Preserved Ratio Impaired Spirometry (PRISm) from an Epidemiological Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Lung Function Testing
2.3. Cardiopulmonary Exercise Testing
2.4. Echocardiography
2.5. Magnet Resonance Imaging (MRI)
2.6. Statistical Methods
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papi, A.; Beghe, B.; Fabbri, L.M. Rate of Decline of FEV(1) as a Biomarker of Survival? Am. J. Respir. Crit. Care Med. 2021, 203, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Wan, E.S.; Hokanson, J.E.; Murphy, J.R.; Regan, E.A.; Make, B.J.; Lynch, D.A.; Crapo, J.D.; Silverman, E.K. Clinical and radiographic predictors of GOLD-unclassified smokers in the COPDGene study. Am. J. Respir. Crit. Care Med. 2011, 184, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Agusti, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; de Oca, M.M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2023, 207, 819–837. [Google Scholar] [CrossRef] [PubMed]
- Wan, E.S.; Balte, P.; Schwartz, J.E.; Bhatt, S.P.; Cassano, P.A.; Couper, D.; Daviglus, M.L.; Dransfield, M.T.; Gharib, S.A.; Jacobs, D.R.; et al. Association Between Preserved Ratio Impaired Spirometry and Clinical Outcomes in US Adults. JAMA 2021, 326, 2287–2298. [Google Scholar] [CrossRef]
- Mannino, D.M.; Buist, A.S.; Petty, T.L.; Enright, P.L.; Redd, S.C. Lung function and mortality in the United States: Data from the First National Health and Nutrition Examination Survey follow up study. Thorax 2003, 58, 388–393. [Google Scholar] [CrossRef]
- Guerra, S.; Sherrill, D.L.; Venker, C.; Ceccato, C.M.; Halonen, M.; Martinez, F.D. Morbidity and mortality associated with the restrictive spirometric pattern: A longitudinal study. Thorax 2010, 65, 499–504. [Google Scholar] [CrossRef]
- Iyer, V.N.; Schroeder, D.R.; Parker, K.O.; Hyatt, R.E.; Scanlon, P.D. The nonspecific pulmonary function test: Longitudinal follow-up and outcomes. Chest 2011, 139, 878–886. [Google Scholar] [CrossRef]
- Phillips, D.B.; James, M.D.; Vincent, S.G.; Elbehairy, A.F.; Neder, J.A.; Kirby, M.; Ora, J.; Day, A.G.; Tan, W.C.; Bourbeau, J.; et al. Physiological Characterization of Preserved Ratio Impaired Spirometry in the CanCOLD Study: Implications for Exertional Dyspnea and Exercise Intolerance. Am. J. Respir. Crit. Care Med. 2024, 209, 1314–1327. [Google Scholar] [CrossRef]
- Schwartz, A.; Arnold, N.; Skinner, B.; Simmering, J.; Eberlein, M.; Comellas, A.P.; Fortis, S. Preserved Ratio Impaired Spirometry in a Spirometry Database. Respir. Care 2021, 66, 58–65. [Google Scholar] [CrossRef]
- Wijnant, S.R.A.; De Roos, E.; Kavousi, M.; Stricker, B.H.; Terzikhan, N.; Lahousse, L.; Brusselle, G.G. Trajectory and mortality of preserved ratio impaired spirometry: The Rotterdam Study. Eur. Respir. J. 2020, 55, 1901217. [Google Scholar] [CrossRef]
- Wan, E.S.; Fortis, S.; Regan, E.A.; Hokanson, J.; Han, M.K.; Casaburi, R.; Make, B.J.; Crapo, J.D.; DeMeo, D.L.; Silverman, E.K.; et al. Longitudinal Phenotypes and Mortality in Preserved Ratio Impaired Spirometry in the COPDGene Study. Am. J. Respir. Crit. Care Med. 2018, 198, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Higbee, D.H.; Granell, R.; Davey Smith, G.; Dodd, J.W. Prevalence, risk factors, and clinical implications of preserved ratio impaired spirometry: A UK Biobank cohort analysis. Lancet Respir. Med. 2022, 10, 149–157. [Google Scholar] [CrossRef]
- Han, M.K.; Agusti, A.; Celli, B.R.; Criner, G.J.; Halpin, D.M.G.; Roche, N.; Papi, A.; Stockley, R.A.; Wedzicha, J.; Vogelmeier, C.F. From GOLD 0 to Pre-COPD. Am. J. Respir. Crit. Care Med. 2021, 203, 414–423. [Google Scholar] [CrossRef]
- Wan, E.S.; Castaldi, P.J.; Cho, M.H.; Hokanson, J.E.; Regan, E.A.; Make, B.J.; Beaty, T.H.; Han, M.K.; Curtis, J.L.; Curran-Everett, D.; et al. Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene. Respir. Res. 2014, 15, 89. [Google Scholar] [CrossRef]
- Casaburi, R.; Crapo, J.D. Should the Term “PRISm” Be Restricted to Use in Evaluating Smokers? Am. J. Respir. Crit. Care Med. 2024, 209, 1289–1291. [Google Scholar] [CrossRef]
- Volzke, H.; Alte, D.; Schmidt, C.O.; Radke, D.; Lorbeer, R.; Friedrich, N.; Aumann, N.; Lau, K.; Piontek, M.; Born, G.; et al. Cohort profile: The study of health in Pomerania. Int. J. Epidemiol. 2011, 40, 294–307. [Google Scholar] [CrossRef]
- Volzke, H.; Schossow, J.; Schmidt, C.O.; Jurgens, C.; Richter, A.; Werner, A.; Werner, N.; Radke, D.; Teumer, A.; Ittermann, T.; et al. Cohort Profile Update: The Study of Health in Pomerania (SHIP). Int. J. Epidemiol. 2022, 51, e372–e383. [Google Scholar] [CrossRef]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir J. 2022, 60, 2101499. [Google Scholar] [CrossRef]
- Jones, N.L.; Makrides, L.; Hitchcock, C.; Chypchar, T.; McCartney, N. Normal standards for an incremental progressive cycle ergometer test. Am. Rev. Respir. Dis. 1985, 131, 700–708. [Google Scholar] [PubMed]
- Wasserman, K.; Hansen, J.; Sue, D.; Stringer, W.; Whipp, B. (Eds.) Principles of Exercise Testing and Interpretation, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Schiller, N.B.; Shah, P.M.; Crawford, M.; DeMaria, A.; Devereux, R.; Feigenbaum, H.; Gutgesell, H.; Reichek, N.; Sahn, D.; Schnittger, I.; et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J. Am. Soc. Echocardiogr. 1989, 2, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef]
- Cuspidi, C.; Meani, S.; Negri, F.; Giudici, V.; Valerio, C.; Sala, C.; Zanchetti, A.; Mancia, G. Indexation of left ventricular mass to body surface area and height to allometric power of 2.7: Is the difference limited to obese hypertensives? J. Hum. Hypertens. 2009, 23, 728–734. [Google Scholar] [CrossRef]
- Hegenscheid, K.; Kuhn, J.P.; Volzke, H.; Biffar, R.; Hosten, N.; Puls, R. Whole-body magnetic resonance imaging of healthy volunteers: Pilot study results from the population-based SHIP study. Rofo 2009, 181, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Marott, J.L.; Ingebrigtsen, T.S.; Colak, Y.; Vestbo, J.; Lange, P. Trajectory of Preserved Ratio Impaired Spirometry: Natural History and Long-Term Prognosis. Am. J. Respir. Crit. Care Med. 2021, 204, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Zhang, Z.; Zhou, T.; Zhou, X.; Jiang, X.; Xia, Y.; Guan, Y.; Liu, S.; Fan, L. Preserved ratio impaired spirometry: Clinical, imaging and artificial intelligence perspective. J. Thorac. Dis. 2025, 17, 450–460. [Google Scholar] [CrossRef]
- He, D.; Sun, Y.; Gao, M.; Wu, Q.; Cheng, Z.; Li, J.; Zhou, Y.; Ying, K.; Zhu, Y. Different Risks of Mortality and Longitudinal Transition Trajectories in New Potential Subtypes of the Preserved Ratio Impaired Spirometry: Evidence From the English Longitudinal Study of Aging. Front. Med. 2021, 8, 755855. [Google Scholar] [CrossRef]
- Kaise, T.; Sakihara, E.; Tamaki, K.; Miyata, H.; Hirahara, N.; Kirichek, O.; Tawara, R.; Akiyama, S.; Katsumata, M.; Haruya, M.; et al. Prevalence and Characteristics of Individuals with Preserved Ratio Impaired Spirometry (PRISm) and/or Impaired Lung Function in Japan: The OCEAN Study. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 2665–2675. [Google Scholar] [CrossRef]
- Mannino, D.M.; Ford, E.S.; Redd, S.C. Obstructive and restrictive lung disease and functional limitation: Data from the Third National Health and Nutrition Examination. J. Intern. Med. 2003, 254, 540–547. [Google Scholar] [CrossRef]
- Soriano, J.B.; Miravitlles, M.; Garcia-Rio, F.; Munoz, L.; Sanchez, G.; Sobradillo, V.; Durán, E.; Guerrero, D.; Ancochea, J. Spirometrically-defined restrictive ventilatory defect: Population variability and individual determinants. Prim. Care Respir. J. 2012, 21, 187–193. [Google Scholar] [CrossRef]
- Jones, R.L.; Nzekwu, M.M. The effects of body mass index on lung volumes. Chest 2006, 130, 827–833. [Google Scholar] [CrossRef]
- Fenger, R.V.; Gonzalez-Quintela, A.; Vidal, C.; Husemoen, L.L.; Skaaby, T.; Thuesen, B.H.; Aadahl, M.; Madsen, F.; Linneberg, A. The longitudinal relationship of changes of adiposity to changes in pulmonary function and risk of asthma in a general adult population. BMC Pulm. Med. 2014, 14, 208. [Google Scholar] [CrossRef]
- Herrmann, M.J.; Reyneke, C.; Stolz, D.; Albrecht, A.; Prasse, A.; Keller, S.M. PRISm and the risk for all-cause mortality in relation to sleep disordered breathing: A community-based study. ERJ Open Res. 2025, 11, 01399-2024. [Google Scholar] [PubMed]
- Washio, Y.; Sakata, S.; Fukuyama, S.; Honda, T.; Kan, O.K.; Shibata, M.; Hata, J.; Inoue, H.; Kitazono, T.; Matsumoto, K.; et al. Risks of Mortality and Airflow Limitation in Japanese Individuals with Preserved Ratio Impaired Spirometry. Am. J. Respir. Crit. Care Med. 2022, 206, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Petersen, H.; Qualls, C.; Meek, P.M.; Vazquez-Guillamet, R.; Celli, B.R.; Tesfaigzi, Y. Spirometric variability in smokers: Transitions in COPD diagnosis in a five-year longitudinal study. Respir. Res. 2016, 17, 147. [Google Scholar] [CrossRef]
- Magner, K.M.A.; Cherian, M.; Whitmore, G.A.; Vandemheen, K.L.; Bergeron, C.; Cote, A.; Field, S.K.; Lemière, C.; McIvor, R.A.; Aaron, S.D. Assessment of Preserved Ratio Impaired Spirometry Using Pre- and Post-Bronchodilator Spirometry in a Randomly Sampled Symptomatic Cohort. Am. J. Respir. Crit. Care Med. 2023, 208, 1129–1131. [Google Scholar] [CrossRef] [PubMed]
- Vikjord, S.A.A.; Brumpton, B.M.; Mai, X.M.; Romundstad, S.; Langhammer, A.; Vanfleteren, L. The HUNT study: Association of comorbidity clusters with long-term survival and incidence of exacerbation in a population-based Norwegian COPD cohort. Respirology 2022, 27, 277–285. [Google Scholar] [CrossRef]
| PRISm Group | |||
|---|---|---|---|
| No | Yes | p * | |
| N | 3403 (87.0%) | 507 (13.0%) | |
| Age (years) | 53 (43; 64) | 60 (50; 70) | <0.001 |
| Sex | |||
| Men | 1700 (50.0%) | 272 (53.6%) | 0.121 |
| Women | 1703 (50.0%) | 235 (46.4%) | |
| Smoking status | |||
| Never | 1333 (39.2%) | 161 (31.8%) | <0.001 |
| Former | 1397 (41.1%) | 205 (40.5%) | |
| Current | 667 (19.6%) | 140 (27.7%) | |
| Body height (cm) | 170 (163; 177) | 171 (164; 177) | 0.787 |
| Body weight (kg) | 79 (69; 91) | 83 (72; 95) | <0.001 |
| Body mass index (kg/m2) | 27.3 (24.6; 30.4) | 28.8 (25.2; 32.0) | <0.001 |
| Waist circumference (cm) | 90 (80; 100) | 96 (85; 105) | <0.001 |
| Fat mass (kg) | 21.9 (17.3; 27.7) | 24.3 (18.6; 31.8) | <0.001 |
| Fat-free mass (kg) | 55.8 (47.1; 66.6) | 57.0 (47.5; 67.2) | 0.073 |
| History | |||
| Myocardial infarction | 70 (2.1%) | 29 (5.7%) | <0.001 |
| Stroke | 57 (1.7%) | 12 (2.4%) | 0.269 |
| Atrial fibrillation | 452 (13.3%) | 73 (14.4%) | 0.491 |
| Cancer | 239 (7.0%) | 44 (8.7%) | 0.173 |
| Hypertension | 1605 (47.3%) | 305 (60.2%) | <0.001 |
| Diagnosed type 2 diabetes | 289 (8.5%) | 84 (16.6%) | <0.001 |
| Dyspnea | |||
| No | 2594 (76.4%) | 277 (54.9%) | <0.001 |
| @ heavy load | 657 (19.3%) | 171 (33.9%) | |
| @ moderate load | 126 (3.7%) | 51 (10.1%) | |
| @ low load | 20 (0.6%) | 6 (1.2%) | |
| Lung disease | 147 (4.3%) | 74 (14.8%) | <0.001 |
| Drugs for obstructive airway diseases | 87 (2.6%) | 51 (10.1%) | <0.001 |
| Estimated glomerular filtration rate (mL/min) | 90 (76; 101) | 85 (72; 97) | <0.001 |
| Lung function testing | |||
| Forced expiratory volume (FEV1) (% predicted) | 99.6 (91.7; 107.5) | 73.3 (66.7; 77.2) | <0.001 |
| Forced vital capacity (FVC) (% predicted) | 109.1 (97.6; 121.9) | 85.4 (76.7; 97.0) | <0.001 |
| FEV1/FVC (%) | 80.3 (76.8; 83.3) | 73.4 (67.8; 78.1) | <0.001 |
| Maximal expiratory flow at 25% of FVC (L/s) | 1.21 (0.87; 1.66) | 0.55 (0.38; 0.80) | <0.001 |
| Maximal expiratory flow at 50% of FVC (L/s) | 3.93 (3.10; 4.87) | 1.99 (1.44; 2.71) | <0.001 |
| Maximal expiratory flow at 75% of FVC (L/s) | 6.08 (4.95; 7.53) | 4.04 (3.09; 5.05) | <0.001 |
| Expiratory peak flow (L/s) | 6.74 (5.37; 8.27) | 4.96 (3.91; 6.12) | <0.001 |
| Total airway resistance (kPa/L/s) | 0.19 (0.14; 0.24) | 0.28 (0.20; 0.38) | <0.001 |
| Residual volume (RV) (% predicted) | 102.1 (80.7; 121.6) | 112.2 (91.9; 138.0) | <0.001 |
| Total lung capacity (TLC) (% predicted) | 103.2 (94.0; 112.2) | 95.0 (84.6; 105.7) | <0.001 |
| RV/TLC (%) | 0.35 (0.28; 0.41) | 0.46 (0.38; 0.52) | <0.001 |
| Diffusing capacity for carbon monoxide (DLCO) (mL/min/kPa) | 7.40 (6.30; 8.91) | 6.38 (5.27; 7.52) | <0.001 |
| DLCO (% predicted) | 83.8 (75.9; 91.9) | 73.5 (64.6; 83.8) | <0.001 |
| Carbon monoxide transfer coefficient (Krogh index) (mmol CO/s × kPa) | 1.37 (1.23; 1.49) | 1.30 (1.15; 1.48) | <0.001 |
| Krogh index (% predicted) | 90.0 (81.4; 99.3) | 89.9 (79.0; 101.0) | 0.735 |
| Cardiopulmonary exercise testing (CPET) | |||
| Reason for termination of CPET | |||
| Muscular fatigue | 2432 (71.5%) | 342 (67.5%) | 0.089 |
| Hip or knee pain | 129 (3.8%) | 17 (3.4%) | |
| Dyspnea | 624 (18.3%) | 117 (23.1%) | |
| Other | 218 (6.4%) | 31 (6.1%) | |
| Borg scale | 8 (8; 9) | 8 (8; 9) | 0.192 |
| Respiratory exchange rate @ peak | 1.18 (1.11; 1.24) | 1.13 (1.05; 1.20) | <0.001 |
| Maximal workload (Watt) | 148 (116; 196) | 132 (100; 164) | <0.001 |
| Maximal workload (% predicted) | 117.0 (97.4; 146.8) | 98.9 (81.3; 130.0) | <0.001 |
| V’O2 peak (mL/min) | 1890 (1500; 2400) | 1646 (1307; 2062) | <0.001 |
| V’O2 peak (mL/min/kg) | 24.0 (19.7; 29.0) | 20.1 (16.2; 24.5) | <0.001 |
| V’O2 peak (% predicted) | 96.0 (84.3; 108.2) | 86.3 (73.1; 97.3) | <0.001 |
| V’O2 VT1 (mL/min) | 950 (800; 1200) | 900 (750; 1100) | <0.001 |
| V’E/V’CO2 VT1 | 27 (25; 30) | 28 (25; 31) | <0.001 |
| V’E/V’CO2 peak | 30 (27; 33) | 30 (27; 33) | 0.313 |
| V’E/V’CO2 slope | 27 (25; 29) | 28 (26; 31) | <0.001 |
| PETCO2 rest (mmHg) | 32 (29; 35) | 32 (29; 34) | 0.529 |
| PETCO2 VT1 (mmHg) | 39 (36; 43) | 38 (34; 42) | <0.001 |
| PETCO2 VT1—PETCO2rest (mmHg) | 7 (5; 9) | 6 (4; 8) | <0.001 |
| Oxygen pulse peak (mL/beat) | 12.7 (10.3; 15.5) | 12.3 (10.0; 14.9) | 0.016 |
| Tidal volume peak (L/kg) | 2.1 (1.8; 2.7) | 1.8 (1.4; 2.2) | <0.001 |
| Breathing frequency peak (breaths/min) | 31 (27; 35) | 32 (28; 36) | 0.029 |
| Ventilation (V’E) peak (L/min) | 68 (53; 86) | 58 (47; 71) | <0.001 |
| V’E/maximal voluntary ventilation (%) | 28 (22; 36) | 33 (26; 42) | <0.001 |
| Heart rate rest (bpm) | 76 (68; 86) | 76 (66; 85) | 0.040 |
| Heart rate peak (bpm) | 157 (139; 171) | 139 (118; 160) | <0.001 |
| Heart rate peak—heart rate rest (bpm) | 78 (62; 92) | 62 (45; 79) | <0.001 |
| Heart rate peak (% of the target heart rate) | 94 (85; 100) | 86 (76; 96) | <0.001 |
| Alveolar–arterial gradient peak | 29 (24; 36) | 32 (26; 39) | <0.001 |
| Echocardiography | |||
| LV end-diastolic volume (mL) | 112 (95; 131) | 114 (97; 139) | 0.041 |
| LV end-diastolic volume index (mL/m2.7) | 26.6 (22.9; 30.8) | 27.5 (24.0; 31.9) | 0.004 |
| LV end-systolic volume (mL) | 31.0 (23.6; 40.7) | 32.5 (24.0; 43.6) | 0.047 |
| LV end-systolic volume index (mL/m2.7) | 7.39 (5.72; 9.38) | 7.65 (5.91; 10.14) | 0.032 |
| LV wall thickness (mm) | 10.0 (8.9; 11.1) | 10.1 (9.2; 11.4) | 0.006 |
| LV wall thickness index (mm/m2.7) | 2.37 (2.09; 2.68) | 2.47 (2.15; 2.79) | 0.002 |
| LV mass (g) | 273 (225; 329) | 292 (232; 350) | 0.001 |
| LV mass index (g/m2.7) | 64.9 (55.2; 75.7) | 68.4 (57.6; 83.2) | <0.001 |
| LV stroke volume (mL) | 78.9 (65.1; 94.8) | 80.7 (66.0; 97.6) | 0.251 |
| LV stroke volume index (mL/m2.7) | 18.8 (15.7; 22.4) | 19.4 (15.7; 23.1) | 0.125 |
| LV ejection fraction (%) | 71.8 (65.6; 77.4) | 70.7 (63.7; 77.8) | 0.205 |
| E to E’ ratio | 6.09 (5.12; 7.21) | 6.37 (5.29; 7.72) | <0.001 |
| Left atrium diameter (cm) | 3.89 (3.54; 4.28) | 4.02 (3.54; 4.38) | 0.008 |
| Left atrium diameter index (cm/m2.7) | 0.93 (0.83; 1.05) | 0.96 (0.84; 1.07) | 0.010 |
| Mortality | |||
| All-cause mortality | 222 (6.5%) | 77 (15.2%) | <0.001 |
| CV mortality | 45 (1.3%) | 20 (4.1%) | <0.001 |
| Data are expressed as median, 25th percentile, and 75th percentile for continuous data or as absolute numbers and percentages for categorical data. | |||
| All Odds Ratio (95%-CI) | Men Odds Ratio (95%-CI) | Women Odds Ratio (95%-CI) | |
|---|---|---|---|
| Smoking status former vs. never current vs. never | 1.18 (0.94; 1.49) 2.63 (2.01; 3.44) * | 1.42 (0.99; 2.04) 4.04 (2.70; 6.05) * | 1.03 (0.74; 1.42) 1.72 (1.17; 2.52) * |
| Body mass index (kg/m2) | 1.04 (1.02; 1.06) * | 1.05 (1.02; 1.09) * | 1.03 (0.99; 1.05) |
| Waist circumference (cm) | 1.03 (1.02; 1.03) * | 1.03 (1.02; 1.04) * | 1.02 (1.01; 1.03) * |
| Fat mass (kg) | 1.03 (1.02; 1.04) * | 1.04 (1.03; 1.06) * | 1.02 (1.01; 1.04) * |
| Fat-free mass (kg) | 0.99 (0.97; 1.01) | 0.99 (0.97; 1.01) | 0.98 (0.95; 1.02) |
| All Odds Ratio (95%-CI) | Men Odds Ratio (95%-CI) | Women Odds Ratio (95%-CI) | |
|---|---|---|---|
| Myocardial infarction | 1.78 (1.10; 2.87) * | 1.78 (1.06; 2.98) * | 1.80 (0.53; 6.17) |
| Stroke | 0.89 (0.46; 1.72) | 1.19 (0.56; 2.53) | 0.47 (0.11; 2.11) |
| Atrial fibrillation | 1.06 (0.80; 1.39) | 0.95 (0.66; 1.36) | 1.20 (0.78; 1.85) |
| Hypertension | 1.13 (0.90; 1.42) | 1.04 (0.76; 1.42) | 1.25 (0.89; 1.75) |
| Diagnosed type 2 diabetes | 1.42 (1.06; 1.90) * | 1.22 (0.83; 1.80) | 1.72 (1.10; 2.67) * |
| Dyspnea moderate or heavy load | 1.93 (1.37; 2.73) * | 2.96 (1.77; 4.97) * | 1.39 (0.85; 2.25) |
| Lung disease | 3.50 (2.57; 4.76) * | 3.26 (2.05; 5.17) * | 3.67 (2.43; 5.56) * |
| Hazard ratio (95%-CI) | Hazard ratio (95%-CI) | Hazard ratio (95%-CI) | |
| All-cause mortality | 1.39 (1.06; 1.81) * | 1.20 (0.86; 1.68) | 1.80 (1.14; 2.86) * |
| Cardiovascular mortality | 1.64 (0.95; 2.83) | 1.38 (0.74; 2.57) | 2.70 (0.83; 8.72) |
| All β (95%-CI) | Men β (95%-CI) | Women β (95%-CI) | |
|---|---|---|---|
| Maximal expiratory flow at 25% of FVC (L/s) | −0.54 (−0.58; −0.50) * | −0.61 (−0.67; −0.54) * | −0.46 (−0.52; −0.41) * |
| Maximal expiratory flow at 50% of FVC (L/s) | −1.73 (−1.83; −1.63) * | −2.01 (−2.18; −1.84) * | −1.42 (−1.54; −1.30) * |
| Maximal expiratory flow at 75% of FVC (L/s) | −1.98 (−2.11; −1.84) * | −2.41 (−2.63; −2.19) * | −1.49 (−1.65; −1.34) * |
| Expiratory peak flow (L/s) | −1.66 (−1.81; −1.51) * | −2.02 (−2.26; −1.78) * | −1.25 (−1.43; −1.08) * |
| Total airway resistance (kPa/L/s) | 0.10 (0.09; 0.11) * | 0.09 (0.08; 0.11) * | 0.11 (0.09; 0.12) * |
| Residual volume (RV) (% predicted) | 13.4 (10.1; 16.8) * | 14.5 (9.7; 19.2) * | 12.0 (7.3; 16.7) |
| Total lung capacity (TLC) (% predicted) | −8.2 (−9.6; −6.7) * | −8.7 (−10.7; −6.7) * | −7.8 (−9.9; −5.6) * |
| RV/TLC (%) | 0.08 (0.07; 0.09) * | 0.08 (0.07; 0.09) * | 0.07 (0.06; 0.09) * |
| Diffusing capacity for carbon monoxide (DLCO) (mL/min/kPa) | −0.82 (−0.94; −0.70) * | −1.04 (−1.23; −0.86) * | −0.53 (−0.67; −0.39) * |
| DLCO (% predicted) | −10.0 (−11.2; −8.8) * | −12.2 (−13.9; −10.4) * | −7.6 (−9.2; −5.9) * |
| Carbon monoxide transfer coefficient (Krogh index) (mmol CO/s × kPa) | −0.01 (−0.02; 0.01) | −0.02 (−0.04; 0.00) | 0.01 (−0.01; 0.04) |
| Krogh index (% predicted) | −0.61 (−1.75; 0.54) | −1.92 (−3.64; −0.18) * | 1.03 (−0.45; 2.51) |
| All β (95%-CI) | Men β (95%-CI) | Women β (95%-CI) | |
|---|---|---|---|
| Maximal workload (Watt) | −17.4 (−20.5; −14.3) * | −20.6 (−25.4; −15.9) * | −11.6 (−25.4; −15.9) * |
| Maximal workload (% predicted) | −14.8 (−17.2; −12.5) * | −12.9 (−15.3; −10.5) * | −15.9 (−19.9; −11.9) * |
| V’O2 peak (mL/min) | −168 (−207; −129) * | −207 (−269; −145) * | −100 (−143; −57) * |
| V’O2 peak (mL/min/kg) | −2.1 (−2.6; −1.6) * | −2.4 (−3.1; −1.7) * | −1.5 (−2.1; −0.9) * |
| V’O2 peak (% predicted) | −8.8 (−10.5; −7.1) * | −10.0 (−12.4; −7.6) * | −7.2 (−9.6; −4.7) * |
| V’O2 VT1 (mL/min) | −49 (−70; −27) * | −57 (−91; −23) * | −33 (−58; −8) * |
| V’E/V’CO2 VT1 | 0.93 (0.59; 1.29) * | 1.17 (0.69; 1.67) * | 0.55 (0.06; 1.04) * |
| V’E/V’CO2 peak | −0.24 (−0.68; 0.21) | −0.49 (1.13; 0.15) | −0.06 (−0.67; 0.55) |
| V’E/V’CO2 slope | 0.80 (0.48; 1.13) * | 0.88 (0.41; 1.34) * | 0.62 (0.18; 1.06) * |
| PETCO2 rest (mmHg) | 0.19 (−0.23; 0.62) | −0.06 (−0.64; 0.52) | 0.56 (−0.07; 1.19) |
| PETCO2 VT1 (mmHg) | −0.34 (−0.88; 0.20) | −0.68 (−1.43; 0.06) | 0.21 (−0.56; 0.98) |
| PETCO2 VT1 —PETCO2 rest (mmHg) | −0.52 (−0.82; −0.22) * | −0.62 (−1.04; −0.19) * | −0.32 (−0.75; 0.11) |
| Oxygen pulse peak (mL/beat) | −0.54 (−0.78; −0.28) * | −0.76 (−1.16; −0.36) * | −0.19 (0.47; 0.09) |
| Tidal volume peak (L/kg) | −0.34 (−0.38; −0.30) * | −0.42 (−0.48; −0.35) * | −0.25 (−0.30; −0.20) * |
| Breathing frequency peak (breaths/min) | 1.06 (0.35; 1.66) * | 0.95 (0.13; 1.77) * | 1.20 (0.32; 2.08) * |
| Ventilation (V’E) peak (L/min) | −8.8 (−10.4; −7.2) * | −10.7 (−13.3; −8.1) * | −6.1 (−7.9; −4.3) * |
| V’E/maximal voluntary ventilation (%) | 7.0 (6.2; 7.7) * | 8.6 (7.5; 9.8) * | 5.3 (4.5; 6.1) * |
| Heart rate rest (bpm) | 0.44 (−0.75; 1.64) | 1.09 (−0.61; 2.79) | −0.49 (−2.17; 1.20) |
| Heart rate peak (bpm) | −8.0 (−9.8; −6.3) * | −8.2 (−10.7; −5.7) * | −7.6 (−10.2; −5.1) * |
| Heart rate peak—heart rate rest (bpm) | −8.5 (−10.2; −6.8) | −9.3 (−11.6; −6.9) * | −7.1 (−9.5; −4.8) * |
| Heart rate peak (% of the target heart rate) | −5.1 (−6.2; −4.0) * | −5.2 (−6.8; −3.7) * | −4.8 (−6.3; −3.2) * |
| All β (95%-CI) | Men β (95%-CI) | Women β (95%-CI) | |
|---|---|---|---|
| LV end-diastolic volume index (mL/m2.7) | 0.12 (−0.57; 0.82) | −0.30 (−1.31; 0.72) | 0.53 (−0.41; 1.47) |
| LV end-systolic volume index (mL/m2.7) | 0.26 (−0.11; 0.63) | 0.08 (−0.50; 0.65) | 0.41 (−0.06; 0.88) |
| LV wall thickness index (mm/m2.7) | −0.02 (−0.06; 0.03) | −0.02 (−0.08; 0.05) | 0.01 (−0.05; 0.08) |
| LV mass index (g/m2.7) | 0.71 (−0.96; 2.39) | −0.39 (−2.87; 2.10) | 1.97 (−0.19; 4.13) |
| LV stroke volume index (mL/m2.7) | −0.13 (−0.73; 0.46) | −0.37 (−1.24; 0.49) | 0.12 (−0.69; 0.92) |
| LV ejection fraction (%) | −0.76 (−1.92; 0.39) | −0.48 (−2.32; 1.36) | −0.92 (−2.37; 0.52) |
| E to E’ ratio | 0.05 (−0.12; 0.22) | 0.00 (−0.23; 0.24) | 0.11 (−0.13; 0.36) |
| Left atrium diameter index (cm/m2.7) | −0.02 (−0.03; −0.01) * | −0.02 (−0.04; −0.01) * | −0.00 (−0.03; 0.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stubbe, B.; Ittermann, T.; Obst, A.; Völzke, H.; Ewert, R. Preserved Ratio Impaired Spirometry (PRISm) from an Epidemiological Perspective. J. Clin. Med. 2025, 14, 7831. https://doi.org/10.3390/jcm14217831
Stubbe B, Ittermann T, Obst A, Völzke H, Ewert R. Preserved Ratio Impaired Spirometry (PRISm) from an Epidemiological Perspective. Journal of Clinical Medicine. 2025; 14(21):7831. https://doi.org/10.3390/jcm14217831
Chicago/Turabian StyleStubbe, Beate, Till Ittermann, Anne Obst, Henry Völzke, and Ralf Ewert. 2025. "Preserved Ratio Impaired Spirometry (PRISm) from an Epidemiological Perspective" Journal of Clinical Medicine 14, no. 21: 7831. https://doi.org/10.3390/jcm14217831
APA StyleStubbe, B., Ittermann, T., Obst, A., Völzke, H., & Ewert, R. (2025). Preserved Ratio Impaired Spirometry (PRISm) from an Epidemiological Perspective. Journal of Clinical Medicine, 14(21), 7831. https://doi.org/10.3390/jcm14217831

