The Conundrum of Medical Fracture Prevention in Chronic Kidney Disease—Summary of the Evidence and Pragmatic Clinical Guidance
Abstract
1. Introduction
- Unclear underlying etiology: Even the foundation of any therapeutic approach—i.e., the precise identification of the cause of bone fragility—is often elusive. In aging CKD patients, leading etiologies such as osteoporosis, high and low turnover renal osteodystrophy, osteomalacia, medication effects, frailty, sarcopenia, and recurrent falls with their numerous common risk factors, are all plausible causes. Imaging and laboratory assessments lack diagnostic conclusiveness. Bone histomorphometry could frequently establish a definitive diagnosis thereby enabling treatment paths and targeted management. However, its invasiveness, complex interpretation, and uncertainty regarding effective and safe therapeutic options have led to its underuse in nephrology.
- Therapeutic complexity: Even when a diagnosis is established (e.g., osteoporosis or adynamic bone disease), treatment remains far from straightforward. Many pharmacologic agents are contraindicated or associated with increased risk in the setting of impaired renal function.
- Limited and inconsistent evidence: The available clinical data are either sparse—e.g., due to the frequent exclusion of patients with advanced CKD from clinical trials—or extensive but conflicting, as seen with interventions such as vitamin D analogues or calcium-based phosphate binders.
- Heterogeneous patient populations: Individuals with advanced CKD, those on dialysis, and kidney transplant recipients (KTRs) represent three distinct populations, among whom the extrapolation of study results is only partially valid.
2. Chronic Kidney Disease and Skeletal Health
Chronic Kidney Disease–Mineral and Bone Disorder
3. Calcium
3.1. Rationale and Guidelines
- -
- Normal kidney function: 1000–1300 mg (adjusted for age)
- -
- CKD stages 3–4: 800–1000 mg
- -
- CKD stage 5 non-dialysis: 800–1000 mg or less
- -
- Hemodialysis: No exact amounts provided; adjust individually, aiming for the lower range
3.2. Evidence on Fracture Prevention and Bone Mineral Density
3.3. Safety of Calcium Supplementation
3.4. Pragmatic Clinical Approach
4. Vitamin D
4.1. Rationale and Guidelines
4.2. Evidence on Fracture Prevention and Bone Mineral Density
4.3. Safety of Vitamin D Supplementation
4.4. Pragmatic Clinical Approach
5. Phosphate Binders
5.1. Rationale and Guidelines
5.2. Evidence on Fracture Prevention and Bone Mineral Density
5.3. Safety
5.4. Pragmatic Clinical Approach
6. Calcimimetics
6.1. Rationale and Guidelines
6.2. Evidence on Fracture Prevention and Bone Mineral Density
6.3. Safety
6.4. Pragmatic Clinical Approach
7. Bisphosphonates
Evidence on Fracture Prevention and Bone Mineral Density
8. Denosumab
8.1. Rationale and Guidelines
8.2. Evidence on Fracture Prevention and Bone Mineral Density
8.3. Kidney Transplant:
8.4. Safety of Denosumab
8.5. Pragmatic Clinical Approach
9. Romosozumab
9.1. Rationale and Guidelines
9.2. Evidence on Fracture Prevention and Bone Mineral Density
9.3. Safety of Romosozumab
9.4. Pragmatic Clinical Approach
10. Teriparatide
10.1. Rationale and Guidelines
10.2. Evidence on Fracture Prevention and Bone Mineral Density
10.3. Safety
10.4. Pragmatic Clinical Approach
11. Cost-Effectiveness
12. Limitation
13. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ketteler, M.; Evenepoel, P.; Holden, R.M.; Isakova, T.; Jørgensen, H.S.; Komaba, H.; Nickolas, T.L.; Sinha, S.; Vervloet, M.G.; Cheung, M.; et al. Chronic kidney disease-mineral and bone disorder: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2025, 107, 405–423. [Google Scholar] [CrossRef]
- KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59. [CrossRef] [PubMed]
- Jørgensen, H.S.; Behets, G.; Viaene, L.; Bammens, B.; Claes, K.; Meijers, B.; Naesens, M.; Sprangers, B.; Kuypers, D.; Cavalier, E.; et al. Diagnostic Accuracy of Noninvasive Bone Turnover Markers in Renal Osteodystrophy. Am. J. Kidney Dis. 2022, 79, 667–676.e661. [Google Scholar] [CrossRef]
- Salam, S.; Gallagher, O.; Gossiel, F.; Paggiosi, M.; Khwaja, A.; Eastell, R. Diagnostic Accuracy of Biomarkers and Imaging for Bone Turnover in Renal Osteodystrophy. J. Am. Soc. Nephrol. 2018, 29, 1557–1565. [Google Scholar] [CrossRef]
- Sprague, S.M.; Bellorin-Font, E.; Jorgetti, V.; Carvalho, A.B.; Malluche, H.H.; Ferreira, A.; D′Haese, P.C.; Drüeke, T.B.; Du, H.; Manley, T.; et al. Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis. Am. J. Kidney Dis. 2016, 67, 559–566. [Google Scholar] [CrossRef]
- Isakova, T.; Nickolas, T.L.; Denburg, M.; Yarlagadda, S.; Weiner, D.E.; Gutiérrez, O.M.; Bansal, V.; Rosas, S.E.; Nigwekar, S.; Yee, J.; et al. KDOQI US Commentary on the 2017 KDIGO Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Am. J. Kidney Dis. 2017, 70, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Hercz, G.; Pei, Y.; Greenwood, C.; Manuel, A.; Saiphoo, C.; Goodman, W.G.; Segre, G.V.; Fenton, S.; Sherrard, D.J. Aplastic osteodystrophy without aluminum: The role of "suppressed" parathyroid function. Kidney Int. 1993, 44, 860–866. [Google Scholar] [CrossRef] [PubMed]
- National Health Service (NHS). Calcium [Internet]. NHS; 2020. Available online: https://www.nhs.uk/conditions/vitamins-and-minerals/calcium/ (accessed on 25 October 2025).
- German Nutrition Society. New reference values for calcium. Ann. Nutr. Metab. 2013, 63, 186–192. [Google Scholar] [CrossRef]
- Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. The National Academies Collection: Reports funded by National Institutes of Health. In Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press: Washington, DC, USA, 2011; Copyright © 2011, National Academy of Sciences: Washington, DC, USA. [Google Scholar]
- Gregson, C.L.; Armstrong, D.J.; Bowden, J.; Cooper, C.; Edwards, J.; Gittoes, N.J.L.; Harvey, N.; Kanis, J.; Leyland, S.; Low, R.; et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch. Osteoporos. 2022, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.; Lippuner, K.; Lamy, O.; Meier, C. 2020 recommendations for osteoporosis treatment according to fracture risk from the Swiss Association against Osteoporosis (SVGO). Swiss Med. Wkly 2020, 150, w20352. [Google Scholar] [CrossRef]
- Pfeil, A.; Lange, U. Update on the DVO Guideline 2023 “Prophylaxis, diagnosis and treatment of osteoporosis in postmenopausal women and in men aged over 50”-What’s new for rheumatology? Z. fur Rheumatol. 2024, 83, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Bone Health and Osteoporosis Foundation (BHOF). Get the Facts on Calcium and Vitamin D [Internet]. BHOF. Available online: https://www.bonehealthandosteoporosis.org/patients/treatment/calciumvitamin-d/get-the-facts-on-calcium-and-vitamin-d/?utm_source=chatgpt.com (accessed on 25 October 2025).
- International Osteoporossis Foundation (IOF). Prevention [Internet]. IOF. Available online: https://www.osteoporosis.foundation/health-professionals/prevention/nutrition/calcium (accessed on 25 October 2025).
- Osteoporosis Canada (OC). Calcium [Internet]. OC. Available online: https://osteoporosis.ca/calcium/ (accessed on 25 October 2025).
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2020 UPDATE. Endocr. Pr. 2020, 26, 1–46. [Google Scholar] [CrossRef]
- Wong, P.; Chen, W.; Ewald, D.; Girgis, C.; Rawlin, M.; Tsingos, J.; Waters, J. 2024 Royal Australian College of General Practitioners and Healthy Bones Australia guideline for osteoporosis management and fracture prevention in postmenopausal women and men over 50 years of age. Med. J. Aust. 2025, 222, 472–480. [Google Scholar] [CrossRef]
- Evenepoel, P.; Cunningham, J.; Ferrari, S.; Haarhaus, M.; Javaid, M.K.; Lafage-Proust, M.H.; Prieto-Alhambra, D.; Torres, P.U.; Cannata-Andia, J. European Consensus Statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4-G5D. Nephrol. Dial. Transplant. 2021, 36, 42–59. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Fouque, D. Nutritional Management of Chronic Kidney Disease. N. Engl. J. Med. 2017, 377, 1765–1776. [Google Scholar] [CrossRef]
- Ruospo, M.; Palmer, S.C.; Natale, P.; Craig, J.C.; Vecchio, M.; Elder, G.J.; Strippoli, G.F. Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database Syst. Rev. 2018, 8, Cd006023. [Google Scholar] [CrossRef]
- Hsu, S.; Bansal, N.; Denburg, M.; Ginsberg, C.; Hoofnagle, A.N.; Isakova, T.; Ix, J.H.; Robinson-Cohen, C.; Wolf, M.; Kestenbaum, B.R.; et al. Risk factors for hip and vertebral fractures in chronic kidney disease: The CRIC study. J. Bone Miner. Res. 2024, 39, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Z.X.; Fu, C.S.; Ye, Z.B.; Jin, H.M.; Yang, X.H. Association of aberrant mineral metabolic markers with fracture risk in chronic kidney disease: A comprehensive meta-analysis. BMC Nephrol. 2025, 26, 68. [Google Scholar] [CrossRef] [PubMed]
- Ogata, H.; Fukagawa, M.; Hirakata, H.; Kagimura, T.; Fukushima, M.; Akizawa, T. Effect of Treating Hyperphosphatemia with Lanthanum Carbonate vs Calcium Carbonate on Cardiovascular Events in Patients With Chronic Kidney Disease Undergoing Hemodialysis: The LANDMARK Randomized Clinical Trial. JAMA 2021, 325, 1946–1954. [Google Scholar] [CrossRef]
- Wada, K.; Wada, Y.; Uchida, H.A.; Tsuruoka, S. Effects of lanthanum carbonate versus calcium carbonate on vascular stiffness and bone mineral metabolism in hemodialysis patients with type 2 diabetes mellitus: A randomized controlled trial. Int. J. Nephrol. Renovasc Dis. 2015, 8, 111–118. [Google Scholar] [CrossRef]
- Toussaint, N.D.; Lau, K.K.; Polkinghorne, K.R.; Kerr, P.G. Attenuation of aortic calcification with lanthanum carbonate versus calcium-based phosphate binders in haemodialysis: A pilot randomized controlled trial. Nephrology 2011, 16, 290–298. [Google Scholar] [CrossRef]
- Rudnicki, M.; Hyldstrup, L.; Petersen, L.J.; Højsted, J.; Transbøl, I. Effect of oral calcium on noninvasive indices of bone formation and bone mass in hemodialysis patients: A randomized double-blind placebo-controlled study. Miner. Electrolyte Metab. 1994, 20, 130–134. [Google Scholar]
- Kato, K.; Nakashima, A.; Morishita, M.; Ohkido, I.; Yokoo, T. Calcium-based phosphate binders and bone mineral density in patients undergoing hemodialysis: A retrospective cohort study. Clin. Exp. Nephrol. 2024, 28, 917–924. [Google Scholar] [CrossRef]
- Hashimoto, H.; Shikuma, S.; Mandai, S.; Adachi, S.; Uchida, S. Calcium-based phosphate binder use is associated with lower risk of osteoporosis in hemodialysis patients. Sci. Rep. 2021, 11, 1648. [Google Scholar] [CrossRef]
- KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Siracusa, C.; Carabetta, N.; Morano, M.B.; Manica, M.; Strangio, A.; Sabatino, J.; Leo, I.; Castagna, A.; Cianflone, E.; Torella, D.; et al. Understanding Vascular Calcification in Chronic Kidney Disease: Pathogenesis and Therapeutic Implications. Int. J. Mol. Sci. 2024, 25, 13096. [Google Scholar] [CrossRef] [PubMed]
- Raggi, P.; Boulay, A.; Chasan-Taber, S.; Amin, N.; Dillon, M.; Burke, S.K.; Chertow, G.M. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J. Am. Coll. Cardiol. 2002, 39, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Jørgensen, H.S.; Bover, J.; Davenport, A.; Bacchetta, J.; Haarhaus, M.; Hansen, D.; Gracia-Iguacel, C.; Ketteler, M.; McAlister, L.; et al. Recommended calcium intake in adults and children with chronic kidney disease-a European consensus statement. Nephrol. Dial. Transplant. 2024, 39, 341–366. [Google Scholar] [CrossRef]
- Fernández-Martín, J.L.; Martínez-Camblor, P.; Dionisi, M.P.; Floege, J.; Ketteler, M.; London, G.; Locatelli, F.; Gorriz, J.L.; Rutkowski, B.; Ferreira, A.; et al. Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients: The COSMOS study. Nephrol. Dial. Transplant. 2015, 30, 1542–1551. [Google Scholar] [CrossRef]
- Dunlop, E.; Pham, N.M.; Van Hoang, D.; Mazahery, H.; Neo, B.; Shrapnel, J.; Kalmpourtzidou, A.; Chai, K.E.K.; Ng, L.; Black, L.J. A systematic review and meta-analysis of circulating 25-hydroxyvitamin D concentration and vitamin D status worldwide. J. Public Health 2025, fdaf080. [Google Scholar] [CrossRef]
- Levin, A.; Bakris, G.L.; Molitch, M.; Smulders, M.; Tian, J.; Williams, L.A.; Andress, D.L. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: Results of the study to evaluate early kidney disease. Kidney Int. 2007, 71, 31–38. [Google Scholar] [CrossRef]
- Niculescu, D.A.; Deacu, L.G.; Caragheorgheopol, A.; Popescu, N.; Ghemigian, A.; Procopiuc, C.; Rosca, R.; Poiana, C. Combined Effects of Vitamin D Status, Renal Function and Age on Serum Parathyroid Hormone Levels. Front. Endocrinol. 2021, 12, 657991. [Google Scholar] [CrossRef]
- Yeung, W.G.; Palmer, S.C.; Strippoli, G.F.M.; Talbot, B.; Shah, N.; Hawley, C.M.; Toussaint, N.D.; Badve, S.V. Vitamin D Therapy in Adults With CKD: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2023, 82, 543–558. [Google Scholar] [CrossRef]
- Khelifi, N.; Desbiens, L.C.; Sidibé, A.; Mac-Way, F. Vitamin D Analogues and Fracture Risk in Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. JBMR Plus 2022, 6, e10611. [Google Scholar] [CrossRef]
- Young, T.K.; Toussaint, N.D.; Di Tanna, G.L.; Arnott, C.; Hockham, C.; Kang, A.; Schutte, A.E.; Perkovic, V.; Mahaffey, K.W.; Agarwal, R.; et al. Risk Factors for Fracture in Patients with Coexisting Chronic Kidney Disease and Type 2 Diabetes: An Observational Analysis from the CREDENCE Trial. J. Diabetes Res. 2022, 2022, 9998891. [Google Scholar] [CrossRef]
- Thadhani, R.; Appelbaum, E.; Pritchett, Y.; Chang, Y.; Wenger, J.; Tamez, H.; Bhan, I.; Agarwal, R.; Zoccali, C.; Wanner, C.; et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: The PRIMO randomized controlled trial. JAMA 2012, 307, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Desbiens, L.C.; Goupil, R.; Sidibé, A.; Madore, F.; Mac-Way, F. Fracture status in middle-aged individuals with early CKD: Cross-sectional analysis of the CARTaGENE survey. Osteoporos. Int. 2019, 30, 787–795. [Google Scholar] [CrossRef]
- Rix, M.; Eskildsen, P.; Olgaard, K. Effect of 18 months of treatment with alfacalcidol on bone in patients with mild to moderate chronic renal failure. Nephrol. Dial. Transplant. 2004, 19, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Bosworth, C.; de Boer, I.H.; Targher, G.; Kendrick, J.; Smits, G.; Chonchol, M. The effect of combined calcium and cholecalciferol supplementation on bone mineral density in elderly women with moderate chronic kidney disease. Clin. Nephrol. 2012, 77, 358–365. [Google Scholar] [CrossRef] [PubMed]
- Przedlacki, J.; Manelius, J.; Huttunen, K. Bone mineral density evaluated by dual-energy X-ray absorptiometry after one-year treatment with calcitriol started in the predialysis phase of chronic renal failure. Nephron 1995, 69, 433–437. [Google Scholar] [CrossRef]
- Komaba, H.; Zhao, J.; Karaboyas, A.; Yamamoto, S.; Dasgupta, I.; Hassan, M.; Zuo, L.; Christensson, A.; Combe, C.; Robinson, B.M.; et al. Active Vitamin D Use and Fractures in Hemodialysis Patients: Results from the International DOPPS. J. Bone Miner. Res. 2023, 38, 1577–1585. [Google Scholar] [CrossRef]
- Moe, S.M.; Abdalla, S.; Chertow, G.M.; Parfrey, P.S.; Block, G.A.; Correa-Rotter, R.; Floege, J.; Herzog, C.A.; London, G.M.; Mahaffey, K.W.; et al. Effects of Cinacalcet on Fracture Events in Patients Receiving Hemodialysis: The EVOLVE Trial. J. Am. Soc. Nephrol. 2015, 26, 1466–1475. [Google Scholar] [CrossRef]
- Thadhani, R.; Zella, J.B.; Knutson, D.C.; Blaser, W.J.; Plum, L.A.; Clagett-Dame, M.; Buck, R.D.; DeLuca, H.F. 2MD (DP001), a Single Agent in the Management of Hemodialysis Patients: A Randomized Trial. Am. J. Nephrol. 2017, 45, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.R.; Muir, J.W.; Sharman, V.L.; Abrams, S.M.; Greenwood, R.N.; Cattell, W.R.; Goodwin, F.J.; Marsh, F.P.; Adami, S.; Hately, W.; et al. Controlled trial of calcitriol in hemodialysis patients. Clin. Nephrol. 1986, 26, 185–191. [Google Scholar] [PubMed]
- Shoji, T.; Inaba, M.; Fukagawa, M.; Ando, R.; Emoto, M.; Fujii, H.; Fujimori, A.; Fukui, M.; Hase, H.; Hashimoto, T.; et al. Effect of Oral Alfacalcidol on Clinical Outcomes in Patients Without Secondary Hyperparathyroidism Receiving Maintenance Hemodialysis: The J-DAVID Randomized Clinical Trial. JAMA 2018, 320, 2325–2334. [Google Scholar] [CrossRef]
- Brimble, K.S.; Ganame, J.; Margetts, P.; Jain, A.; Perl, J.; Walsh, M.; Bosch, J.; Yusuf, S.; Beshay, S.; Su, W.; et al. Impact of Bioelectrical Impedance-Guided Fluid Management and Vitamin D Supplementation on Left Ventricular Mass in Patients Receiving Peritoneal Dialysis: A Randomized Controlled Trial. Am. J. Kidney Dis. 2022, 79, 820–831. [Google Scholar] [CrossRef]
- Sook Mee Son, J.K.P. The Effect of 6 Month Alphacalcidol Treatment or Nutrition Education on the Nutrient Intakes, Bone Mineral Density and Bone Markers in Continuous Ambulatory Peritoneal Dialysis Patients. Korean J. Community Nutr. 2006, 11, 793–807. [Google Scholar]
- Dey, V.; Farrah, T.E.; Traynor, J.P.; Spalding, E.M.; Robertson, S.E.; Geddes, C.C. Symptomatic fracture risk in the renal replacement therapy population. Nephrol. Dial. Transplant. 2016, 32, 1211–1216. [Google Scholar] [CrossRef]
- Matias, P.J.; Laranjinha, I.; Azevedo, A.; Raimundo, A.; Navarro, D.; Jorge, C.; Aires, I.; Mendes, M.; Ferreira, C.; Amaral, T.; et al. Bone fracture risk factors in prevalent hemodialysis patients. J. Bone Miner. Metab. 2020, 38, 205–212. [Google Scholar] [CrossRef]
- Fusaro, M.; Cianciolo, G.; Tripepi, G.; Plebani, M.; Aghi, A.; Politi, C.; Zaninotto, M.; Nickolas, T.L.; Ferrari, S.; Ketteler, M.; et al. Oral Calcitriol Use, Vertebral Fractures, and Vitamin K in Hemodialysis Patients: A Cross-Sectional Study. J. Bone Miner. Res. 2021, 36, 2361–2370. [Google Scholar] [CrossRef]
- Murashima, M.; Hamano, T.; Nishiyama, T.; Tsuruya, K.; Ogata, S.; Kanda, E.; Abe, M.; Masakane, I.; Nitta, K. Performance Status Modifies the Association Between Vitamin D Receptor Activator and Mortality or Fracture: A Prospective Cohort Study on the Japanese Society for Dialysis Therapy (JSDT) Renal Data Registry. J. Bone Miner. Res. 2022, 37, 1489–1499. [Google Scholar] [CrossRef]
- Brunerová, L.; Lažanská, R.; Kasalický, P.; Verešová, J.; Potočková, J.; Fialová, A.; Rychlík, I. Predictors of bone fractures in a single-centre cohort of hemodialysis patients: A 2-year follow-up study. Int. Urol. Nephrol. 2018, 50, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Courbebaisse, M.; Bourmaud, A.; Souberbielle, J.C.; Sberro-Soussan, R.; Moal, V.; Le Meur, Y.; Kamar, N.; Albano, L.; Thierry, A.; Dantal, J.; et al. Nonskeletal and skeletal effects of high doses versus low doses of vitamin D(3) in renal transplant recipients: Results of the VITALE (VITamin D supplementation in renAL transplant recipients) study, a randomized clinical trial. Am. J. Transplant. 2023, 23, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Campos-Obando, N.; Koek, W.N.H.; Hooker, E.R.; van der Eerden, B.C.; Pols, H.A.; Hofman, A.; van Leeuwen, J.P.; Uitterlinden, A.G.; Nielson, C.M.; Zillikens, M.C. Serum Phosphate Is Associated With Fracture Risk: The Rotterdam Study and MrOS. J. Bone Miner. Res. 2017, 32, 1182–1193. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.L.; Mendes, F.; Carias, E.; Rato, F.; Santos, N.; Neves, P.L.; Silva, A.P. FGF23-klotho axis as predictive factors of fractures in type 2 diabetics with early chronic kidney disease. J. Diabetes Complications 2020, 34, 107476. [Google Scholar] [CrossRef]
- Desbiens, L.C.; Sidibé, A.; Ung, R.V.; Mac-Way, F. FGF23-Klotho Axis and Fractures in Patients Without and With Early CKD: A Case-Cohort Analysis of CARTaGENE. J. Clin. Endocrinol. Metab. 2022, 107, e2502–e2512. [Google Scholar] [CrossRef]
- Kwon, Y.E.; Choi, H.Y.; Kim, S.; Ryu, D.R.; Oh, H.J. Fracture risk in chronic kidney disease: A Korean population-based cohort study. Kidney Res. Clin. Pract. 2019, 38, 220–228. [Google Scholar] [CrossRef]
- Natale, P.; Green, S.C.; Ruospo, M.; Craig, J.C.; Vecchio, M.; Elder, G.J.; Strippoli, G.F. Phosphate binders for preventing and treating chronic kidney disease-mineral and bone disorder (CKD-MBD). Cochrane Database Syst. Rev. 2025, 6, Cd006023. [Google Scholar] [CrossRef]
- Barrera-Baena, P.; Rodríguez-García, M.; Rodríguez-Rubio, E.; González-Llorente, L.; Ortiz, A.; Zoccali, C.; Locatelli, F.; Floege, J.; Cohen-Solal, M.; Ferreira, M.A.; et al. Serum phosphate is associated with increased risk of bone fragility fractures in haemodialysis patients. Nephrol. Dial. Transplant. 2024, 39, 618–626. [Google Scholar] [CrossRef]
- Block, G.A.; Klassen, P.S.; Lazarus, J.M.; Ofsthun, N.; Lowrie, E.G.; Chertow, G.M. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J. Am. Soc. Nephrol. 2004, 15, 2208–2218. [Google Scholar] [CrossRef]
- Kim, J.E.; Park, J.; Jang, Y.; Kang, E.; Kim, Y.C.; Kim, D.K.; Joo, K.W.; Kim, Y.S.; Lee, H. Oral phosphate binders and incident osteoporotic fracture in patients on dialysis. Nephrol. Dial. Transplant. 2025, 40, 329–340. [Google Scholar] [CrossRef]
- Udomkarnjananun, S.; Phannajit, J.; Takkavatakarn, K.; Tumkosit, M.; Kingpetch, K.; Avihingsanon, Y.; Praditpornsilpa, K.; Eiam-Ong, S.; Susantitaphong, P. Effects of phosphate binders on bone biomarkers and bone density in haemodialysis patients. Nephrology 2022, 27, 441–449. [Google Scholar] [CrossRef]
- Aleksova, J.; Wong, P.; Mulley, W.R.; Choy, K.W.; McLachlan, R.; Ebeling, P.R.; Kerr, P.G.; Milat, F. Serum phosphorus levels and fracture following renal transplantation. Clin. Endocrinol. 2017, 87, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Methven, S.; Gasparini, A.; Barany, P.; Birnie, K.; MacNeill, S.; May, M.T.; Caskey, F.J.; Carrero, J.J. Cinacalcet use and the risk of cardiovascular events, fractures and mortality in chronic kidney disease patients with secondary hyperparathyroidism. Sci. Rep. 2018, 8, 2103. [Google Scholar] [CrossRef]
- Lien, Y.H.; Silva, A.L.; Whittman, D. Effects of cinacalcet on bone mineral density in patients with secondary hyperparathyroidism. Nephrol. Dial. Transplant. 2005, 20, 1232–1237. [Google Scholar] [CrossRef]
- Wakamatsu, T.; Yamamoto, S.; Matsuo, K.; Taniguchi, M.; Hamano, T.; Fukagawa, M.; Kazama, J.J. Effectiveness of calcimimetics on fractures in dialysis patients with secondary hyperparathyroidism: Meta-analysis of randomized trials. J. Bone Miner. Metab. 2024, 42, 316–325. [Google Scholar] [CrossRef]
- Cunningham, J.; Danese, M.; Olson, K.; Klassen, P.; Chertow, G.M. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005, 68, 1793–1800. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Mavridis, D.; Johnson, D.W.; Tonelli, M.; Ruospo, M.; Strippoli, G.F.M. Comparative Effectiveness of Calcimimetic Agents for Secondary Hyperparathyroidism in Adults: A Systematic Review and Network Meta-analysis. Am. J. Kidney Dis. 2020, 76, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Block, G.A.; Chertow, G.M.; Sullivan, J.T.; Deng, H.; Mather, O.; Tomlin, H.; Serenko, M. An integrated analysis of safety and tolerability of etelcalcetide in patients receiving hemodialysis with secondary hyperparathyroidism. PLoS ONE 2019, 14, e0213774. [Google Scholar] [CrossRef]
- Wang, G.; Liu, H.; Wang, C.; Ji, X.; Gu, W.; Mu, Y. Cinacalcet versus Placebo for secondary hyperparathyroidism in chronic kidney disease patients: A meta-analysis of randomized controlled trials and trial sequential analysis. Sci. Rep. 2018, 8, 3111. [Google Scholar] [CrossRef]
- Komaba, H.; Hamano, T.; Fujii, N.; Moriwaki, K.; Wada, A.; Masakane, I.; Nitta, K.; Fukagawa, M. Parathyroidectomy vs Cinacalcet Among Patients Undergoing Hemodialysis. J. Clin. Endocrinol. Metab. 2022, 107, 2016–2025. [Google Scholar] [CrossRef]
- Eddington, H.; Chinnadurai, R.; Alderson, H.; Ibrahim, S.T.; Chrysochou, C.; Green, D.; Erekosima, I.; Hutchison, A.; Bubtana, A.; Hegarty, J.; et al. A randomised controlled trial to examine the effects of cinacalcet on bone and cardiovascular parameters in haemodialysis patients with advanced secondary hyperparathyroidism. BMC Nephrol. 2021, 22, 106. [Google Scholar] [CrossRef]
- Wang, A.Y.; Tang, T.K.; Yau, Y.Y.; Lo, W.K. Impact of Parathyroidectomy Versus Oral Cinacalcet on Bone Mineral Density in Patients on Peritoneal Dialysis With Advanced Secondary Hyperparathyroidism: The PROCEED Pilot Randomized Trial. Am. J. Kidney Dis. 2024, 83, 456–466.e451. [Google Scholar] [CrossRef]
- Hung, K.C.; Chang, J.F.; Hsu, Y.H.; Hsieh, C.Y.; Wu, M.S.; Wu, M.Y.; Chiu, I.J.; Syu, R.S.; Wang, T.M.; Wu, C.C.; et al. Therapeutic Effect of Calcimimetics on Osteoclast-Osteoblast Crosslink in Chronic Kidney Disease and Mineral Bone Disease. Int. J. Mol. Sci. 2020, 21, 8712. [Google Scholar] [CrossRef]
- Khairallah, P.; Cherasard, J.; Sung, J.; Agarwal, S.; Aponte, M.A.; Bucovsky, M.; Fusaro, M.; Silberzweig, J.; Frumkin, G.N.; El Hachem, K.; et al. Changes in Bone Quality after Treatment with Etelcalcetide. Clin. J. Am. Soc. Nephrol. 2023, 18, 1456–1465. [Google Scholar] [CrossRef]
- Behets, G.J.; Spasovski, G.; Sterling, L.R.; Goodman, W.G.; Spiegel, D.M.; De Broe, M.E.; D’Haese, P.C. Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int. 2015, 87, 846–856. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Cooper, K.; Holdaas, H.; Messa, P.; Mourad, G.; Olgaard, K.; Rutkowski, B.; Schaefer, H.; Deng, H.; Torregrosa, J.V.; et al. A randomized study evaluating cinacalcet to treat hypercalcemia in renal transplant recipients with persistent hyperparathyroidism. Am. J. Transplant. 2014, 14, 2545–2555. [Google Scholar] [CrossRef]
- Moreno, P.; Coloma, A.; Torregrosa, J.V.; Montero, N.; Francos, J.; Codina, S.; Manonelles, A.; Bestard, O.; García-Barrasa, A.; Melilli, E.; et al. Long-term results of a randomized study comparing parathyroidectomy with cinacalcet for treating tertiary hyperparathyroidism. Clin. Transplant. 2020, 34, e13988. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.D.; Roux, C.; Boonen, S.; Barton, I.P.; Dunlap, L.E.; Burgio, D.E. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: A pooled analysis of nine clinical trials. J. Bone Miner. Res. 2005, 20, 2105–2115. [Google Scholar] [CrossRef] [PubMed]
- Jamal, S.A.; Bauer, D.C.; Ensrud, K.E.; Cauley, J.A.; Hochberg, M.; Ishani, A.; Cummings, S.R. Alendronate treatment in women with normal to severely impaired renal function: An analysis of the fracture intervention trial. J. Bone Miner. Res. 2007, 22, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, R.; MacDonald, K.; Tangri, N.; Walsh, M.; Collister, D. The Efficacy and Safety of Bisphosphonate Therapy for Osteopenia/Osteoporosis in Patients with Chronic Kidney Disease: A Systematic Review and Individual Patient-Level Meta-Analysis of Placebo-Controlled Randomized Trials. Can. J. Kidney Health Dis. 2024, 11, 20543581241283523. [Google Scholar] [CrossRef]
- Toussaint, N.D.; Lau, K.K.; Strauss, B.J.; Polkinghorne, K.R.; Kerr, P.G. Effect of alendronate on vascular calcification in CKD stages 3 and 4: A pilot randomized controlled trial. Am. J. Kidney Dis. 2010, 56, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S.; Ernst, M.; Robinson, D.E.; Caskey, F.; Arden, N.K.; Ben-Shlomo, Y.; Nybo, M.; Rubin, K.H.; Judge, A.; Cooper, C.; et al. Alendronate use and bone mineral density gains in women with moderate-severe (stages 3B-5) chronic kidney disease: An open cohort multivariable and propensity score analysis from Funen, Denmark. Arch. Osteoporos. 2020, 15, 81. [Google Scholar] [CrossRef]
- Aggarwal, H.K.; Jain, D.; Chhabra, P.; Yadav, R.K. Effects of Short Term Alendronate Administration on Bone Mineral Density in Patients with Chronic Kidney Disease. Prilozi 2018, 39, 5–13. [Google Scholar] [CrossRef]
- Bergner, R.; Henrich, D.; Hoffmann, M.; Schmidt-Gayk, H.; Lenz, T.; Upperkamp, M. Treatment of reduced bone density with ibandronate in dialysis patients. J. Nephrol. 2008, 21, 510–516. [Google Scholar]
- Torregrosa, J.V.; Moreno, A.; Mas, M.; Ybarra, J.; Fuster, D. Usefulness of pamidronate in severe secondary hyperparathyroidism in patients undergoing hemodialysis. Kidney Int. Suppl. 2003, 63, S88–S90. [Google Scholar] [CrossRef]
- Leng, Y.; Yu, X.; Yang, Y.; Xia, Y. Efficacy and safety of medications for osteoporosis in kidney transplant recipients or patients with chronic kidney disease: A meta-analysis. J. Investig. Med. 2023, 71, 760–772. [Google Scholar] [CrossRef]
- Wilson, L.M.; Rebholz, C.M.; Jirru, E.; Liu, M.C.; Zhang, A.; Gayleard, J.; Chu, Y.; Robinson, K.A. Benefits and Harms of Osteoporosis Medications in Patients With Chronic Kidney Disease: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2017, 166, 649–658. [Google Scholar] [CrossRef]
- Toth-Manikowski, S.M.; Francis, J.M.; Gautam, A.; Gordon, C.E. Outcomes of bisphosphonate therapy in kidney transplant recipients: A systematic review and meta-analysis. Clin. Transplant. 2016, 30, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.C.; Chung, E.Y.; McGregor, D.O.; Bachmann, F.; Strippoli, G.F. Interventions for preventing bone disease in kidney transplant recipients. Cochrane Database Syst. Rev. 2019, 10, Cd005015. [Google Scholar] [CrossRef]
- Palmer, S.C.; Strippoli, G.F.; McGregor, D.O. Interventions for preventing bone disease in kidney transplant recipients: A systematic review of randomized controlled trials. Am. J. Kidney Dis. 2005, 45, 638–649. [Google Scholar] [CrossRef]
- Kahwaji, J.M.; Yang, S.J.; Sim, J.J.; Parke, C.Y.; Lee, R.L. Bisphosphonate Use after Kidney Transplantation Is Associated with Lower Fracture Risk. Clin. J. Am. Soc. Nephrol. 2024, 20, 267–276. [Google Scholar] [CrossRef]
- Jeon, H.J.; Han, M.; Jeong, J.C.; Kim, Y.J.; Kwon, H.Y.; Koo, T.Y.; Ahn, C.; Yang, J. Impact of vitamin D, bisphosphonate, and combination therapy on bone mineral density in kidney transplant patients. Transplant. Proc. 2013, 45, 2963–2967. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, S.; Deng, L.; Tang, X.; Li, X.; Wei, Q.; Fu, P. Outcomes of bisphosphonate and its supplements for bone loss in kidney transplant recipients: A systematic review and network meta-analysis. BMC Nephrol. 2018, 19, 269. [Google Scholar] [CrossRef]
- Georgopoulou, G.A.; Papasotiriou, M.; Ntrinias, T.; Savvidaki, E.; Goumenos, D.S.; Papachristou, E. Impact of bisphosphonate treatment on bone mineral density after kidney transplant. World J. Transplant. 2024, 14, 92335. [Google Scholar] [CrossRef]
- Chang, J.T.; Green, L.; Beitz, J. Renal failure with the use of zoledronic acid. N. Engl. J. Med. 2003, 349, 1676–1679; discussion 1676–1679. [Google Scholar] [CrossRef] [PubMed]
- Munier, A.; Gras, V.; Andrejak, M.; Bernard, N.; Jean-Pastor, M.J.; Gautier, S.; Biour, M.; Massy, Z. Zoledronic Acid and renal toxicity: Data from French adverse effect reporting database. Ann. Pharmacother. 2005, 39, 1194–1197. [Google Scholar] [CrossRef] [PubMed]
- Rosen, L.S.; Gordon, D.; Kaminski, M.; Howell, A.; Belch, A.; Mackey, J.; Apffelstaedt, J.; Hussein, M.; Coleman, R.E.; Reitsma, D.J.; et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: A phase III, double-blind, comparative trial. Cancer J. 2001, 7, 377–387. [Google Scholar] [PubMed]
- Oh, W.K.; Proctor, K.; Nakabayashi, M.; Evan, C.; Tormey, L.K.; Daskivich, T.; Antràs, L.; Smith, M.; Neary, M.P.; Duh, M.S. The risk of renal impairment in hormone-refractory prostate cancer patients with bone metastases treated with zoledronic acid. Cancer 2007, 109, 1090–1096. [Google Scholar] [CrossRef]
- Perazella, M.A.; Markowitz, G.S. Bisphosphonate nephrotoxicity. Kidney Int. 2008, 74, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Berenson, J.R.; Lichtenstein, A.; Porter, L.; Dimopoulos, M.A.; Bordoni, R.; George, S.; Lipton, A.; Keller, A.; Ballester, O.; Kovacs, M.J.; et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N. Engl. J. Med. 1996, 334, 488–493. [Google Scholar] [CrossRef]
- Lipton, A.; Theriault, R.L.; Hortobagyi, G.N.; Simeone, J.; Knight, R.D.; Mellars, K.; Reitsma, D.J.; Heffernan, M.; Seaman, J.J. Pamidronate prevents skeletal complications and is effective palliative treatment in women with breast carcinoma and osteolytic bone metastases: Long term follow-up of two randomized, placebo-controlled trials. Cancer 2000, 88, 1082–1090. [Google Scholar] [CrossRef]
- Rosen, L.S.; Gordon, D.; Tchekmedyian, S.; Yanagihara, R.; Hirsh, V.; Krzakowski, M.; Pawlicki, M.; de Souza, P.; Zheng, M.; Urbanowitz, G.; et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: A phase III, double-blind, randomized trial--the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J. Clin. Oncol. 2003, 21, 3150–3157. [Google Scholar] [CrossRef] [PubMed]
- Body, J.J.; Diel, I.J.; Lichinitser, M.R.; Kreuser, E.D.; Dornoff, W.; Gorbunova, V.A.; Budde, M.; Bergström, B. Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases. Ann. Oncol. 2003, 14, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Body, J.J.; Diel, I.J.; Tripathy, D.; Bergstrom, B. Intravenous ibandronate does not affect time to renal function deterioration in patients with skeletal metastases from breast cancer: Phase III trial results. Eur. J. Cancer Care 2006, 15, 299–302. [Google Scholar] [CrossRef]
- Chesnut, C.H., 3rd; Skag, A.; Christiansen, C.; Recker, R.; Stakkestad, J.A.; Hoiseth, A.; Felsenberg, D.; Huss, H.; Gilbride, J.; Schimmer, R.C.; et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J. Bone Miner. Res. 2004, 19, 1241–1249. [Google Scholar] [CrossRef]
- Yanik, B.; Bavbek, N.; Yanik, T.; Inegöl, I.; Kanbay, M.; Turgut, F.H.; Uz, E.; Akçay, A. The effect of alendronate, risedronate, and raloxifene on renal functions, based on the Cockcroft and Gault method, in postmenopausal women. Ren. Fail. 2007, 29, 471–476. [Google Scholar] [CrossRef]
- McClung, M.R.; Geusens, P.; Miller, P.D.; Zippel, H.; Bensen, W.G.; Roux, C.; Adami, S.; Fogelman, I.; Diamond, T.; Eastell, R.; et al. Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N. Engl. J. Med. 2001, 344, 333–340. [Google Scholar] [CrossRef]
- Harris, S.T.; Watts, N.B.; Genant, H.K.; McKeever, C.D.; Hangartner, T.; Keller, M.; Chesnut, C.H., 3rd; Brown, J.; Eriksen, E.F.; Hoseyni, M.S.; et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: A randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 1999, 282, 1344–1352. [Google Scholar] [CrossRef]
- Eisman, J.A.; Civitelli, R.; Adami, S.; Czerwinski, E.; Recknor, C.; Prince, R.; Reginster, J.Y.; Zaidi, M.; Felsenberg, D.; Hughes, C.; et al. Efficacy and tolerability of intravenous ibandronate injections in postmenopausal osteoporosis: 2-year results from the DIVA study. J. Rheumatol. 2008, 35, 488–497. [Google Scholar]
- Black, D.M.; Delmas, P.D.; Eastell, R.; Reid, I.R.; Boonen, S.; Cauley, J.A.; Cosman, F.; Lakatos, P.; Leung, P.C.; Man, Z.; et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N. Engl. J. Med. 2007, 356, 1809–1822. [Google Scholar] [CrossRef]
- Lyles, K.W.; Colón-Emeric, C.S.; Magaziner, J.S.; Adachi, J.D.; Pieper, C.F.; Mautalen, C.; Hyldstrup, L.; Recknor, C.; Nordsletten, L.; Moore, K.A.; et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N. Engl. J. Med. 2007, 357, 1799–1809. [Google Scholar] [CrossRef]
- Reid, I.R.; Brown, J.P.; Burckhardt, P.; Horowitz, Z.; Richardson, P.; Trechsel, U.; Widmer, A.; Devogelaer, J.P.; Kaufman, J.M.; Jaeger, P.; et al. Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N. Engl. J. Med. 2002, 346, 653–661. [Google Scholar] [CrossRef]
- Thiébaud, D.; Burckhardt, P.; Melchior, J.; Eckert, P.; Jacquet, A.F.; Schnyder, P.; Gobelet, C. Two years’ effectiveness of intravenous pamidronate (APD) versus oral fluoride for osteoporosis occurring in the postmenopause. Osteoporos. Int. 1994, 4, 76–83. [Google Scholar] [CrossRef]
- Garimella, P.S.; Rennke, H.G.; Strom, J.A. Alendronate associated focal segmental glomerulosclerosis: A case report and review of the literature. CEN Case Rep. 2015, 4, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.E.; Ali, M.S.; Pallares, N.; Tebé, C.; Elhussein, L.; Abrahamsen, B.; Arden, N.K.; Ben-Shlomo, Y.; Caskey, F.J.; Cooper, C.; et al. Safety of Oral Bisphosphonates in Moderate-to-Severe Chronic Kidney Disease: A Binational Cohort Analysis. J. Bone Miner. Res. 2021, 36, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.E.; Ali, M.S.; Strauss, V.Y.; Elhussein, L.; Abrahamsen, B.; Arden, N.K.; Ben-Shlomo, Y.; Caskey, F.; Cooper, C.; Dedman, D.; et al. Bisphosphonates to reduce bone fractures in stage 3B+ chronic kidney disease: A propensity score-matched cohort study. Health Technol. Assess. 2021, 25, 1–106. [Google Scholar] [CrossRef]
- Miura, N.; Mizuno, N.; Aoyama, R.; Kitagawa, W.; Yamada, H.; Nishikawa, K.; Imai, H. Massive proteinuria and acute renal failure after oral bisphosphonate (alendronate) administration in a patient with focal segmental glomerulosclerosis. Clin. Exp. Nephrol. 2009, 13, 85–88. [Google Scholar] [CrossRef]
- Pascual, J.; Torrealba, J.; Myers, J.; Tome, S.; Samaniego, M.; Musat, A.; Djamali, A. Collapsing focal segmental glomerulosclerosis in a liver transplant recipient on alendronate. Osteoporos. Int. 2007, 18, 1435–1438. [Google Scholar] [CrossRef] [PubMed]
- Prikis, M.; Gibson, P.C.; Weise, W.J. Alendronate-associated focal segmental glomerulosclerosis. NDT Plus 2009, 2, 91–92. [Google Scholar] [CrossRef]
- Yilmaz, M.; Taninmis, H.; Kara, E.; Ozagari, A.; Unsal, A. Nephrotic syndrome after oral bisphosphonate (alendronate) administration in a patient with osteoporosis. Osteoporos. Int. 2012, 23, 2059–2062. [Google Scholar] [CrossRef]
- Hara, T.; Hijikata, Y.; Matsubara, Y.; Watanabe, N. Pharmacological interventions versus placebo, no treatment or usual care for osteoporosis in people with chronic kidney disease stages 3–5D. Cochrane Database Syst. Rev. 2021, 7, Cd013424. [Google Scholar] [CrossRef] [PubMed]
- Marina, D.; Ejersted, C.; Hommel, K.; Schwarz, P. Single zoledronic acid infusion as a cause of acute kidney impairment requiring dialysis in two patients with osteoporosis. Arch. Endocrinol. Metab. 2024, 68, e240159. [Google Scholar] [CrossRef]
- Amerling, R.; Harbord, N.B.; Pullman, J.; Feinfeld, D.A. Bisphosphonate use in chronic kidney disease: Association with adynamic bone disease in a bone histology series. Blood Purif. 2010, 29, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Coco, M.; Glicklich, D.; Faugere, M.C.; Burris, L.; Bognar, I.; Durkin, P.; Tellis, V.; Greenstein, S.; Schechner, R.; Figueroa, K.; et al. Prevention of bone loss in renal transplant recipients: A prospective, randomized trial of intravenous pamidronate. J. Am. Soc. Nephrol. 2003, 14, 2669–2676. [Google Scholar] [CrossRef]
- Jamal, S.A.; Ljunggren, O.; Stehman-Breen, C.; Cummings, S.R.; McClung, M.R.; Goemaere, S.; Ebeling, P.R.; Franek, E.; Yang, Y.C.; Egbuna, O.I.; et al. Effects of denosumab on fracture and bone mineral density by level of kidney function. J. Bone Miner. Res. 2011, 26, 1829–1835. [Google Scholar] [CrossRef]
- Kunizawa, K.; Hiramatsu, R.; Hoshino, J.; Mizuno, H.; Ozawa, Y.; Sekine, A.; Kawada, M.; Sumida, K.; Hasegawa, E.; Yamanouchi, M.; et al. Denosumab for dialysis patients with osteoporosis: A cohort study. Sci. Rep. 2020, 10, 2496. [Google Scholar] [CrossRef]
- Kim, J.T.; Kim, Y.M.; Jung, K.Y.; Choi, H.; Lee, S.Y.; Kim, H.J. Efficacy and safety of denosumab treatment for Korean patients with Stage 3b-4 chronic kidney disease and osteoporosis. Korean J. Intern. Med. 2024, 39, 148–159. [Google Scholar] [CrossRef]
- Masuda, S.; Fukasawa, T.; Matsuda, S.; Kawakami, K. Cardiovascular Safety and Fracture Prevention Effectiveness of Denosumab Versus Oral Bisphosphonates in Patients Receiving Dialysis: A Target Trial Emulation. Ann. Intern. Med. 2025, 178, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Acharya, P.; Acharya, C.; Chenbhanich, J.; Bathini, T.; Boonpheng, B.; Sharma, K.; Wijarnpreecha, K.; Ungprasert, P.; Gonzalez Suarez, M.L.; et al. Hypocalcemia and bone mineral density changes following denosumab treatment in end-stage renal disease patients: A meta-analysis of observational studies. Osteoporos. Int. 2018, 29, 1737–1745. [Google Scholar] [CrossRef]
- Takami, H.; Washio, K.; Gotoh, H. Denosumab for Male Hemodialysis Patients with Low Bone Mineral Density: A Case-Control Study. Int. J. Nephrol. 2017, 2017, 6218129. [Google Scholar] [CrossRef] [PubMed]
- Iseri, K.; Mizobuchi, M.; Winzenrieth, R.; Humbert, L.; Saitou, T.; Kato, T.; Nakajima, Y.; Wakasa, M.; Shishido, K.; Honda, H. Long-Term Effect of Denosumab on Bone Disease in Patients with CKD. Clin. J. Am. Soc. Nephrol. 2023, 18, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Acharya, P.; Aeddula, N.R.; Torres-Ortiz, A.; Bathini, T.; Sharma, K.; Ungprasert, P.; Watthanasuntorn, K.; Suarez, M.L.G.; Salim, S.A.; et al. Effects of denosumab on bone metabolism and bone mineral density in kidney transplant patients: A systematic review and meta-analysis. Arch. Osteoporos. 2019, 14, 35. [Google Scholar] [CrossRef]
- Fassio, A.; Andreola, S.; Gatti, D.; Pollastri, F.; Gatti, M.; Fabbrini, P.; Gambaro, G.; Ferraro, P.M.; Caletti, C.; Rossini, M.; et al. Long-Term Bone Mineral Density Changes in Kidney Transplant Recipients Treated with Denosumab: A Retrospective Study with Nonequivalent Control Group. Calcif. Tissue Int. 2024, 115, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.R.; San Martin, J.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 2009, 361, 756–765. [Google Scholar] [CrossRef]
- Bone, H.G.; Wagman, R.B.; Brandi, M.L.; Brown, J.P.; Chapurlat, R.; Cummings, S.R.; Czerwiński, E.; Fahrleitner-Pammer, A.; Kendler, D.L.; Lippuner, K.; et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: Results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017, 5, 513–523. [Google Scholar] [CrossRef]
- Kobayashi, T.; Morimoto, T.; Ito, K.; Mawatari, M.; Shimazaki, T. Denosumab vs. bisphosphonates in primary osteoporosis: A meta-analysis of comparative safety in randomized controlled trials. Osteoporos. Int. 2024, 35, 1377–1393. [Google Scholar] [CrossRef]
- Lv, F.; Cai, X.; Yang, W.; Gao, L.; Chen, L.; Wu, J.; Ji, L. Denosumab or romosozumab therapy and risk of cardiovascular events in patients with primary osteoporosis: Systematic review and meta-analysis. Bone 2020, 130, 115121. [Google Scholar] [CrossRef]
- Diker-Cohen, T.; Rosenberg, D.; Avni, T.; Shepshelovich, D.; Tsvetov, G.; Gafter-Gvili, A. Risk for Infections During Treatment with Denosumab for Osteoporosis: A Systematic Review and Meta-analysis. J. Clin. Endocrinol. Metab. 2020, 105, 1641–1658. [Google Scholar] [CrossRef]
- Al Adhoubi, N.K.; Al Salmi, I. Safety of denosumab in patients with chronic kidney disease. Saudi J. Kidney Dis. Transpl. 2021, 32, 1235–1242. [Google Scholar] [PubMed]
- Bird, S.T.; Smith, E.R.; Gelperin, K.; Jung, T.H.; Thompson, A.; Kambhampati, R.; Lyu, H.; Zhao, H.; Zhao, Y.; Zhu, Y.; et al. Severe Hypocalcemia with Denosumab Among Older Female Dialysis-Dependent Patients. JAMA 2024, 331, 491–499. [Google Scholar] [CrossRef]
- Festuccia, F.; Jafari, M.T.; Moioli, A.; Fofi, C.; Barberi, S.; Amendola, S.; Sciacchitano, S.; Punzo, G.; Menè, P. Safety and efficacy of denosumab in osteoporotic hemodialysed patients. J. Nephrol. 2017, 30, 271–279. [Google Scholar] [CrossRef]
- Chen, C.L.; Chen, N.C.; Liang, H.L.; Hsu, C.Y.; Chou, K.J.; Fang, H.C.; Lee, P.T. Effects of Denosumab and Calcitriol on Severe Secondary Hyperparathyroidism in Dialysis Patients with Low Bone Mass. J. Clin. Endocrinol. Metab. 2015, 100, 2784–2792. [Google Scholar] [CrossRef]
- Miller, P.D.; Adachi, J.D.; Albergaria, B.H.; Cheung, A.M.; Chines, A.A.; Gielen, E.; Langdahl, B.L.; Miyauchi, A.; Oates, M.; Reid, I.R.; et al. Efficacy and Safety of Romosozumab Among Postmenopausal Women With Osteoporosis and Mild-to-Moderate Chronic Kidney Disease. J. Bone Miner. Res. 2022, 37, 1437–1445. [Google Scholar] [CrossRef]
- Sato, M.; Inaba, M.; Yamada, S.; Emoto, M.; Ohno, Y.; Tsujimoto, Y. Efficacy of romosozumab in patients with osteoporosis on maintenance hemodialysis in Japan; an observational study. J. Bone Miner. Metab. 2021, 39, 1082–1090. [Google Scholar] [CrossRef]
- Saito, T.; Mizobuchi, M.; Kato, T.; Suzuki, T.; Fujiwara, Y.; Kanamori, N.; Makuuchi, M.; Honda, H. One-Year Romosozumab Treatment Followed by One-Year Denosumab Treatment for Osteoporosis in Patients on Hemodialysis: An Observational Study. Calcif. Tissue Int. 2023, 112, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Teraguchi, M.; Kitayama, Y.; Yamada, Y.; Nakamoto, Z.; Yamaoka, Y.; Yamada, H. Comparative analysis of romosozumab and denosumab treatment in hemodialysis patients with osteoporosis: A 12-mo observational study. JBMR Plus 2025, 9, ziaf096. [Google Scholar] [CrossRef]
- Tominaga, A.; Wada, K.; Kato, Y.; Okazaki, K. Romosozumab for managing severe osteoporosis in patients undergoing kidney transplantation: A retrospective case series. JBMR Plus 2025, 9, ziaf049. [Google Scholar] [CrossRef] [PubMed]
- Saag, K.G.; Petersen, J.; Brandi, M.L.; Karaplis, A.C.; Lorentzon, M.; Thomas, T.; Maddox, J.; Fan, M.; Meisner, P.D.; Grauer, A. Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N. Engl. J. Med. 2017, 377, 1417–1427. [Google Scholar] [CrossRef]
- Lewiecki, E.M.; Blicharski, T.; Goemaere, S.; Lippuner, K.; Meisner, P.D.; Miller, P.D.; Miyauchi, A.; Maddox, J.; Chen, L.; Horlait, S. A Phase III Randomized Placebo-Controlled Trial to Evaluate Efficacy and Safety of Romosozumab in Men with Osteoporosis. J. Clin. Endocrinol. Metab. 2018, 103, 3183–3193. [Google Scholar] [CrossRef]
- Vestergaard Kvist, A.; Faruque, J.; Vallejo-Yagüe, E.; Weiler, S.; Winter, E.M.; Burden, A.M. Cardiovascular Safety Profile of Romosozumab: A Pharmacovigilance Analysis of the US Food and Drug Administration Adverse Event Reporting System (FAERS). J. Clin. Med. 2021, 10, 1660. [Google Scholar] [CrossRef]
- Cosman, F.; Crittenden, D.B.; Adachi, J.D.; Binkley, N.; Czerwinski, E.; Ferrari, S.; Hofbauer, L.C.; Lau, E.; Lewiecki, E.M.; Miyauchi, A.; et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N. Engl. J. Med. 2016, 375, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, A.; Yoshiki, F.; Taketsuna, M.; Kajimoto, K.; Enomoto, H. Safety and effectiveness of daily teriparatide for osteoporosis in patients with severe stages of chronic kidney disease: Post hoc analysis of a postmarketing observational study. Clin. Interv. Aging 2016, 11, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Fahrleitner-Pammer, A.; Wagner, D.; Krisper, P.; Amrein, K.; Dimai, H. Teriparatide treatment in a heart transplant patient with a chronic kidney disease and a low-turnover bone disease: A case report. Osteoporos. Int. 2017, 28, 1149–1152. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.K.; Abhisheka, K.; Akal, R.S.; Mahapatra, D.; Rai, S.K. Teriparatide Improves Bone Formation Markers and Bone Mineral Density in Adynamic Bone Disease Associated with Chronic Kidney Disease. Indian. J. Nephrol. 2024, 34, 254–256. [Google Scholar] [CrossRef]
- Oliveira, D.; Garcia, S.; Pereira, L.; Magalhães, J.; Costa, L.; Frazão, J.; Vaz, C. Effects of teriparatide on histomorphological features in a patient with an atypical femoral fracture and chronic kidney disease. Porto Biomed. J. 2024, 9, 253. [Google Scholar] [CrossRef]
- Palcu, P.; Dion, N.; Ste-Marie, L.G.; Goltzman, D.; Radziunas, I.; Miller, P.D.; Jamal, S.A. Teriparatide and bone turnover and formation in a hemodialysis patient with low-turnover bone disease: A case report. Am. J. Kidney Dis. 2015, 65, 933–936. [Google Scholar] [CrossRef]
- Giamalis, P.; Economidou, D.; Dimitriadis, C.; Memmos, D.; Papagianni, A.; Efstratiadis, G. Treatment of adynamic bone disease in a haemodialysis patient with teriparatide. Clin. Kidney J. 2015, 8, 188–190. [Google Scholar] [CrossRef]
- Malluche, H.H.; Davenport, D.L.; Monier-Faugere, M.C.; Lima, F. Treatment of bone loss in CKD5D: Better survival in patients with non-high bone turnover. Clin. Nephrol. 2022, 98, 219–228. [Google Scholar] [CrossRef]
- Sumida, K.; Ubara, Y.; Hoshino, J.; Mise, K.; Hayami, N.; Suwabe, T.; Kawada, M.; Imafuku, A.; Hiramatsu, R.; Hasegawa, E.; et al. Once-weekly teriparatide in hemodialysis patients with hypoparathyroidism and low bone mass: A prospective study. Osteoporos. Int. 2016, 27, 1441–1450. [Google Scholar] [CrossRef]
- Cejka, D.; Kodras, K.; Bader, T.; Haas, M. Treatment of Hemodialysis-Associated Adynamic Bone Disease with Teriparatide (PTH1-34): A Pilot Study. Kidney Blood Press. Res. 2010, 33, 221–226. [Google Scholar] [CrossRef]
- Qiu, Z.; Lin, C.; Zhang, Y.; Lin, C.; Deng, J.; Wu, M. Analysis of the Efficacy and Safety of Teriparatide and Alendronate in the Treatment of Osteoporosis After Renal Transplantation. Iran. J. Kidney Dis. 2021, 15, 451–456. [Google Scholar]
- Cejka, D.; Benesch, T.; Krestan, C.; Roschger, P.; Klaushofer, K.; Pietschmann, P.; Haas, M. Effect of teriparatide on early bone loss after kidney transplantation. Am. J. Transplant. 2008, 8, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Vetrano, D.; Aguanno, F.; Passaseo, A.; Barbuto, S.; Tondolo, F.; Catalano, V.; Zavatta, G.; Pagotto, U.; La Manna, G.; Cianciolo, G. Efficacy and safety of teriparatide in kidney transplant recipients with osteoporosis and low bone turnover: A real-world experience. Int. Urol. Nephrol. 2025, 57, 1965–1975. [Google Scholar] [CrossRef]
- Qaseem, A.; Hicks, L.A.; Etxeandia-Ikobaltzeta, I.; Shamliyan, T.; Cooney, T.G.; Cross, J.T., Jr.; Fitterman, N.; Lin, J.S.; Maroto, M.; Obley, A.J.; et al. Pharmacologic Treatment of Primary Osteoporosis or Low Bone Mass to Prevent Fractures in Adults: A Living Clinical Guideline From the American College of Physicians. Ann. Intern. Med. 2023, 176, 224–238. [Google Scholar] [CrossRef]
- Li, N.; Cornelissen, D.; Silverman, S.; Pinto, D.; Si, L.; Kremer, I.; Bours, S.; de Bot, R.; Boonen, A.; Evers, S.; et al. An Updated Systematic Review of Cost-Effectiveness Analyses of Drugs for Osteoporosis. Pharmacoeconomics 2021, 39, 181–209. [Google Scholar] [CrossRef] [PubMed]
- Diaz Martinez, J.P.; Aubry de Maraumont, T.; Natty Sánchez, E.; Camacho Cordero, L.M.; Yeh, E. Cost-effectiveness analysis of romosozumab for severe postmenopausal osteoporosis at very high risk of fracture in Mexico. PLoS ONE 2025, 20, e0299673. [Google Scholar] [CrossRef] [PubMed]
| Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) | |||
|---|---|---|---|
| Reduced Mineralization | More CKD-Specific Bone Disorder | Reduced Mass | |
| Esp. vitamin D deficiency Hypocalcemia Hypophosphatemia Aluminum toxicity Acidosis/RTA | 2°/3° hyperparathyroidism Vitamin D deficiency Hypocalcemia Hyperphosphatemia Excess FGF23 Acidosis Uremia | Age Female gender Postmenopausal state Family history Steroids Renal Osteodystrophy Osteomalacia etc. | |
| Osteomalacia | Renal Osteodystrophy | Osteopenia/Osteoporosis | |
| Low turnover Adynamic Bone Disease | High turnover Osteitis Fibrosa | ||
| Low Turnover Adynamic Bone Disease | High Turnover Osteitis Fibrosa | |||
|---|---|---|---|---|
| Reference Range | ||||
| KDIGO 2017 [2] (dialysis) | <2-times ULN | iPTH | >9-times ULN | |
| Jorgensen [3] (CKD 4–5D, KTRs) | 1.3-times ULN [0.9–2.2] | 6.2-times ULN [2.9–10.7] | ||
| Jorgensen (CKD 4–5D, KTRs) | 53.2 [36.8, 86.5] | 249 [114.5, 428.6] (ULN 40 pg/mL) | ||
| Jorgensen (CKD 4–5D, KTRs) | <90.5 pg/mL (sens 69%, spez 52%) | >143.5 pg/mL (sens 70%, spez 74%) | ||
| Salam [4] (CKD 4–5D) | ≤183 pg/mL (sens 70%, spez 53%) | >327 pg/mL (sens 53%, spez 96%) | ||
| Salam (CKD 4–5D) | 172 (119–292) pg/mL | 347 (161–381) pg/mL | ||
| Sprague [5] (dialysis) | 68.2 [23.2–186.3] pg/mL | 382.6 [139.5, 865.5] pg/mL | ||
| Sprague (dialysis) | <103.8 pg/mL | >323 pg/mL | ||
| Sprague (dialysis) | <2-times ULN (sens 65%, spez 67%) | >9-times ULN (sens 37%, spez 86%) | ||
| Sprague (dialysis) | <150 pg/mL (sens 68%, spez 61%) | >300 pg/mL (sens 58%, spez 78%) | ||
| KDOQI [6] | <150 pg/mL | >300–600 pg/mL | ||
| Hercz [7] (dialysis) | 77 (61) pg/mL | 369 (32) pg/mL | ||
| Up to date (dialysis) | <100 pg/mL | >450 pg/mL | ||
| Literature | Often <300 ng/mL | Often >600 ng/mL | ||
| Literature | normal/decreasing/low | AP | normal/increasing/high | |
| Jorgensen (CKD 4–5D, KTRs) | 35–130 U/L | 63.0 [47.2, 86.8] U/L | 125.0 [101.0, 182.1] U/L | |
| Jorgensen (CKD 4–5D, KTRs) | 35–130 U/L | <87 U/L (sens 64%, spez 57%) | >97 U/L (sens 76%, spez 77%) | |
| Salam (CKD 4–5D) | ≤88 IU/L (sens 91%, spez 63%) | >102 IU/L (sens 65%, spez 73%) | ||
| Salam (CKD 4–5D) | 82 (53–86) U/L | 115 (82–156) IU/L | ||
| Literature in general | normal/decreasing/low | Bone-specific AP | normal/increasing/high | |
| Jorgensen (CKD 4–5D, KTRs) | 6.1–25.5 μg/L | <24.2 (sens 87%, spez 58%) | >33.7 (sens 73%, spez 86%) | |
| Jorgensen (CKD 4–5D, KTRs) | 6.1–25.5 μg/L | 15.3 [11.1, 22.1] µg/L | 47.4 [33.8, 66.8] µg/L | |
| Salam (CKD 4–5D) | 17.7 (5.6) µg/L | 34.4 (13.3) µg/L | ||
| Salam (CKD 4–5D) | ≤21 μg/L (sens 89%, spez 77%) | >31 μg/L (sens 56%, spez 83%) | ||
| Sprague (dialysis) | 11.6–42.7 U/L | 28.2 [18.0, 46.2] U/L | 63.3 [42.3, 116.8] U/L | |
| Sprague (dialysis) | 11.6–42.7 U/L | <33.1 U/L | >42.1 U/L | |
| Up to date 2025 (CKD and dialysis) | ≥20 ng/mL virtually excl. ABD, esp. if PTH >200 pg/mL | |||
| Sprague (dialysis) | 13.9–85.5 ng/mL | 348.3 [183.1, 599.6] ng/mL | Total P1NP | 787.0 [523.7, 992.2] ng/mL |
| Sprague (dialysis) | 13.9–85.5 ng/mL | <498.9 ng/mL | >621.1 ng/mL | |
| Salam (CKD, dialysis, stage 4–5D) | ≤124 ng/mL (sens 80%, spez 68%) | >142 ng/mL (sens 75%, spez 68%) | ||
| Salam (CKD 4–5D) | 76.3 (51.7, 159.3) ng/mL | 214 (110.6–403) ng/mL | ||
| Jorgensen (CKD 4–5D, KTRs) | 12.8–82.6 ng/mL | <49.8 ng/mL (sens 80%, spez 70%) | Intact P1NP | >120.7 ng/mL (sens 73%, spez 94%) |
| Jorgensen (CKD 4–5D, KTRs) | 12.8–82.6 ng/mL | 31.5 [23.1, 44.7] ng/mL | 154.7 [119.0, 219.8] ng/mL | |
| Salam (CKD 4–5D) | ≤57 ng/mL (sens 80%, spez 75%) | >107 ng/mL (sens 53%, spez 93%) | ||
| Salam (CKD 4–5D) | 44.1 (29.2–68.4) ng/mL | 107.9 (63.5–182) ng/mL | ||
| Jorgensen (CKD 4–5D, KTRs) | 1.1–6.9 U/L | <3.44 U/L (sens 73%, spez 74%) | TRAP5b | >5.05 U/L (sens 77%, spez 76%) |
| Jorgensen (CKD 4–5D, KTRs) | 1.1–6.9 U/L | 2.7 [1.9, 3.4] U/L | 6.4 [5.1, 8.5] U/L | |
| Salam (CKD 4–5D) | ≤4.6 U/L (sens 89%, spez 71%) | >4.6 U/L (sens 81%, spez 58%) | ||
| Salam (CKD 4–5D) | 3.2 (2.9–4.3) U/L | 5.8 (4.8–8.5) U/L | ||
| Literature | Both higher | Calcium Phosphate | Calcium lower, Phosphate higher |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schietzel, S.; Huynh-Do, U. The Conundrum of Medical Fracture Prevention in Chronic Kidney Disease—Summary of the Evidence and Pragmatic Clinical Guidance. J. Clin. Med. 2025, 14, 8145. https://doi.org/10.3390/jcm14228145
Schietzel S, Huynh-Do U. The Conundrum of Medical Fracture Prevention in Chronic Kidney Disease—Summary of the Evidence and Pragmatic Clinical Guidance. Journal of Clinical Medicine. 2025; 14(22):8145. https://doi.org/10.3390/jcm14228145
Chicago/Turabian StyleSchietzel, Simeon, and Uyen Huynh-Do. 2025. "The Conundrum of Medical Fracture Prevention in Chronic Kidney Disease—Summary of the Evidence and Pragmatic Clinical Guidance" Journal of Clinical Medicine 14, no. 22: 8145. https://doi.org/10.3390/jcm14228145
APA StyleSchietzel, S., & Huynh-Do, U. (2025). The Conundrum of Medical Fracture Prevention in Chronic Kidney Disease—Summary of the Evidence and Pragmatic Clinical Guidance. Journal of Clinical Medicine, 14(22), 8145. https://doi.org/10.3390/jcm14228145
