Youth-Onset Type 2 Diabetes Before and After COVID-19 Pandemic-Related Public Health Restrictions: Trends in Incidence, Severity, and Remission
Abstract
1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADA | American Diabetes Association |
| BMI | Body Mass Index |
| BUN | Blood Urea Nitrogen |
| CI | Confidence Interval |
| COVID-19 | Coronavirus Disease 2019 |
| DKA | Diabetic Ketoacidosis |
| EMR | Electronic Medical Record |
| GAD65 | Glutamic Acid Decarboxylase 65 antibody |
| GLP-1 | Glucagon-Like Peptide-1 |
| HbA1c | Hemoglobin A1c |
| HHS | Hyperglycemic Hyperosmolar Syndrome |
| IA2 | Islet Antigen-2 Antibody |
| ISPAD | International Society for Pediatric and Adolescent Diabetes |
| IQR | Interquartile Range |
| NHB | Non-Hispanic Black |
| NHW | Non-Hispanic White |
| OR | Odds Ratio |
| RISE | Restoring Insulin Secretion Study |
| SD | Standard Deviation |
| SGLT2 | Sodium-Glucose Cotransporter-2 inhibitor |
| SPSS | Statistical Package for the Social Sciences |
| T2D | Type 2 Diabetes |
| TODAY | Treatment Options for Type 2 Diabetes in Adolescents and Youth |
| TZD | Thiazolidinedione |
| Y-T2D | Youth-Onset Type 2 Diabetes |
| ZNT8 | Zinc Transporter 8 antibody |
References
- Marks, B.E.; Khilnani, A.; Meyers, A.; Flokas, M.E.; Gai, J.; Monaghan, M.; Streisand, R.; Estrada, E. Increase in the Diagnosis and Severity of Presentation of Pediatric Type 1 and Type 2 Diabetes During the COVID-19 Pandemic. Horm. Res. Paediatr. 2021, 94, 275–284. [Google Scholar] [CrossRef]
- Chao, L.C.; Vidmar, A.P.; Georgia, S. Spike in diabetic ketoacidosis rates in pediatric type 2 diabetes during the COVID-19 pandemic. Diabetes Care 2021, 44, 1451–1453. [Google Scholar] [CrossRef]
- Neyman, A.; Nabhan, Z.; Woerner, S.; Hannon, T. Pediatric Type 2 Diabetes Presentation During the COVID-19 Pandemic. Clin. Pediatr. 2022, 61, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.A.; Ashraf, A.P.; Becker, D.J.; Sen, B. Changes in Type 2 diabetes trends in Children and Adolescents during the COVID-19 Pandemic. J. Clin. Endocrinol. Metab. 2022, 107, e2777–e2782. [Google Scholar] [CrossRef]
- Magge, S.N.; Wolf, R.M.; Pyle, L.; Brown, E.A.; Benavides, V.C.; Bianco, M.E.; Chao, L.C.; Cymbaluk, A.; Balikcioglu, P.G.; Halpin, K. The coronavirus disease 2019 pandemic is associated with a substantial rise in frequency and severity of presentation of youth-onset type 2 diabetes. J. Pediatr. 2022, 251, 51–59. [Google Scholar] [CrossRef]
- Grundman, J.B.; Chung, S.T.; Estrada, E.; Podolsky, R.H.; Meyers, A.; Marks, B.E. Virtual Learning and Youth-Onset Type 2 Diabetes during the COVID-19 Pandemic. Horm. Res. Paediatr. 2024, 97, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Reisch, T.; Heiler, G.; Hurt, J.; Klimek, P.; Hanbury, A.; Thurner, S. Behavioral gender differences are reinforced during the COVID-19 crisis. Sci. Rep. 2021, 11, 19241. [Google Scholar] [CrossRef]
- Bleich, S.N.; Ard, J.D. COVID-19, obesity, and structural racism: Understanding the past and identifying solutions for the future. Cell Metab. 2021, 33, 234–241. [Google Scholar] [CrossRef]
- Rao, S.; Lau, A.; So, H.-C. Exploring diseases/traits and blood proteins causally related to expression of ACE2, the putative receptor of SARS-CoV-2: A Mendelian randomization analysis highlights tentative relevance of diabetes-related traits. Diabetes Care 2020, 43, 1416–1426. [Google Scholar] [CrossRef] [PubMed]
- Kuczmarski, R.J. 2000 CDC Growth Charts for the United States: Methods and Development; Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2002.
- Wolfsdorf, J.I.; Glaser, N.; Agus, M.; Fritsch, M.; Hanas, R.; Rewers, A.; Sperling, M.A.; Codner, E. ISPAD Clinical Practice Consensus Guidelines 2018: Diabetic ketoacidosis and the hyperglycemic hyperosmolar state. Pediatr. Diabetes 2018, 19, 155–177. [Google Scholar] [CrossRef]
- Zeitler, P.; Haqq, A.; Rosenbloom, A.; Glaser, N. Hyperglycemic hyperosmolar syndrome in children: Pathophysiological considerations and suggested guidelines for treatment. J. Pediatr. 2011, 158, 9–14.e12. [Google Scholar] [CrossRef]
- Skinner, A.C.; Skelton, J.A. Prevalence and trends in obesity and severe obesity among children in the United States, 1999–2012. JAMA Pediatr. 2014, 168, 561–566. [Google Scholar] [CrossRef]
- Riddle, M.C.; Cefalu, W.T.; Evans, P.H.; Gerstein, H.C.; Nauck, M.A.; Oh, W.K.; Rothberg, A.E.; le Roux, C.W.; Rubino, F.; Schauer, P. Consensus report: Definition and interpretation of remission in type 2 diabetes. J. Clin. Endocrinol. Metab. 2022, 107, 1–9. [Google Scholar] [CrossRef]
- IBM. IBM SPSS Statistics 29.0.1.1; IBM Corp: Armonk, NY, USA, 2023. [Google Scholar]
- Reiterer, M.; Rajan, M.; Gómez-Banoy, N.; Lau, J.D.; Gomez-Escobar, L.G.; Ma, L.; Gilani, A.; Alvarez-Mulett, S.; Sholle, E.T.; Chandar, V. Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metab. 2021, 33, 2174–2188.e5. [Google Scholar] [CrossRef]
- He, X.; Liu, C.; Peng, J.; Li, Z.; Li, F.; Wang, J.; Hu, A.; Peng, M.; Huang, K.; Fan, D.; et al. COVID-19 induces new-onset insulin resistance and lipid metabolic dysregulation via regulation of secreted metabolic factors. Signal Transduct. Target. Ther. 2021, 6, 427. [Google Scholar] [CrossRef]
- Müller, J.A.; Groß, R.; Conzelmann, C.; Krüger, J.; Merle, U.; Steinhart, J.; Weil, T.; Koepke, L.; Bozzo, C.P.; Read, C.; et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat. Metab. 2021, 3, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Viner, R.M.; Russell, S.J.; Croker, H.; Packer, J.; Ward, J.; Stansfield, C.; Mytton, O.; Bonell, C.; Booy, R. School closure and management practices during coronavirus outbreaks including COVID-19: A rapid systematic review. Lancet Child Adolesc. Health 2020, 4, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Rundle, A.G.; Park, Y.; Herbstman, J.B.; Kinsey, E.W.; Wang, Y.C. COVID-19 related school closings and risk of weight gain among children. Obesity 2020, 28, 1008. [Google Scholar] [CrossRef]
- Levitt, K.J.; Munzer, T.; Torres, C.; Schaller, A.; McCaffery, H.; Radesky, J.S. Remote and hybrid schooling during COVID-19: Associations with child behavior and sleep. J. Dev. Behav. Pediatr. 2022, 43, e288–e295. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.H. Disruptions to school and home life among high school students during the COVID-19 pandemic—Adolescent Behaviors and Experiences Survey, United States, January–June 2021. MMWR Suppl. 2022, 71, 28–34. [Google Scholar] [CrossRef]
- Breaux, R.; Cash, A.R.; Lewis, J.; Garcia, K.M.; Dvorsky, M.R.; Becker, S.P. Impacts of COVID-19 quarantine and isolation on adolescent social functioning. Curr. Opin. Psychol. 2023, 52, 101613. [Google Scholar] [CrossRef]
- Long, T. Resuming in-person learning: Safe and imperative. Ann. Intern. Med. 2021, 174, 1167–1168. [Google Scholar] [CrossRef] [PubMed]
- Barron, E.; Khunti, K.; Wright, A.K.; Ashcroft, D.M.; Carr, M.J.; Rutter, M.K.; Valabhji, J. Impact of the COVID-19 pandemic on new diagnoses of type 2 diabetes in England. Diabetes Obes. Metab. 2023, 25, 3424–3429. [Google Scholar] [CrossRef] [PubMed]
- Basak, S. Management of Pediatric Type 2 Diabetes: A Practical Overview of Current Guidelines and Emerging Therapies. Can. Diabetes Endocrinol. Today 2023, 1, 15–22. [Google Scholar] [CrossRef]
- Arslanian, S.; Bacha, F.; Grey, M.; Marcus, M.D.; White, N.H.; Zeitler, P. Evaluation and management of youth-onset type 2 diabetes: A position statement by the American Diabetes Association. Diabetes Care 2018, 41, 2648. [Google Scholar] [CrossRef]
- Marwitz, S.E.; Gaines, M.V.; Brady, S.M.; Mi, S.J.; Broadney, M.M.; Yanovski, S.Z.; Hubbard, V.S.; Yanovski, J.A. Cross-Sectional and Longitudinal Examination of Insulin Sensitivity and Secretion across Puberty among Non-Hispanic Black and White Children. Endocrinol. Metab. 2020, 35, 847–857. [Google Scholar] [CrossRef]
- Copeland, K.C.; Zeitler, P.; Geffner, M.; Guandalini, C.; Higgins, J.; Hirst, K.; Kaufman, F.R.; Linder, B.; Marcovina, S.; McGuigan, P. Characteristics of adolescents and youth with recent-onset type 2 diabetes: The TODAY cohort at baseline. J. Clin. Endocrinol. Metab. 2011, 96, 159–167. [Google Scholar] [CrossRef]
- Sam, S.; Edelstein, S.L.; Arslanian, S.A.; Barengolts, E.; Buchanan, T.A.; Caprio, S.; Ehrmann, D.A.; Hannon, T.S.; Tjaden, A.H.; Kahn, S.E. Baseline predictors of glycemic worsening in youth and adults with impaired glucose tolerance or recently diagnosed type 2 diabetes in the Restoring Insulin Secretion (RISE) study. Diabetes Care 2021, 44, 1938–1947. [Google Scholar] [CrossRef]
- Boule, N.; Haddad, E.; Kenny, G.; Wells, G.; Sigal, R. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: A meta-analysis of controlled clinical trials. Scand. J. Med. Sci. Sports 2002, 12, 60–61. [Google Scholar] [CrossRef]
- Chung, S.T.; Davis, F.; Patel, T.; Mabundo, L.; Estrada, D.E. Reevaluating First-line Therapies in Youth-Onset Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2024, 109, e870–e872. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.K.; Simpson, J.N.; Boyle, M.D.; Badolato, G.M.; Delaney, M.; McCarter, R.; Cora-Bramble, D. Racial and/or ethnic and socioeconomic disparities of SARS-CoV-2 infection among children. Pediatrics 2020, 146, e2020009951. [Google Scholar] [CrossRef] [PubMed]
- Christine, P.J.; Auchincloss, A.H.; Bertoni, A.G.; Carnethon, M.R.; Sánchez, B.N.; Moore, K.; Adar, S.D.; Horwich, T.B.; Watson, K.E.; Roux, A.V.D. Longitudinal associations between neighborhood physical and social environments and incident type 2 diabetes mellitus: The Multi-Ethnic Study of Atherosclerosis (MESA). JAMA Intern. Med. 2015, 175, 1311–1320. [Google Scholar] [CrossRef] [PubMed]
- Wagenknecht, L.E.; Lawrence, J.M.; Isom, S.; Jensen, E.T.; Dabelea, D.; Liese, A.D.; Dolan, L.M.; Shah, A.S.; Bellatorre, A.; Sauder, K.; et al. Trends in incidence of youth-onset type 1 and type 2 diabetes in the USA, 2002–2018: Results from the population-based SEARCH for Diabetes in Youth study. Lancet Diabetes Endocrinol. 2023, 11, 242–250. [Google Scholar] [CrossRef]
- Lahoti, A.; Haque, M.R.; Bianco, M.E.; Choudhary, A.; Clark, A.L.; Marks, B.E.; Pinnaro, C.T.; Shah, A.S.; Stefater-Richards, M.A.; Thaker, V.V.; et al. Trends of Diabetes in Youth (TrenDY) During COVID-19 Across the United States. J. Clin. Endocrinol. Metab. 2025, dgaf395. [Google Scholar] [CrossRef]
- D’Souza, D.; Empringham, J.; Pechlivanoglou, P.; Uleryk, E.M.; Cohen, E.; Shulman, R. Incidence of Diabetes in Children and Adolescents During the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2023, 6, e2321281. [Google Scholar] [CrossRef]
- Gesuita, R.; Eckert, A.J.; Besançon, S.; Crimmins, N.A.; Cavallo, F.; Kim, J.; Jefferies, C.; Gevers, E.F.; Vamvakis, A.; Shah, S.; et al. Frequency and clinical characteristics of children and young people with type 2 diabetes at diagnosis from five world regions between 2012 and 2021: Data from the SWEET Registry. Diabetologia 2025, 68, 82–93. [Google Scholar] [CrossRef] [PubMed]


| Pandemic Restrictions Period (n = 235) * | Post-Restrictions Period (n = 154) * | Mean Difference (95% CI) | p-Value | Effect Size | |
|---|---|---|---|---|---|
| Cases Diagnosed per 30 days | 13.2 | 6.3 | - | - | - |
| Female Sex, n (%) | 107 (45.5%) | 83 (53.9%) | +0.08 (−0.02, 0.19) | 0.107 | - |
| Age at Diagnosis, mean (SD) | 14.5 (2.2) | 14.8 (2.5) | +0.30 (−0.18, 0.78) | 0.213 | g = 0.12 |
| Race/Ethnicity, n (%) | |||||
| NHW | 10 (4.3%) | 12 (7.8%) | +0.04 (−0.02, 0.09) | 0.095 | - |
| NHB | 173 (73.6%) | 80 (51.9%) | −0.22 (−0.31, −0.12) | <0.001 | v = 0.24 |
| Latinx | 44 (18.7%) | 46 (29.9%) | +0.11 (0.00, 0.22) | 0.003 | v = 0.18 |
| Other | 8 (3.4%) | 16 (10.4%) | +0.07 (0.02, 0.12) | 0.005 | v = 0.07 |
| Insurance, n (%) | |||||
| Private | 38 (16.2%) | 46 (29.9%) | +0.14 (0.05, 0.22) | 0.001 | v = 0.16 |
| Public | 197 (83.8%) | 100 (64.9%) | −0.19 (−0.28, −0.10) | <0.001 | v = 0.22 |
| Other | 0 (0%) | 8 (5.2%) | - | - | v = 0.10 |
| In-patient Management, n (%) | 136 (57.9%) | 55 (35.7%) | −0.22 (−0.32, −0.13) | <0.001 | v = 0.21 |
| Hemoglobin A1c | |||||
| (%), mean (SD) | 10.1 (2.3) | 9.1 (2.5) | −1.00 (−1.49, −0.51) | <0.001 | g = 0.42 |
| (mmol/mol), mean (SD) | 85.4 (27.8) | 76.3 (27.3) | −9.10 (−15.50, −2.70) | 0.002 | |
| Random Blood Glucose | |||||
| (mg/dL), median (IQR) | 308 (IQR 187–452) | 219 (IQR 122–350) | −89.00 (−125.00, −53.00) | <0.001 | g = 0.38 |
| (mmol/L), median (IQR) | 16.2 (IQR 7.7–23.6) | 11.7 (IQR 6.4–19.3) | −4.50 (−5.95, −3.05) | <0.001 | |
| Venous pH, median (IQR) | 7.35 (IQR 7.22–7.38) | 7.35 (IQR 7.32–7.40) | 0.00 (−0.02, 0.02) | 0.049 | g = 0.15 |
| Serum Bicarbonate (mmol/L), median (IQR) | 23 (IQR 16–26) | 25 (IQR 22–27) | +2.00 (0.89, 3.11) | <0.001 | g = 0.24 |
| Diabetic Ketoacidosis, n (%) | 49 (20.9%) | 11 (7.1%) | −0.14 (−0.20, −0.07) | <0.001 | |
| Diabetic Ketoacidosis Severity, n (%) | |||||
| Mild | 18 (7.7%) | 4(2.6%) | −0.05 (−0.09, −0.01) | 0.035 | v = 0.12 |
| Moderate | 11 (4.7%) | 3 (1.9%) | −0.03 (−0.06, 0.01) | 0.157 | v = 0.09 |
| Severe | 20 (8.5%) | 4 (2.6%) | −0.06 (−0.10, 0.02) | 0.178 | v = 13 |
| Hyperosmolar Diabetic Ketoacidosis, n (%) | 15 (6.4%) | 1 (0.6%) | −0.06 (−0.10, 0.02) | 0.005 | |
| Hyperglycemic Hyperosmolar State, n (%) | 0 (0%) | 2 (1.3%) | +0.01 (−0.01, +0.03) | 0.157 | |
| Weight, kg | |||||
| mean (SD) | 105 (25) | 102 (29) | −3.00 (−8.59, 2.59) | 0.278 | |
| Z-score (SD) | 2.72 (0.65) | 2.46 (0.88) | −0.26 (−0.42, −0.10) | 0.078 | |
| BMI, kg/m2 | |||||
| mean (SD) | 36.5 (7.0) | 37.1 (9.2) | +0.60 (−1.11, 2.31) | 0.467 | g = 0.07 |
| Z-score (SD) | 2.38 (0.40) | 2.31 (0.52) | −0.07 (−0.17, 0.03) | 0.135 | g = 0.09 |
| Obesity Class, n (%) | |||||
| Overweight | 8 (3.4%) | 15 (9.7%) | +0.06 (0.01, 0.12) | 0.019 | v = 0.16 |
| Class 1 | 43 (18.3) | 29 (18.8%) | +0.01 (−0.07, 0.08) | 0.751 | v = 0.01 |
| Class 2 | 74 (31.5%) | 39 (25.3%) | −0.06 (−0.15, 0.03) | 0.053 | v = 0.12 |
| Class 3 | 80 (34.0%) | 65 (42.2%) | +0.08 (−0.02, 0.18) | 0.356 | v = 0.08 |
| Remission (n = 26) | Non-Remission, Medications (n = 81) | Non-Remission, No Medications (n = 19) | p-Value | |
|---|---|---|---|---|
| Female Sex, n (%) | 10 (38.5) | 40 (49.4) | 9 (47.4) | 0.623 |
| Age at Diagnosis, mean (95% CI) | 14.5 (13.8, 15.2) | 13.8 (13.3, 14.3) | 13.0 (12.3, 13.6) | 0.031 |
| T2D Duration, months, mean (95% CI) | 12.4 (10.5, 14.4) | 12.9 (10.7, 15.1) | 15.5 (12.1, 18.9) | 0.481 |
| Race/Ethnicity, n (%) | 0.047 | |||
| NHW | 0 (0.0) | 4 (4.9) | 4 (21.1) | - |
| NHB | 19 (73.1) | 62 (76.5) | 12 (63.2) | 0.488 |
| Latinx | 7 (26.9) | 15 (18.5) | 3 (15.8) | 0.575 |
| Private Insurance, n (%) | 21 (80.8) | 71 (87.8) | 16 (84.2) | 0.669 |
| Hemoglobin A1c, mean (95% CI) % | 9.6 (8.0, 11.2) | 10.1 (9.6, 10.6) | 9.4 (8.4, 10.4) | 0.626 |
| mmol/mol | 81 (73.0, 89.0) | 87 (86.6, 87.4) | 79 (78.5, 79.5) | |
| Weight, kg, mean (95%CI) | 108.7 (99.2, 118.3) | 106.5 (101.2, 111.9) | 101.3 (90.0, 112.7) | 0.586 |
| BMI, kg/m2, mean (95%CI) | 37.0 (33.9, 40.1) | 37.2 (35.6, 38.7) | 36.7 (32.5, 40.8) | 0.970 |
| Glucose Lowering Medications, n (%) | ||||
| Metformin/Metformin ER | 4 (15.4) | 39 (48.1) | 8 (42.1) | 0.012 |
| GLP-1 | 3 (11.5) | 31 (38.3) | 5 (26.3) | 0.033 |
| SGLT2 | 0 (0.0) | 0 (0.0) | 0 (0.0) | - |
| TZD | 0 (0.0) | 1 (1.2) | 0 (0.0) | 0.756 |
| Insulin | 1 (3.8) | 38 (46.9) | 1 (5.3) | <0.001 |
| Delta Hb A1c (%) * | −4.2 ± 3.8 | −2.6 ± 3.0 | −2.1 ± 2.8 | 0.086 |
| Delta weight (kg) * | 0.81 ± 13.86 | 8.47 ± 13.80 | 7.78 ± 10.33 | 0.065 |
| Delta BMI (kg/m2) * | 2.04 ± 12.22 | 3.53 ± 17.87 | 2.67 ± 2.61 | 0.932 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grundman, J.B.; Estrada, E.; Longendyke, R.; Chung, S.T. Youth-Onset Type 2 Diabetes Before and After COVID-19 Pandemic-Related Public Health Restrictions: Trends in Incidence, Severity, and Remission. J. Clin. Med. 2025, 14, 7995. https://doi.org/10.3390/jcm14227995
Grundman JB, Estrada E, Longendyke R, Chung ST. Youth-Onset Type 2 Diabetes Before and After COVID-19 Pandemic-Related Public Health Restrictions: Trends in Incidence, Severity, and Remission. Journal of Clinical Medicine. 2025; 14(22):7995. https://doi.org/10.3390/jcm14227995
Chicago/Turabian StyleGrundman, Jody Beth, Elizabeth Estrada, Rachel Longendyke, and Stephanie T. Chung. 2025. "Youth-Onset Type 2 Diabetes Before and After COVID-19 Pandemic-Related Public Health Restrictions: Trends in Incidence, Severity, and Remission" Journal of Clinical Medicine 14, no. 22: 7995. https://doi.org/10.3390/jcm14227995
APA StyleGrundman, J. B., Estrada, E., Longendyke, R., & Chung, S. T. (2025). Youth-Onset Type 2 Diabetes Before and After COVID-19 Pandemic-Related Public Health Restrictions: Trends in Incidence, Severity, and Remission. Journal of Clinical Medicine, 14(22), 7995. https://doi.org/10.3390/jcm14227995

