Pharmacologic and Nonpharmacologic Pain Management in Patients with Traumatic Brain Injury: A Multidisciplinary Approach
Abstract
1. Introduction
2. Pathophysiology of Pain in Traumatic Brain Injury
3. Pharmacologic Management
4. Non-Pharmacologic Management
5. Emerging Trends in TBI Pain Management
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mesfin, F.B.; Gupta, N.; Hays Shapshak, A.; Margetis, K. Diffuse Axonal Injury. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Bean, P.A.; Giddings, G.A.; Tarbet, M.M.; Johnston, D.T.; Davis, J.A.; Lout, E.T.; Henwood, M.K.; Borland, H.L.; Grau, J.W. Pain after traumatic brain injury (TBI) fosters hemorrhage at the site of injury. Exp. Neurol. 2025, 394, 115422. [Google Scholar] [CrossRef] [PubMed]
- Cherup, N.P.; Robayo, L.E.; Vastano, R.; Fleming, L.; Levin, B.E.; Widerström-Noga, E. Neuropsychological Function in Traumatic Brain Injury and the Influence of Chronic Pain. Percept. Mot. Ski. 2023, 130, 1495–1523. [Google Scholar] [CrossRef] [PubMed]
- Robayo, L.E.; Govind, V.; Vastano, R.; Felix, E.R.; Fleming, L.; Cherup, N.P.; Widerström-Noga, E. Multidimensional pain phenotypes after Traumatic Brain Injury. Front. Pain. Res. 2022, 3, 947562. [Google Scholar] [CrossRef] [PubMed]
- Dasic, D.; Morgan, L.; Panezai, A.; Syrmos, N.; Ligarotti, G.K.I.; Zaed, I.; Chibbaro, S.; Khan, T.; Prisco, L.; Ganau, M. A scoping review on the challenges, improvement programs, and relevant output metrics for neurotrauma services in major trauma centers. Surg. Neurol. Int. 2022, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Carey, C.; Saxe, J.; White, F.A.; Naugle, K.M. An Exploratory Study of Endogenous Pain Modulatory Function in Patients Following Mild Traumatic Brain Injury. Pain. Med. 2019, 20, 2198–2207. [Google Scholar] [CrossRef]
- Irvine, K.-A.; Clark, J.D. Chronic Pain After Traumatic Brain Injury: Pathophysiology and Pain Mechanisms. Pain. Med. 2018, 19, 1315–1333. [Google Scholar] [CrossRef]
- Ashina, H.; Eigenbrodt, A.K.; Seifert, T.; Sinclair, A.J.; Scher, A.I.; Schytz, H.W.; Lee, M.J.; De Icco, R.; Finkel, A.G.; Ashina, M. Post-traumatic headache attributed to traumatic brain injury: Classification, clinical characteristics, and treatment. Lancet Neurol. 2021, 20, 460–469. [Google Scholar] [CrossRef]
- King, J.A.; McCrea, M.A.; Nelson, L.D. Frequency of Primary Neck Pain in Mild Traumatic Brain Injury/Concussion Patients. Arch. Phys. Med. Rehabil. 2020, 101, 89–94. [Google Scholar] [CrossRef]
- Pinho-Ribeiro, F.A.; Verri, W.A.; Chiu, I.M. Nociceptor Sensory Neuron-Immune Interactions in Pain and Inflammation. Trends Immunol. 2017, 38, 5–19. [Google Scholar] [CrossRef]
- Synnot, A.; Chau, M.; Pitt, V.; O’Connor, D.; Gruen, R.L.; Wasiak, J.; Clavisi, O.; Pattuwage, L.; Phillips, K. Interventions for managing skeletal muscle spasticity following traumatic brain injury. Cochrane Database Syst. Rev. 2017, 11, CD008929. [Google Scholar] [CrossRef]
- Chatelle, C.; Thibaut, A.; Bruno, M.-A.; Boly, M.; Bernard, C.; Hustinx, R.; Schnakers, C.; Laureys, S. Nociception coma scale-revised scores correlate with metabolism in the anterior cingulate cortex. Neurorehabil Neural Repair. 2014, 28, 149–152. [Google Scholar] [CrossRef]
- Kim, J.H.; Ahn, S.H.; Cho, Y.W.; Kim, S.H.; Jang, S.H. The Relation Between Injury of the Spinothalamocortical Tract and Central Pain in Chronic Patients With Mild Traumatic Brain Injury. J. Head. Trauma. Rehabil. 2015, 30, E40–E46. [Google Scholar] [CrossRef] [PubMed]
- Abu-Judeh, H.H.; Parker, R.; Aleksic, S.; Singh, M.L.; Naddaf, S.; Atay, S.; Kumar, M.; Omar, W.; El-Zeftawy, H.; Luo, J.Q.; et al. SPECT brain perfusion findings in mild or moderate traumatic brain injury. Nucl. Med. Rev. Cent. East. Eur. 2000, 3, 5–11. [Google Scholar]
- Jang, S.H.; Park, S.M.; Kwon, H.G. Relation between injury of the periaqueductal gray and central pain in patients with mild traumatic brain injury: Observational study. Medicine 2016, 95, e4017. [Google Scholar] [CrossRef]
- Ambron, R. Experiencing pain: Electromagnetic waves, consciousness, and the mind. Front. Hum. Neurosci. 2025, 19, 1568019. [Google Scholar] [CrossRef]
- Lorenz, J.; Minoshima, S.; Casey, K.L. Keeping pain out of mind: The role of the dorsolateral prefrontal cortex in pain modulation. Brain 2003, 126 Pt 5, 1079–1091. [Google Scholar] [CrossRef]
- File, C.; Nader, R.; Villasante-Tezanos, A.; Ahmed, R.; Pappolla, S.; Ahmed, F.; Miranda-Morales, E.G.; Zhao, Y.; Fang, X.; Kaye, A.D.; et al. Pain Management in Mild Traumatic Brain Injury: Central Sensitization as a Multispecialty Challenge. Pain. Physician 2025, 28, 231–240. [Google Scholar] [PubMed]
- Kamins, J.; Charles, A. Posttraumatic Headache: Basic Mechanisms and Therapeutic Targets. Headache 2018, 58, 811–826. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Ge, X. Blood-brain barrier disruption following brain injury: Implications for clinical practice. Histol. Histopathol. 2024, 39, 1435–1441. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Yen, J.-C.; Liu, T.-T.; Chen, S.-T.; Wang, S.-J.; Chen, S.-P. Neuronal NLRP3 inflammasome mediates spreading depolarization-evoked trigeminovascular activation. Brain 2023, 146, 2989–3002. [Google Scholar] [CrossRef]
- File, C.; Fang, X.; Ahmad, R.; Harazeen, A.; Jung, J.; Ahmed, F.; Ahmad, N.; Pappolla, S.; Nader, R.; Pappolla, M.A. Efficacy of Nerve Blocks for Managing Refractory Posttraumatic Headaches. Pain. Physician 2025, 28, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.J. Diclofenac: An update on its mechanism of action and safety profile. Curr. Med. Res. Opin. 2010, 26, 1715–1731. [Google Scholar] [CrossRef]
- Jóźwiak-Bebenista, M.; Nowak, J.Z. Paracetamol: Mechanism of action, applications and safety concern. Acta Pol. Pharm. 2014, 71, 11–23. [Google Scholar]
- Obata, H. Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int. J. Mol. Sci. 2017, 18, 2483. [Google Scholar] [CrossRef]
- Burch, R. Antidepressants for Preventive Treatment of Migraine. Curr. Treat. Options Neurol. 2019, 21, 18. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Krell, H.V.; Leuchter, A.F.; Cook, I.A.; Abrams, M. Evaluation of reboxetine, a noradrenergic antidepressant, for the treatment of fibromyalgia and chronic low back pain. Psychosomatics 2005, 46, 379–384. [Google Scholar] [CrossRef]
- Stahl, S.M.; Mendels, J.; Schwartz, G.E. Effects of reboxetine on anxiety, agitation, and insomnia: Results of a pooled evaluation of randomized clinical trials. J. Clin. Psychopharmacol. 2002, 22, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Kukkar, A.; Bali, A.; Singh, N.; Jaggi, A.S. Implications and mechanism of action of gabapentin in neuropathic pain. Arch. Pharm. Res. 2013, 36, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Pérez, C.; Navarro, A.; Saldaña, M.T.; Masramón, X.; Rejas, J. Pregabalin and gabapentin in matched patients with peripheral neuropathic pain in routine medical practice in a primary care setting: Findings from a cost-consequences analysis in a nested case-control study. Clin. Ther. 2010, 32, 1357–1370. [Google Scholar] [CrossRef]
- Kheder, A.; Nair, K.P.S. Spasticity: Pathophysiology, evaluation and management. Pract. Neurol. 2012, 12, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Liao, L.; Zheng, X.; Wang, Q.; Liu, Z.; Xu, G.; Li, X.; Liu, L. β-Blockers for traumatic brain injury: A systematic review and meta-analysis. J. Trauma. Acute Care Surg. 2021, 90, 1077–1085. [Google Scholar] [CrossRef]
- Laurent, S. Antihypertensive drugs. Pharmacol. Res. 2017, 124, 116–125. [Google Scholar] [CrossRef]
- Johnston, M.M.; Rapoport, A.M. Triptans for the management of migraine. Drugs 2010, 70, 1505–1518. [Google Scholar] [CrossRef]
- Yang, C.-P.; Liang, C.-S.; Chang, C.-M.; Yang, C.-C.; Shih, P.-H.; Yau, Y.-C.; Tang, K.-T.; Wang, S.-J. Comparison of New Pharmacologic Agents With Triptans for Treatment of Migraine: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e2128544. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.A.; Shen, J.Y.; Bettinger, T.L. Successful use of topiramate in a patient with severe postherpetic neuralgia. Ann. Pharmacother. 2009, 43, 139–142. [Google Scholar] [CrossRef]
- Frontera, J.A.; Gilmore, E.J.; Johnson, E.L.; Olson, D.; Rayi, A.; Tesoro, E.; Ullman, J.; Yuan, Y.; Zafar, S.F.; Rowe, S. Guidelines for Seizure Prophylaxis in Adults Hospitalized with Moderate-Severe Traumatic Brain Injury: A Clinical Practice Guideline for Health Care Professionals from the Neurocritical Care Society. Neurocrit Care 2024, 40, 819–844. [Google Scholar] [CrossRef]
- Sevivas, H.; Fresco, P. Treatment of resistant chronic migraine with anti-CGRP monoclonal antibodies: A systematic review. Eur. J. Med. Res. 2022, 27, 86. [Google Scholar] [CrossRef]
- Ivanhoe, C.B.; Hartman, E.T. Clinical caveats on medical assessment and treatment of pain after TBI. J. Head. Trauma. Rehabil. 2004, 19, 29–39. [Google Scholar] [CrossRef]
- Marahatha, R.; Gyawali, K.; Sharma, K.; Gyawali, N.; Tandan, P.; Adhikari, A.; Timilsina, G.; Bhattarai, S.; Lamichhane, G.; Acharya, A.; et al. Pharmacologic activities of phytosteroids in inflammatory diseases: Mechanism of action and therapeutic potentials. Phytother. Res. 2021, 35, 5103–5124. [Google Scholar] [CrossRef] [PubMed]
- Rabinstein, A.A.; Benarroch, E.E. Treatment of paroxysmal sympathetic hyperactivity. Curr. Treat. Options Neurol. 2008, 10, 151–157. [Google Scholar] [CrossRef]
- Rahimi, S.; Dadfar, B.; Tavakolian, G.; Asadi Rad, A.; Rashid Shabkahi, A.; Siahposht-Khachaki, A. Morphine attenuates neuroinflammation and blood-brain barrier disruption following traumatic brain injury through the opioidergic system. Brain Res. Bull. 2021, 176, 103–111. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.-J.; Kim, D.K.; Kim, T.H. Use of Oral Prednisolone and a 3-Phase Bone Scintigraphy in Patients with Complex Regional Pain Syndrome Type I. Healthcare 2020, 8, 16. [Google Scholar] [CrossRef]
- Chen, Q.; Bharadwaj, V.; Irvine, K.-A.; Clark, J.D. Mechanisms and treatments of chronic pain after traumatic brain injury. Neurochem. Int. 2023, 171, 105630. [Google Scholar] [CrossRef]
- Demyttenaere, K.; Jaspers, L. Review: Bupropion and SSRI-induced side effects. J. Psychopharmacol. 2008, 22, 792–804. [Google Scholar] [CrossRef] [PubMed]
- Kreitzer, N.; Rath, K.; Kurowski, B.G.; Bakas, T.; Hart, K.; Lindsell, C.J.; Adeoye, O. Rehabilitation Practices in Patients With Moderate and Severe Traumatic Brain Injury. J. Head. Trauma. Rehabil. 2019, 34, E66–E72. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, R.L.; Frey-Law, L.A.; Sluka, K.A. A Mechanism-Based Approach to Physical Therapist Management of Pain. Phys. Ther. 2018, 98, 302–314. [Google Scholar] [CrossRef]
- Hesselstrand, M.; Samuelsson, K.; Liedberg, G. Occupational Therapy Interventions in Chronic Pain--A Systematic Review. Occup. Ther. Int. 2015, 22, 183–194. [Google Scholar] [CrossRef]
- Bennema, A.N.; Schiphorst Preuper, H.R.; Krops, L.A.; Timmerman, H.; Reneman, M.F. Temporal relationships between pain, functioning, and human assumed central sensitization in patients with chronic low back pain; a single-case design. Musculoskelet. Sci. Pract. 2024, 72, 102966. [Google Scholar] [CrossRef] [PubMed]
- Shpaner, M.; Kelly, C.; Lieberman, G.; Perelman, H.; Davis, M.; Keefe, F.J.; Naylor, M.R. Unlearning chronic pain: A randomized controlled trial to investigate changes in intrinsic brain connectivity following Cognitive Behavioral Therapy. Neuroimage Clin. 2014, 5, 365–376. [Google Scholar] [CrossRef]
- Fraser, F.; Matsuzawa, Y.; Lee, Y.S.C.; Minen, M. Behavioral Treatments for Post-Traumatic Headache. Curr. Pain. Headache Rep. 2017, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Sanford, E.M.; Sramek, K.N.; McGeary, D.D.; Nabity, P.S. Behavioral, non-pharmacological intervention modalities to alleviate persistent headache attributable to traumatic brain injury: A systematic review of patient pain outcomes in the context of the mutual maintenance model. Cephalalgia Int. J. Headache 2025, 45, 3331024251341237. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Parr, N.J.; Vela, K. Evidence Brief: Transcranial Magnetic Stimulation (TMS) for Chronic Pain, PTSD, TBI, Opioid Addiction, and Sexual Trauma; VA Evidence-based Synthesis Program Reports; Department of Veterans Affairs (US): Washington, DC, USA, 2020. [Google Scholar]
- Kim, S.; Mortera, M.H.; Wen, P.-S.; Thompson, K.L.; Lundgren, K.; Reed, W.R.; Sasson, N.; Towner Wright, S.; Vora, A.; Krishnan, S.; et al. The Impact of Complementary and Integrative Medicine Following Traumatic Brain Injury: A Scoping Review. J. Head. Trauma. Rehabil. 2023, 38, E33–E43. [Google Scholar] [CrossRef] [PubMed]
- Hylands-White, N.; Duarte, R.V.; Raphael, J.H. An overview of treatment approaches for chronic pain management. Rheumatol. Int. 2017, 37, 29–42. [Google Scholar] [CrossRef]
- Yao, P.F.; Gandhi, P.A.; McMullen, E.P.; Manka, M.; Liang, J. Applications of Machine Learning in Prognostication of Mild Traumatic Brain Injury: A Systematic Review. Am. J. Phys. Med. Rehabil. 2025, 104, 146–151. [Google Scholar] [CrossRef]
- Fisher, L.B.; Curtiss, J.E.; Klyce, D.W.; Perrin, P.B.; Juengst, S.B.; Gary, K.W.; Niemeier, J.P.; Hammond, F.M.; Bergquist, T.F.; Wagner, A.K.; et al. Using Machine Learning to Examine Suicidal Ideation After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems National Database Study. Am. J. Phys. Med. Rehabil. 2023, 102, 137–143. [Google Scholar] [CrossRef]
- Yin, A.-A.; Zhang, X.; He, Y.-L.; Zhao, J.-J.; Zhang, X.; Fei, Z.; Lin, W.; Song, B.-Q. Machine learning prediction models for in-hospital postoperative functional outcome after moderate-to-severe traumatic brain injury. Eur. J. Trauma. Emerg. Surg. 2024, 50, 1219–1228. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Åkerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022, 21, 1004–1060. [Google Scholar] [CrossRef]
- Diaz-Arrastia, R. Performance of Diagnostic Biomarkers for Traumatic Brain Injury Within the First Hour-Expanding Their Clinical Utility. JAMA Netw. Open 2024, 7, e2431102. [Google Scholar] [CrossRef]
- Manley, G.T.; Dams-O’Connor, K.; Alosco, M.L.; Awwad, H.O.; Bazarian, J.J.; Bragge, P.; Corrigan, J.D.; Doperalski, A.; Ferguson, A.R.; Mac Donald, C.L.; et al. A new characterisation of acute traumatic brain injury: The NIH-NINDS TBI Classification and Nomenclature Initiative. Lancet Neurol. 2025, 24, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wen, Y.; Zhang, M.; Nie, J.; Sun, G. The Progress in Exploratory Studies of Peripheral Blood Single Nucleated Cells as Seed Cells in Peripheral Nerve Repair. Neural Plast. 2025, 2025, 8895041. [Google Scholar] [CrossRef]
- Baltrusch, S. The Role of Neurotropic B Vitamins in Nerve Regeneration. Biomed. Res. Int. 2021, 2021, 9968228. [Google Scholar] [CrossRef]
- Wu, F.; Xu, K.; Liu, L.; Zhang, K.; Xia, L.; Zhang, M.; Teng, C.; Tong, H.; He, Y.; Xue, Y.; et al. Vitamin B12 Enhances Nerve Repair and Improves Functional Recovery After Traumatic Brain Injury by Inhibiting ER Stress-Induced Neuron Injury. Front. Pharmacol. 2019, 10, 406. [Google Scholar] [CrossRef] [PubMed]
- Shahim, P.; Politis, A.; van der Merwe, A.; Moore, B.; Ekanayake, V.; Lippa, S.M.; Chou, Y.-Y.; Pham, D.L.; Butman, J.A.; Diaz-Arrastia, R.; et al. Time course and diagnostic utility of NfL, tau, GFAP, and UCH-L1 in subacute and chronic TBI. Neurology 2020, 95, e623–e636. [Google Scholar] [CrossRef] [PubMed]

| Drug/Class | Drug Class | Pain Treated | Mechanism of Action | Drawbacks/Precautions |
|---|---|---|---|---|
| Morphine | Opioid | Nociceptive | Modulates central nervous system pathways; may reduce sympathetic hyperactivity and exert anti-inflammatory effects through opioid receptor activation [42,43] | Respiratory depression, dependence, sedation, nausea, constipation, hypotension, histamine release, and abuse potential [42] |
| NSAIDs | Anti-inflammatory | Nociceptive/Headache | Inhibit COX-1 and COX-2 enzymes, reducing prostaglandin synthesis and peripheral sensitization [23] | Gastric mucosal injury, renal impairment, cardiovascular risk, hepatotoxicity, bleeding tendency [44] |
| Acetaminophen | Analgesic | Nociceptive/Headache | Inhibits central prostaglandin synthesis and modulates serotonergic descending pathways [24] | Hepatotoxicity at high doses, nephrotoxicity, cardiovascular risk [24] |
| Corticosteroids | Corticosteroid | Nonspecific | Suppress pro-inflammatory cytokine signaling and immune activation [41] | Hyperglycemia, osteoporosis, infection risk, hypertension, mood changes, gastrointestinal bleeding [41,45] |
| Gabapentin | Antiepileptic | Neuropathic | Binds to α2δ subunit of voltage-gated calcium channels; decreases excitatory neurotransmitter release [30] | Sedation, dizziness, peripheral edema, confusion [30] |
| Pregabalin | Antiepileptic | Neuropathic | Similar to gabapentin; reduces calcium influx and neurotransmitter release, improving neuropathic pain and sleep [31] | Somnolence, dizziness, weight gain, blurred vision, dependence risk [31] |
| TCAs (amitriptyline, nortriptyline) | Antidepressant | Neuropathic/Headache | Inhibit presynaptic reuptake of norepinephrine and serotonin, enhancing descending pain inhibition [25,46] | Anticholinergic effects (dry mouth, constipation, urinary retention, cognitive impairment), sedation, cardiac conduction abnormalities; doses must be minimized in TBI to avoid cognitive decline [26] |
| SNRIs (duloxetine, venlafaxine) | Antidepressant | Neuropathic | Block reuptake of serotonin and norepinephrine, augmenting descending inhibitory control [27,46] | Hypertension, nausea, insomnia, dry mouth, sexual dysfunction [27] |
| NRIs (reboxetine, atomoxetine) | Antidepressant | Neuropathic | Selectively inhibit norepinephrine reuptake to enhance descending noradrenergic pain modulation [28] | Increased heart rate, hypertension, insomnia, anxiety; limited TBI data [29] |
| SSRIs | Antidepressant | Nonspecific | Enhance serotonergic transmission; may help mood and comorbid anxiety [40,46] | Emotional blunting, weight gain, sexual dysfunction [47] |
| Baclofen | GABA agonist | Nociceptive | GABA-B receptor agonist; inhibits spinal excitatory neurotransmission, reducing spasticity [32] | Drowsiness, weakness, dizziness, urinary incontinence, sexual dysfunction [32] |
| Tizanidine | α2-adrenergic agonist | Nociceptive | Inhibits presynaptic motor neuron excitation and increases central noradrenergic tone [32] | Sedation, dry mouth, hypotension, hepatic enzyme elevation [32] |
| Beta-blockers (propranolol) | β-adrenergic receptor blocker | Headache | Decrease sympathetic tone and catecholamine release; preventive therapy for post-traumatic headache [33] | Bradycardia, hypotension, bronchospasm, depression, vivid dreams [34] |
| Topiramate | Antiepileptic/Migraine prophylactic | Headache | Enhances GABA activity, blocks voltage-gated sodium channels, inhibits glutamate receptors and carbonic anhydrase [37] | Cognitive slowing, paresthesia, kidney stones, metabolic acidosis, weight loss; avoid in nephrolithiasis or cognitive dysfunction [37] |
| Valproic acid/Divalproex | Antiepileptic/Headache prophylactic | Headache | Enhances GABAergic transmission and inhibits voltage-gated sodium channels [38] | Hepatotoxicity, weight gain, teratogenicity, tremor, sedation [38] |
| Anti-CGRP monoclonal antibodies (erenumab, fremanezumab, galcanezumab, eptinezumab) | CGRP receptor or ligand inhibitor | Headache | Block calcitonin gene-related peptide or its receptor, reducing neurogenic inflammation and trigeminovascular activation [39] | Injection-site reactions, constipation, hypertension (erenumab); limited data in TBI [39] |
| Triptans | Serotonin 5-HT1B/1D receptor agonist | Headache | Vasoconstrict cranial arteries and inhibit release of CGRP and substance P [35] | Fatigue, nausea, paresthesia; contraindicated in vascular disease [35] |
| Botulinum toxin A | Neurotoxin | Nociceptive/Headache | Blocks acetylcholine release at neuromuscular junction; inhibits peripheral and central sensitization [32] | Local muscle weakness, pain at injection site, dysphagia, falls [32] |
| Interventional procedures (cervical facet, occipital, supraorbital nerve blocks) | Interventional pain therapy | Nociceptive/Neuropathic/ Headache | Interrupt nociceptive input from cervical or cranial nerves, reducing central sensitization and pain chronification [22] | Temporary relief; risk of infection, bleeding, rare nerve injury; may require repeat sessions [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esneault, B.S.; Maddox, M.B.; Loewe, E.M.; Pappolla, M.A.; Parker-Actlis, T.Q.; Shekoohi, S.; Kaye, A.D. Pharmacologic and Nonpharmacologic Pain Management in Patients with Traumatic Brain Injury: A Multidisciplinary Approach. J. Clin. Med. 2025, 14, 8713. https://doi.org/10.3390/jcm14248713
Esneault BS, Maddox MB, Loewe EM, Pappolla MA, Parker-Actlis TQ, Shekoohi S, Kaye AD. Pharmacologic and Nonpharmacologic Pain Management in Patients with Traumatic Brain Injury: A Multidisciplinary Approach. Journal of Clinical Medicine. 2025; 14(24):8713. https://doi.org/10.3390/jcm14248713
Chicago/Turabian StyleEsneault, Benjamin S., Macie B. Maddox, Ethan M. Loewe, Miguel A. Pappolla, Tomasina Q. Parker-Actlis, Sahar Shekoohi, and Alan D. Kaye. 2025. "Pharmacologic and Nonpharmacologic Pain Management in Patients with Traumatic Brain Injury: A Multidisciplinary Approach" Journal of Clinical Medicine 14, no. 24: 8713. https://doi.org/10.3390/jcm14248713
APA StyleEsneault, B. S., Maddox, M. B., Loewe, E. M., Pappolla, M. A., Parker-Actlis, T. Q., Shekoohi, S., & Kaye, A. D. (2025). Pharmacologic and Nonpharmacologic Pain Management in Patients with Traumatic Brain Injury: A Multidisciplinary Approach. Journal of Clinical Medicine, 14(24), 8713. https://doi.org/10.3390/jcm14248713

