Malignancy-Associated Pulmonary Embolism: Mortality, Recurrence, and Bleeding Risks
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Study Population
2.3. Inclusion and Exclusion Criteria
2.4. Data Collection
2.5. Statistical Analysis
3. Results
4. Discussion
5. Limitation of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Earle, W.; Misra, S.; Wester, A.; Herzig, M.; Abdallah, G.; Ross, C.B.; Secemsky, E.A.; Carroll, B.J. Cause of Death in Patients with Acute Pulmonary Embolism. Vasc. Med. 2023, 28, 586–588. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.A.; Molsberry, R.; Cuttica, M.J.; Desai, K.R.; Schimmel, D.R.; Khan, S.S. Time Trends in Pulmonary Embolism Mortality Rates in the United States, 1999 to 2018. J. Am. Heart Assoc. 2020, 9, e016784. [Google Scholar] [CrossRef] [PubMed]
- Sathianathan, S.; Meili, Z.; Romero, C.M.; Juarez, J.J.; Bashir, R. Racial and Gender Disparities in the Management of Acute Pulmonary Embolism. J. Vasc. Surg. Venous Lymphat. Disord. 2024, 12, 101817. [Google Scholar] [CrossRef] [PubMed]
- Ortel, T.L.; Neumann, I.; Ageno, W.; Beyth, R.; Clark, N.P.; Cuker, A.; Hutten, B.A.; Jaff, M.R.; Manja, V.; Schulman, S.; et al. American Society of Hematology 2020 Guidelines for Management of Venous Thromboembolism: Treatment of Deep Vein Thrombosis and Pulmonary Embolism. Blood Adv. 2020, 4, 4693–4738. [Google Scholar] [CrossRef]
- Stevens, S.M.; Woller, S.C.; Baumann Kreuziger, L.; Bounameaux, H.; Doerschug, K.; Geersing, G.-J.; Huisman, M.V.; Kearon, C.; King, C.S.; Knighton, A.J.; et al. Executive Summary: Antithrombotic Therapy for VTE Disease: Second Update of the CHEST Guideline and Expert Panel Report. Chest 2021, 160, 2247–2259. [Google Scholar] [CrossRef]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the Diagnosis and Management of Acute Pulmonary Embolism Developed in Collaboration with the European Respiratory Society (ERS): The Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- Hutten, B.A.; Prins, M.H. Duration of Treatment with Vitamin K Antagonists in Symptomatic Venous Thromboembolism. In Cochrane Database of Systematic Reviews; The Cochrane Collaboration, Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006; p. CD001367.pub2. [Google Scholar]
- Weeda, E.R.; Hakamiun, K.M.; Leschorn, H.X.; Tran, E. Comorbid Cancer and Use of Thrombolysis in Acute Pulmonary Embolism. J. Thromb. Thrombolysis 2019, 47, 324–327. [Google Scholar] [CrossRef]
- Burini, A.; Paciaroni, M.; D’Anna, L.; Kuris, F.; Maniaci, V.; Valente, M.; Gigli, G.L.; Merlino, G. Intravenous Thrombolysis in the Context of Stroke and Cancer. J. Thromb. Thrombolysis 2025, 1–15. [Google Scholar] [CrossRef]
- Huang, S.; Lu, X.; Tang, L.V.; Hu, Y. Efficacy and Safety of Intravenous Thrombolysis for Acute Ischemic Stroke in Cancer Patients: A Systemic Review and Meta-Analysis. Am. J. Transl. Res. 2020, 12, 4795–4806. [Google Scholar]
- Schulman, S.; Beyth, R.J.; Kearon, C.; Levine, M.N. Hemorrhagic Complications of Anticoagulant and Thrombolytic Treatment: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008, 133, 257S–298S. [Google Scholar] [CrossRef]
- Linkins, L.-A.; Choi, P.T.; Douketis, J.D. Clinical Impact of Bleeding in Patients Taking Oral Anticoagulant Therapy for Venous Thromboembolism. Ann. Intern. Med. 2003, 139, 893–900. [Google Scholar] [CrossRef]
- Wells, P.S.; Lensing, A.W.A.; Haskell, L.; Levitan, B.; Laliberté, F.; Durkin, M.; Ashton, V.; Xiao, Y.; Crivera, C.; Lejeune, D.; et al. Cost Comparison of Continued Anticoagulation with Rivaroxaban versus Placebo Based on the 1-Year EINSTEIN-Extension Trial Efficacy and Safety Results. J. Med. Econ. 2018, 21, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.P.; Wang, T.Y.; McCoy, L.; Bach, R.G.; Effron, M.B.; Peterson, E.D.; Cohen, D.J. Impact of Bleeding on Quality of Life in Patients on DAPT: Insights From TRANSLATE-ACS. J. Am. Coll. Cardiol. 2016, 67, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, T.R.; Singer, D.E.; Sheehan, M.A.; Oertel, L.B.; Maraventano, S.W.; Hughes, R.A.; Kistler, J.P. The Impact of Long-Term Warfarin Therapy on Quality of Life. Evidence from a Randomized Trial. Boston Area Anticoagulation Trial for Atrial Fibrillation Investigators. Arch. Intern. Med. 1991, 151, 1944–1949. [Google Scholar] [CrossRef] [PubMed]
- Palareti, G.; Leali, N.; Coccheri, S.; Poggi, M.; Manotti, C.; D’Angelo, A.; Pengo, V.; Erba, N.; Moia, M.; Ciavarella, N.; et al. Bleeding Complications of Oral Anticoagulant Treatment: An Inception-Cohort, Prospective Collaborative Study (ISCOAT). Lancet 1996, 348, 423–428. [Google Scholar] [CrossRef]
- Fawzy, A.M.; Yang, W.-Y.; Lip, G.Y. Safety of Direct Oral Anticoagulants in Real–World Clinical Practice: Translating the Trials to Everyday Clinical Management. Expert Opin. Drug Saf. 2019, 18, 187–209. [Google Scholar] [CrossRef]
- Hill, N.R.; Sandler, B.; Bergrath, E.; Milenković, D.; Ashaye, A.; Farooqui, U.; Cohen, A.T. A Systematic Review of Network Meta-Analyses and Real-World Evidence Comparing Apixaban and Rivaroxaban in Nonvalvular Atrial Fibrillation. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029619898764. [Google Scholar] [CrossRef]
- Keshishian, A.; Kamble, S.; Pan, X.; Mardekian, J.; Horblyuk, R.; Hamilton, M.; Lip, G.Y.H. Real-World Comparison of Major Bleeding Risk Among Non-Valvular Atrial Fibrillation Patients Initiated on Apixaban, Dabigatran, Rivaroxaban, or Warfarin. Thromb. Haemost. 2016, 116, 975–986. [Google Scholar] [CrossRef]
- Amin, A.; Keshishian, A.; Vo, L.; Zhang, Q.; Dina, O.; Patel, C.; Odell, K.; Trocio, J. Real-World Comparison of All-Cause Hospitalizations, Hospitalizations Due to Stroke and Major Bleeding, and Costs for Non-Valvular Atrial Fibrillation Patients Prescribed Oral Anticoagulants in a US Health Plan. J. Med. Econ. 2017, 21, 244–253. [Google Scholar] [CrossRef]
- Ray, U.; Chowdhury, S.R.; Vasudevan, M.; Bankar, K.; Roychoudhury, S.; Roy, S.S. Gene Regulatory Networking Reveals the Molecular Cue to Lysophosphatidic Acid-induced Metabolic Adaptations in Ovarian Cancer Cells. Mol. Oncol. 2017, 11, 491–516. [Google Scholar] [CrossRef]
- Norby, F.L.; Alonso, Á. Comparative Effectiveness of Rivaroxaban in the Treatment of Nonvalvular Atrial Fibrillation. J. Comp. Eff. Res. 2017, 6, 549–560. [Google Scholar] [CrossRef]
- Rudolf, H.; Mügge, A.; Trampisch, H.J.; Scharnagl, H.; März, W.; Kara, K. NT-proBNP for Risk Prediction of Cardiovascular Events and All-Cause Mortality: The getABI-Study. IJC Heart Vasc. 2020, 29, 100553. [Google Scholar] [CrossRef]
- Leal-Alcántara, V.J.; González-Macedo, E.; Maldonado-May, A.C.; Santiago-Hernández, A.; Amaro-Palomo, E.J.; Hernandez-Pastrana, S.; Adib-Gracia, A.E.; Gopar-Nieto, R.; Martínez, D.S.-L.; la Cruz, J.L.B.-D.; et al. Serum NT-ProBNP/Chloride Ratio Predicts Adverse Cardiovascular Outcomes in Patients with Acute Heart Failure. Biomedicines 2025, 13, 1493. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Nieto, O.R.; Gómez-Oropeza, I.; Quintero-Leyra, A.; Kammar-García, A.; Zamarrón-López, É.I.; Soto-Estrada, M.; Morgado-Villaseñor, L.A.; Meza-Comparán, H.D. Hemodynamic and Respiratory Support in Pulmonary Embolism: A Narrative Review. Front. Med. 2023, 10, 1123793. [Google Scholar] [CrossRef] [PubMed]
- Madsen, S.F.; Christensen, D.M.; Strange, J.E.; Nouhravesh, N.; Kümler, T.; Gislason, G.; Lamberts, M.; Sindet-Pedersen, C. Short- and Long-Term Mortality for Patients with and Without a Cancer Diagnosis Following Pulmonary Embolism in Denmark, 2000 to 2020: A Nationwide Study. J. Am. Heart Assoc. 2023, 12, e030191. [Google Scholar] [CrossRef] [PubMed]
- Bohula, E.A.; Berg, D.D.; Lopes, M.S.; Connors, J.M.; Babar, I.; Barnett, C.F.; Chaudhry, S.; Chopra, A.; Ginete, W.; Katz, J.N.; et al. Anticoagulation and Antiplatelet Therapy for Prevention of Venous and Arterial Thrombotic Events in Critically Ill Patients with COVID-19: COVID-PACT. Circulation 2022, 146, 1344–1356. [Google Scholar] [CrossRef]
- Kirchhof, P.; Haas, S.; Amarenco, P.; Turpie, A.G.G.; Bach, M.; Lambelet, M.; Hess, S.; Camm, A.J. Causes of Death in Patients with Atrial Fibrillation Anticoagulated with Rivaroxaban: A Pooled Analysis of XANTUS. Europace 2024, 26, euae183. [Google Scholar] [CrossRef]
- Abdel-Qadir, H.; Austin, P.C.; Pang, A.; Fang, J.; Udell, J.A.; Geerts, W.; McNaughton, C.D.; Jackevicius, C.A.; Kwong, J.C.; Yeh, C.H.; et al. The Association Between Anticoagulation and Adverse Outcomes After a Positive SARS-CoV-2 Test Among Older Outpatients: A Population-Based Cohort Study. Thromb. Res. 2022, 211, 114–122. [Google Scholar] [CrossRef]
- van Wall, S.J.; Klok, F.A.; den Exter, P.L.; Barrios, D.; Morillo, R.; Cannegieter, S.C.; Jiménez, D.; Huisman, M.V. Continuation of Low-molecular-weight Heparin Treatment for Cancer-related Venous Thromboembolism: A Prospective Cohort Study in Daily Clinical Practice. J. Thromb. Haemost. 2017, 15, 74–79. [Google Scholar] [CrossRef]
- Seiffge, D.; Paciaroni, M.; Wilson, D.; Koga, M.; Macha, K.; Cappellari, M.; Schaedelin, S.; Shakeshaft, C.; Takagi, M.; Tsivgoulis, G.; et al. Direct Oral Anticoagulants Versus Vitamin K Antagonists After Recent Ischemic Stroke in Patients with Atrial Fibrillation. Ann. Neurol. 2019, 85, 823–834. [Google Scholar] [CrossRef]
- Ek, L.; Gezelius, E.; Bergman, B.; Bendahl, P.; Anderson, H.; Sundberg, J.; Wallberg, M.; Falkmer, S.; Verma, S.; Belting, M. Randomized Phase III Trial of Low-Molecular-Weight Heparin Enoxaparin in Addition to Standard Treatment in Small-Cell Lung Cancer: The RASTEN Trial. Ann. Oncol. 2018, 29, 398–404. [Google Scholar] [CrossRef]
- Nicklaus, M.D.; Ludwig, S.; Kettle, J.K. Recurrence of Malignancy-Associated Venous Thromboembolism Among Patients Treated with Rivaroxaban Compared to Enoxaparin. J. Oncol. Pharm. Pract. 2017, 24, 185–189. [Google Scholar] [CrossRef]
- Nam, K.; Kim, C.K.; Kim, T.J.; An, S.J.; Demchuk, A.M.; Kim, Y.; Jung, S.; Han, M.; Ko, S.; Yoon, B. D-dimer as a Predictor of Early Neurologic Deterioration in Cryptogenic Stroke with Active Cancer. Eur. J. Neurol. 2016, 24, 205–211. [Google Scholar] [CrossRef]
- Finke, D.; Romann, S.W.; Heckmann, M.; Hund, H.; Bougatf, N.; Kantharajah, A.; Katus, H.A.; Müller, O.J.; Frey, N.; Giannitsis, E.; et al. High-sensitivity Cardiac Troponin T Determines All-cause Mortality in Cancer Patients: A Single-centre Cohort Study. ESC Heart Fail. 2021, 8, 3709–3719. [Google Scholar] [CrossRef]
- Bang, O.Y.; Chung, J.; Lee, M.J.; Kim, S.J.; Cho, Y.H.; Kim, G.; Chung, C.; Lee, K.H.; Ahn, M.; Moon, G.J. Cancer Cell-Derived Extracellular Vesicles Are Associated with Coagulopathy Causing Ischemic Stroke via Tissue Factor-Independent Way: The OASIS-CANCER Study. PLoS ONE 2016, 11, e0159170. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, K.; Michimura, S.J.; Cioccari, L.; Schefold, J.C.; Messmer, A.S. The Critical Role of Timely Medical Emergency Team Activation in Oncological and Non-Oncological Patients. PLoS ONE 2025, 20, e0324831. [Google Scholar] [CrossRef] [PubMed]
- Nemtut, D.M.; Ulmeanu, R.; Németh, N.; Tudoran, C.; Motofelea, A.; Voita-Mekeres, F.; Lavinia, D. Impact of Natriuretic Peptide on the Evolution of Patients with Pulmonary Embolism and Neoplasm. Cureus 2024, 16, e73853. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Mos, I.C.M.; Huisman, M.V. Brain-Type Natriuretic Peptide Levels in the Prediction of Adverse Outcome in Patients with Pulmonary Embolism: A Systematic Review and Meta-Analysis. Am. J. Respir. Crit. Care Med. 2008, 178, 425–430. [Google Scholar] [CrossRef]
- Coutance, G.; Cauderlier, E.; Ehtisham, J.; Hamon, M.; Hamon, M. The Prognostic Value of Markers of Right Ventricular Dysfunction in Pulmonary Embolism: A Meta-Analysis. Crit. Care 2011, 15, R103. [Google Scholar] [CrossRef]
- Lega, J.-C.; Lacasse, Y.; Lakhal, L.; Provencher, S. Natriuretic Peptides and Troponins in Pulmonary Embolism: A Meta-Analysis. Thorax 2009, 64, 869–875. [Google Scholar] [CrossRef]
- Meyer, G.; Vicaut, E.; Danays, T.; Agnelli, G.; Becattini, C.; Beyer-Westendorf, J.; Bluhmki, E.; Bouvaist, H.; Brenner, B.; Couturaud, F.; et al. Fibrinolysis for Patients with Intermediate-Risk Pulmonary Embolism. N. Engl. J. Med. 2014, 370, 1402–1411. [Google Scholar] [CrossRef]
- Kostrubiec, M.; Pruszczyk, P.; Bochowicz, A.; Pacho, R.; Szulc, M.; Kaczynska, A.; Styczynski, G.; Kuch-Wocial, A.; Abramczyk, P.; Bartoszewicz, Z.; et al. Biomarker-Based Risk Assessment Model in Acute Pulmonary Embolism. Eur. Heart J. 2005, 26, 2166–2172. [Google Scholar] [CrossRef]
| Variable | Category | Non-Oncological Patients (N = 120) | Oncological Patients (N = 106) | Total (N = 226) | p-Value |
|---|---|---|---|---|---|
| Age (years) | Mean (SD) | 62.6 (17.3) | 69.2 (12.6) | 65.7 (15.6) | 0.001 |
| Age Group | <50 years | 32 (26.7%) | 8 (7.5%) | 40 (17.7%) | 0.004 |
| 51–60 years | 14 (11.7%) | 11 (10.4%) | 25 (11.1%) | ||
| 61–70 years | 26 (21.7%) | 35 (33.0%) | 61 (27.0%) | ||
| 71–80 years | 31 (25.8%) | 35 (33.0%) | 66 (29.2%) | ||
| >80 years | 17 (14.2%) | 17 (16.0%) | 34 (15.0%) | ||
| Gender | Female | 53 (44.2%) | 58 (54.7%) | 111 (49.1%) | 0.113 |
| Male | 67 (55.8%) | 48 (45.3%) | 115 (50.9%) | ||
| Environment | Rural | 58 (48.3%) | 46 (43.4%) | 104 (46.0%) | 0.457 |
| Urban | 62 (51.7%) | 60 (56.6%) | 122 (54.0%) |
| Variable | Category | Non-oncological Patients (N = 120) | Oncological Patients (N = 106) | Total (N = 226) | p-Value |
|---|---|---|---|---|---|
| ECG Findings | No abnormalities | 76 (63.3%) | 57 (53.8%) | 133 (58.8%) | 0.145 |
| Changes specific to pulmonary embolism | 44 (36.7%) | 49 (46.2%) | 93 (41.2%) | ||
| NT-proBNP | <600 pg/mL | 92 (76.7%) | 66 (62.3%) | 158 (69.9%) | 0.018 |
| >600 pg/mL | 28 (23.3%) | 40 (37.7%) | 68 (30.1%) | ||
| Hemodynamic Status | Unstable | 25 (20.8%) | 22 (20.8%) | 47 (20.8%) | 0.988 |
| Stable | 95 (79.2%) | 84 (79.2%) | 179 (79.2%) | ||
| Pulmonary Hypertension (HTP) | No | 27 (22.5%) | 25 (23.6%) | 52 (23.0%) | 0.847 |
| Yes | 93 (77.5%) | 81 (76.4%) | 174 (77.0%) | ||
| D-dimer | <5 mg/L | 31 (25.8%) | 47 (44.3%) | 78 (34.5%) | 0.003 |
| >5 mg/L | 89 (74.2%) | 59 (55.7%) | 148 (65.5%) |
| Variable | Category | Non-Oncological Patients (N = 120) | Oncological Patients (N = 106) | Total (N = 226) | p-Value |
|---|---|---|---|---|---|
| Hypertension (HTN) | No | 73 (60.8%) | 52 (49.1%) | 125 (55.3%) | 0.076 |
| Yes | 47 (39.2%) | 54 (50.9%) | 101 (44.7%) | ||
| Diabetes Mellitus (DM) | No | 104 (86.7%) | 88 (83.0%) | 192 (85.0%) | 0.444 |
| Yes | 16 (13.3%) | 18 (17.0%) | 34 (15.0%) | ||
| Obesity | No | 97 (80.8%) | 100 (94.3%) | 197 (87.2%) | 0.002 |
| Yes | 23 (19.2%) | 6 (5.7%) | 29 (12.8%) | ||
| Cardiovascular Disease | No | 71 (59.2%) | 66 (62.3%) | 137 (60.6%) | 0.634 |
| Yes | 49 (40.8%) | 40 (37.7%) | 89 (39.4%) | ||
| Neurological Disorders | No | 109 (90.8%) | 96 (90.6%) | 205 (90.7%) | 0.945 |
| Yes | 11 (9.2%) | 10 (9.4%) | 21 (9.3%) | ||
| Pulmonary Disease | No | 100 (83.3%) | 83 (78.3%) | 183 (81.0%) | 0.336 |
| Yes | 20 (16.7%) | 23 (21.7%) | 43 (19.0%) | ||
| Peripheral vascular disorders | No | 78 (65.0%) | 84 (79.2%) | 162 (71.7%) | 0.018 |
| Yes | 42 (35.0%) | 22 (20.8%) | 64 (28.3%) | ||
| Gastrointestinal Disorders | No | 118 (98.3%) | 101 (95.3%) | 219 (96.9%) | 0.187 |
| Yes | 2 (1.7%) | 5 (4.7%) | 7 (3.1%) | ||
| Renal Disease | No | 107 (89.2%) | 91 (85.8%) | 198 (87.6%) | 0.450 |
| Yes | 13 (10.8%) | 15 (14.2%) | 28 (12.4%) | ||
| Other Comorbidities | No | 118 (98.3%) | 106 (100.0%) | 224 (99.1%) | 0.182 |
| Yes | 2 (1.7%) | 0 (0.0%) | 2 (0.9%) |
| Variable | Category | Non-Oncological Patients (N = 120) | Oncological Patients (N = 106) | Total (N = 226) | p-Value |
|---|---|---|---|---|---|
| Novel Oral Anticoagulants | No | 42 (35.0%) | 63 (59.4%) | 105 (46.5%) | <0.001 |
| Yes | 78 (65.0%) | 43 (40.6%) | 121 (53.5%) | ||
| Acenocoumarol | No | 93 (77.5%) | 77 (72.6%) | 170 (75.2%) | 0.399 |
| Yes | 27 (22.5%) | 29 (27.4%) | 56 (24.8%) | ||
| Apixaban | No | 90 (75.0%) | 77 (72.6%) | 167 (73.9%) | 0.687 |
| Yes | 30 (25.0%) | 29 (27.4%) | 59 (26.1%) | ||
| Rivaroxaban | No | 95 (79.2%) | 97 (91.5%) | 192 (85.0%) | 0.010 |
| Yes | 25 (20.8%) | 9 (8.5%) | 34 (15.0%) | ||
| Dabigatran | No | 97 (80.8%) | 101 (95.3%) | 198 (87.6%) | 0.001 |
| Yes | 23 (19.2%) | 5 (4.7%) | 28 (12.4%) | ||
| Low-Molecular-Weight Heparin | No | 78 (65.0%) | 72 (67.9%) | 150 (66.4%) | 0.642 |
| Yes | 42 (35.0%) | 34 (32.1%) | 76 (33.6%) |
| Variable | Category | Non-Oncological Patients (N = 120) | Oncological Patients (N = 106) | Total (N = 226) | p-Value |
|---|---|---|---|---|---|
| Early Death | No | 104 (86.7%) | 87 (82.1%) | 191 (84.5%) | 0.341 |
| Yes | 16 (13.3%) | 19 (17.9%) | 35 (15.5%) | ||
| Late Death | No | 116 (96.7%) | 65 (61.3%) | 181 (80.1%) | <0.001 |
| Yes | 4 (3.3%) | 41 (38.7%) | 45 (19.9%) | ||
| Thrombolysis | No | 113 (94.2%) | 104 (98.1%) | 217 (96.0%) | 0.130 |
| Yes | 7 (5.8%) | 2 (1.9%) | 9 (4.0%) | ||
| Recurrence | No | 116 (96.7%) | 98 (92.5%) | 214 (94.7%) | 0.159 |
| Yes | 4 (3.3%) | 8 (7.5%) | 12 (5.3%) |
| Outcome | Category | Non-Oncological Patients (No, N = 42) | Non-Oncological Patients (Yes, N = 78) | Non-Oncological Patients Total (N = 120) | p-Value | Oncological Patients (No, N = 63) | Oncological Patients (Yes, N = 43) | Oncological Patients Total (N = 106) | p-Value |
|---|---|---|---|---|---|---|---|---|---|
| Early Death | No | 28 (66.7%) | 76 (97.4%) | 104 (86.7%) | <0.001 1 | 45 (71.4%) | 42 (97.7%) | 87 (82.1%) | <0.001 1 |
| Yes | 14 (33.3%) | 2 (2.6%) | 16 (13.3%) | 18 (28.6%) | 1 (2.3%) | 19 (17.9%) | |||
| Late Death | No | 41 (97.6%) | 75 (96.2%) | 116 (96.7%) | 0.670 1 | 37 (58.7%) | 28 (65.1%) | 65 (61.3%) | 0.507 1 |
| Yes | 1 (2.4%) | 3 (3.8%) | 4 (3.3%) | 26 (41.3%) | 15 (34.9%) | 41 (38.7%) | |||
| Recurrence | No | 40 (95.2%) | 76 (97.4%) | 116 (96.7%) | 0.522 1 | 57 (90.5%) | 41 (95.3%) | 98 (92.5%) | 0.351 1 |
| Yes | 2 (4.8%) | 2 (2.6%) | 4 (3.3%) | 6 (9.5%) | 2 (4.7%) | 8 (7.5%) | |||
| Bleeding | No | 38 (90.5%) | 76 (97.4%) | 114 (95.0%) | 0.095 1 | 53 (84.1%) | 40 (93.0%) | 93 (87.7%) | 0.170 1 |
| Yes | 4 (9.5%) | 2 (2.6%) | 6 (5.0%) | 10 (15.9%) | 3 (7.0%) | 13 (12.3%) |
| Outcome | Category | Oncological Group < 600 (N = 66) | Oncological Group > 600 (N = 40) | Oncological Group Total (N = 106) | p-Value | Non-Oncological Group < 600 (N = 92) | Non-Oncological Group > 600 (N = 28) | Non-Oncological Group Total (N = 120) | p-Value |
|---|---|---|---|---|---|---|---|---|---|
| Early Death | No | 54 (81.8%) | 33 (82.5%) | 87 (82.1%) | 0.9291 | 84 (91.3%) | 20 (71.4%) | 104 (86.7%) | 0.0071 |
| Yes | 12 (18.2%) | 7 (17.5%) | 19 (17.9%) | 8 (8.7%) | 8 (28.6%) | 16 (13.3%) | |||
| Late Death | No | 40 (60.6%) | 25 (62.5%) | 65 (61.3%) | 0.8461 | 88 (95.7%) | 28 (100.0%) | 116 (96.7%) | 0.2621 |
| Yes | 26 (39.4%) | 15 (37.5%) | 41 (38.7%) | 4 (4.3%) | 0 (0.0%) | 4 (3.3%) | |||
| Recurrence | No | 59 (89.4%) | 39 (97.5%) | 98 (92.5%) | 0.1261 | 88 (95.7%) | 28 (100.0%) | 116 (96.7%) | 0.2621 |
| Yes | 7 (10.6%) | 1 (2.5%) | 8 (7.5%) | 4 (4.3%) | 0 (0.0%) | 4 (3.3%) |
| Predictor | Comparison/Unit | Estimate (β) | SE | z | p | OR (95% CI) |
|---|---|---|---|---|---|---|
| Intercept | — | −1.2374 | 0.8227 | −1.5040 | 0.133 | 0.290 (0.0578–1.455) |
| NT-proBNP | >600 vs. <600 | 0.7317 | 0.3358 | 2.1788 | 0.029 | 2.079 (1.0763–4.014) |
| D-dimer | >5 mg/L vs. <5 mg/L | −1.0572 | 0.3141 | −3.3656 | <0.001 | 0.347 (0.1877–0.643) |
| Age | per 1 year | 0.0243 | 0.0101 | 2.3998 | 0.016 | 1.025 (1.0045–1.045) |
| Sex | Male vs. Female | −0.4061 | 0.2869 | −1.4154 | 0.157 | 0.666 (0.3797–1.169) |
| ECG changes | Yes vs. No | 0.4003 | 0.2912 | 1.3750 | 0.169 | 1.492 (0.8434–2.641) |
| Hemodynamic status | stable vs. unstable | 0.1958 | 0.3605 | 0.5431 | 0.587 | 1.216 (0.6000–2.465) |
| Pulmonary hypertension | Yes vs. No | −0.1956 | 0.3437 | −0.5690 | 0.569 | 0.822 (0.4193–1.613) |
| Environment | Urban vs. Rural | 0.0185 | 0.2938 | 0.0628 | 0.950 | 1.019 (0.5727–1.812) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemțuț, D.M.; Voiță-Mekeres, F.; Ulmeanu, R.; Bodog, F.; Avram, G.; Voiță, I.B.; Voiță, N.C.; Racoviță, M.; Motofelea, A.C.; Davidescu, L. Malignancy-Associated Pulmonary Embolism: Mortality, Recurrence, and Bleeding Risks. J. Clin. Med. 2025, 14, 7819. https://doi.org/10.3390/jcm14217819
Nemțuț DM, Voiță-Mekeres F, Ulmeanu R, Bodog F, Avram G, Voiță IB, Voiță NC, Racoviță M, Motofelea AC, Davidescu L. Malignancy-Associated Pulmonary Embolism: Mortality, Recurrence, and Bleeding Risks. Journal of Clinical Medicine. 2025; 14(21):7819. https://doi.org/10.3390/jcm14217819
Chicago/Turabian StyleNemțuț, Daniela Maria, Florica Voiță-Mekeres, Ruxandra Ulmeanu, Florian Bodog, Grațiela Avram, Ioan Bogdan Voiță, Nuțu Cristian Voiță, Mariana Racoviță, Alexandru Catalin Motofelea, and Lavinia Davidescu. 2025. "Malignancy-Associated Pulmonary Embolism: Mortality, Recurrence, and Bleeding Risks" Journal of Clinical Medicine 14, no. 21: 7819. https://doi.org/10.3390/jcm14217819
APA StyleNemțuț, D. M., Voiță-Mekeres, F., Ulmeanu, R., Bodog, F., Avram, G., Voiță, I. B., Voiță, N. C., Racoviță, M., Motofelea, A. C., & Davidescu, L. (2025). Malignancy-Associated Pulmonary Embolism: Mortality, Recurrence, and Bleeding Risks. Journal of Clinical Medicine, 14(21), 7819. https://doi.org/10.3390/jcm14217819

