dialysis: A Propensity-Matched Real-World Data Analysis. Journal of Clinical Medicine, 14(24), 8815. https://doi.org/10.3390/jcm14248815

