A Temporal Validation Study of Diagnostic Prediction Models for the Screening of Elevated Low-Density and Non-High-Density Lipoprotein Cholesterol
Abstract
1. Introduction
2. Materials and Methods
2.1. Population, Participants, and Source of Data
2.2. Predictors
2.3. Diagnostic Endpoints
2.4. Sample Size Considerations
2.5. Statistical Analyses
2.6. Ethics Declaration and Informed Consent Processes
3. Results
3.1. LDL-C Model
3.2. Non-HDL-C Model
| Validation Strategy | LDL-C Model | |||||
|---|---|---|---|---|---|---|
| Before Update | After Recalibration of C-Slope and CITL | |||||
| AuROC (95%CI) | C-Slope (95%CI) | CITL (95%CI) | AuROC (95%CI) | C-Slope (95%CI) | CITL (95%CI) | |
| Temporal Validation in the Validation Cohort | 0.59 (0.56, 0.62) | 0.64 (0.39, 0.88) | −0.14 (−0.27, −0.02) | 0.59 (0.56, 0.62) | 0.94 (0.58, 1.30) | 0.01 (−0.11, 0.13) |
| Reference value (case-mix adjustment) a | 0.63 (0.58, 0.68) | 1.01 (0.64, 1.37) | 0.00 (−0.18, 0.17) | 0.59 (0.54, 0.64) | 1.00 (0.41, 1.55) | −0.01 (−0.19, 0.18) |
| Refitted model in the validation cohort (case-mix adjustment and coefficient re-estimation) b | 0.60 (0.55, 0.65) | 1.01 (0.45, 1.56) | 0.00 (−0.18, 0.18) | |||
| Metabolic age from the multivariable linear regression estimation | 0.60 (0.55, 0.65) | 0.75 (0.35, 1.15) | −0.06 (−0.24, 0.12) | 0.60 (0.55, 0.65) | 1.11 (0.52, 1.69) | 0.01 (−0.17, 0.19) |
| Validation Strategy | Non-HDL-C Model | |||||
| Before Update | After Recalibration of C-Slope and CITL | |||||
| AuROC (95%CI) | C-Slope (95%CI) | CITL (95%CI) | AuROC (95%CI) | C-Slope (95%CI) | CITL (95%CI) | |
| Temporal Validation in the Validation Cohort | 0.67 (0.64, 0.69) | 0.71 (0.59, 0.83) | −0.07 (−0.17, 0.03) | 0.67 (0.64, 0.69) | 0.97 (0.81, 1.13) | −0.03 (−0.13, 0.07) |
| Reference value (case-mix adjustment) a | 0.72 (0.67, 0.75) | 1.01 (0.81, 1.22) | 0.00 (−0.16, 0.16) | 0.66 (0.62, 0.70) | 1.00 (0.77, 1.24) | 0.00 (−0.15, 0.15) |
| Refitted model in the validation cohort (case-mix adjustment and coefficient re-estimation) b | 0.67 (0.63, 0.71) | 0.98 (0.74, 1.22) | 0.01 (−0.14, 0.15) | |||
| Metabolic age from the multivariable linear regression estimation | 0.66 (0.62, 0.70) | 0.74 (0.55, 0.92) | 0.10 (−0.05, 0.25) | 0.66 (0.62, 0.70) | 1.01 (0.75, 1.26) | 0.03 (−0.12, 0.17) |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| aRR | adjusted risk ratio |
| ASCVD | atherosclerotic cardiovascular disease |
| AuROC | area under the receiver-operating characteristic curve |
| BIA | bioelectrical impedance analysis |
| BMI | body mass index |
| CITL | calibration-in-the-large |
| CI | confidence interval |
| C-slope | calibration slope |
| cm | centimeters |
| DBP | diastolic blood pressure |
| DCA | decision curve analysis |
| E:O | observed to expected ratio |
| ICD-10 | International Classification of Diseases, Tenth Revision |
| ISCO | International Standard Classification of Occupations |
| Kcal | kilocalories per day |
| kg/m2 | kilogram per square meter |
| LDL-C | low-density lipoprotein cholesterol |
| mg/dL | milligram per deciliter |
| mmHg | millimeters of mercury |
| Non-HDL-C | non-high-density lipoprotein cholesterol |
| PCSK9 | proprotein convertase subtilisin/kexin type 9 |
| ROC | receiver-operating characteristic curve |
| SBP | systolic blood pressure |
| TRIPOD-AI | Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis using artificial intelligence |
References
- Ference, B.A.; Yoo, W.; Alesh, I.; Mahajan, N.; Mirowska, K.K.; Mewada, A.; Kahn, J.; Afonso, L.; Williams, K.A.; Flack, J.M. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: A Mendelian randomization analysis. J. Am. Coll. Cardiol. 2012, 60, 2631–2639. [Google Scholar] [CrossRef]
- Navar-Boggan, A.M.; Peterson, E.D.; D’Agostino, R.B.; Neely, B.; Sniderman, A.D.; Pencina, M.J. Hyperlipidemia in Early Adulthood Increases Long-Term Risk of Coronary Heart Disease. Circulation 2015, 131, 451–458. [Google Scholar] [CrossRef]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef] [PubMed]
- Aekplakorn, W.; Taneepanichskul, S.; Kessomboon, P.; Chongsuvivatwong, V.; Putwatana, P.; Sritara, P.; Sangwatanaroj, S.; Chariyalertsak, S. Prevalence of Dyslipidemia and Management in the Thai Population, National Health Examination Survey IV, 2009. J. Lipids 2014, 2014, 249584. [Google Scholar] [CrossRef]
- Lan, J.; Zhou, X.; Huang, Q.; Zhao, L.; Li, P.; Xi, M.; Luo, M.; Wu, Q.; Tang, L. Development and validation of a simple-to-use nomogram for self-screening the risk of dyslipidemia. Sci. Rep. 2023, 13, 9169. [Google Scholar] [CrossRef]
- Rezaei, M.; Fakhri, N.; Pasdar, Y.; Moradinazar, M.; Najafi, F. Modeling the risk factors for dyslipidemia and blood lipid indices: Ravansar cohort study. Lipids Health Dis. 2020, 19, 176. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.-H.; Kim, H.-J.; Lee, J.-Y. Nomogram construction to predict dyslipidemia based on a logistic regression analysis. J. Appl. Stat. 2020, 47, 914–926. [Google Scholar] [CrossRef]
- Wu, J.; Qin, S.; Wang, J.; Li, J.; Wang, H.; Li, H.; Chen, Z.; Li, C.; Wang, J.; Yuan, J. Develop and Evaluate a New and Effective Approach for Predicting Dyslipidemia in Steel Workers. Front. Bioeng. Biotechnol. 2020, 8, 839. [Google Scholar] [CrossRef]
- Yang, X.; Xu, C.; Wang, Y.; Cao, C.; Tao, Q.; Zhan, S.; Sun, F. Risk prediction model of dyslipidaemia over a 5-year period based on the Taiwan MJ health check-up longitudinal database. Lipids Health Dis. 2018, 17, 259. [Google Scholar] [CrossRef] [PubMed]
- Wuttipat, K.; Vithawat, S.; Wachiranun, S.; Phichayut, P. Diagnostic prediction model for screening of elevated low-density and non-high-density lipoproteins in young Thai adults between 20 and 40 years of age. BMJ Health Care Inform. 2025, 32, e101180. [Google Scholar] [CrossRef]
- World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems: Tenth Revision [Electronic Resource], 2nd ed.; WHO: Geneva, Switzerland, 2005. [Google Scholar]
- Herink, M.; Ito, M.K. Medication Induced Changes in Lipid and Lipoproteins. In Endotext; Feingold, K.A., Anawalt, B., Blackman, M.R., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2018. [Google Scholar]
- Riley, R.D.; Snell, K.I.E.; Archer, L.; Ensor, J.; Debray, T.P.A.; van Calster, B.; van Smeden, M.; Collins, G.S. Evaluation of clinical prediction models (part 3): Calculating the sample size required for an external validation study. BMJ 2024, 384, e074821. [Google Scholar] [CrossRef]
- Hosmer, D.W. Assessing the Fit of the Model. In Applied Logistic Regression; Wiley: New York, NY, USA, 2000; pp. 143–202. [Google Scholar]
- Van Calster, B.; McLernon, D.; van Smeden, M.; Wynants, L.; Steyerberg, E. Calibration: The Achilles heel of predictive analytics. BMC Med. 2019, 17, 230. [Google Scholar] [CrossRef]
- Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Mak. Int. J. Soc. Med. Decis. Mak. 2006, 26, 565–574. [Google Scholar] [CrossRef]
- Vickers, A.J.; van Calster, B.; Steyerberg, E.W. A simple, step-by-step guide to interpreting decision curve analysis. Diagn. Progn. Res. 2019, 3, 18. [Google Scholar] [CrossRef]
- Binuya, M.A.E.; Engelhardt, E.G.; Schats, W.; Schmidt, M.K.; Steyerberg, E.W. Methodological guidance for the evaluation and updating of clinical prediction models: A systematic review. BMC Med. Res. Methodol. 2022, 22, 316. [Google Scholar] [CrossRef]
- van Klaveren, D.; Gönen, M.; Steyerberg, E.W.; Vergouwe, Y. A new concordance measure for risk prediction models in external validation settings. Stat. Med. 2016, 35, 4136–4152. [Google Scholar] [CrossRef] [PubMed]
- Nieboer, D.; van der Ploeg, T.; Steyerberg, E.W. Assessing Discriminative Performance at External Validation of Clinical Prediction Models. PLoS ONE 2016, 11, e0148820. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhou, X.H. Covariate adjustment in estimating the area under ROC curve with partially missing gold standard. Biometrics 2013, 69, 91–100. [Google Scholar] [CrossRef]
- International Labour Office. International Standard Classification of Occupations: ISCO-08, Volume 1; International Labour Office: Geneva, Switzerland, 2012. [Google Scholar]
- Shohaimi, S.; Boekholdt, M.S.; Luben, R.; Wareham, N.J.; Khaw, K.T. Distribution of lipid parameters according to different socio-economic indicators- the EPIC-Norfolk prospective population study. BMC Public Health 2014, 14, 782. [Google Scholar] [CrossRef]
- Väisänen, D.; Kallings, L.V.; Andersson, G.; Wallin, P.; Hemmingsson, E.; Ekblom-Bak, E. Lifestyle-associated health risk indicators across a wide range of occupational groups: A cross-sectional analysis in 72,855 workers. BMC Public Health 2020, 20, 1656. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Moons, K.G.M.; Dhiman, P.; Riley, R.D.; Beam, A.L.; Van Calster, B.; Ghassemi, M.; Liu, X.; Reitsma, J.B.; van Smeden, M.; et al. TRIPOD+AI statement: Updated guidance for reporting clinical prediction models that use regression or machine learning methods. bmj 2024, 385, e078378. [Google Scholar] [CrossRef]
- Joie, E.; Kym, I.E.S.; Emma, C.M. PMCALPLOT: Stata Module to Produce Calibration Plot of Prediction Model Performance; S458486; Boston College Department of Economics: Newton, MA, USA, 2018. [Google Scholar]
- Riley, R.D.; Archer, L.; Snell, K.I.E.; Ensor, J.; Dhiman, P.; Martin, G.P.; Bonnett, L.J.; Collins, G.S. Evaluation of clinical prediction models (part 2): How to undertake an external validation study. bmj 2024, 384, e074820. [Google Scholar] [CrossRef]
- Bønaa, K.H.; Thelle, D.S. Association between blood pressure and serum lipids in a population. The Tromsø Study. Circulation 1991, 83, 1305–1314. [Google Scholar] [CrossRef]
- Kelley, G.A.; Kelley, K.A.; Vu Tran, Z. Aerobic Exercise and Resting Blood Pressure: A Meta-Analytic Review of Randomized, Controlled Trials. Prev. Cardiol. 2001, 4, 73–80. [Google Scholar] [CrossRef]
- McDonnell, B.J.; Maki-Petaja, K.M.; Munnery, M.; Yasmin; Wilkinson, I.B.; Cockcroft, J.R.; McEniery, C.M. Habitual Exercise and Blood Pressure: Age Dependency and Underlying Mechanisms. Am. J. Hypertens. 2013, 26, 334–341. [Google Scholar] [CrossRef]
- Feng, C.; Lu, C.; Chen, K.; Song, B.; Shan, Z.; Teng, W. Associations between various anthropometric indices and hypertension and hyperlipidaemia: A cross-sectional study in China. BMC Public Health 2024, 24, 3045. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tse, L.A.; Liu, Z.; Rangarajan, S.; Hu, B.; Yin, L.; Leong, D.P.; Li, W. Predictive Values of Anthropometric Measurements for Cardiometabolic Risk Factors and Cardiovascular Diseases Among 44 048 Chinese. J. Am. Heart Assoc. 2019, 8, e010870. [Google Scholar] [CrossRef]
- Xie, L.; Kim, J.; Almandoz, J.P.; Clark, J.; Mathew, M.S.; Cartwright, B.R.; Barlow, S.E.; Lipshultz, S.E.; Messiah, S.E. Anthropometry for predicting cardiometabolic disease risk factors in adolescents. Obesity 2024, 32, 1558–1567. [Google Scholar] [CrossRef]
- Schoeneck, M.; Iggman, D. The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Forgetta, V.; Zhou, S.; Bhatnagar, S.R.; Paré, G.; Richards, J.B. Polygenic Risk Score for Low-Density Lipoprotein Cholesterol Is Associated with Risk of Ischemic Heart Disease and Enriches for Individuals with Familial Hypercholesterolemia. Circ. Genom. Precis. Med. 2021, 14, e003106. [Google Scholar] [CrossRef] [PubMed]
- Pienthong, T.; Chancharoenrat, W.; Sajak, S.; Phetsaen, S.; Hanchai, P.; Thongphubeth, K.; Khawcharoenporn, T. Risk categorization and outcomes among healthcare workers exposed to COVID-19: A cohort study from a Thai tertiary-care center. J. Microbiol. Immunol. Infect. 2023, 56, 537–546. [Google Scholar] [CrossRef]
- Sukontasarn, M.D.A.; Chaiwong, B.M.P.H.W.; Thepsen, M.D.K.; Chomsang, M.D.P.; Samranthin, M.D.M.; Suwanjutah, M.D.T.; Suwannakijboriharn, M.D.C.; Manosroi, M.D.W.; Saikam, B.N.S.M.J.; Boonma, M.P.H.C.; et al. Comparison of Cardiovascular Risk Estimation Tools in Thai Hospital Employees. Bangk. Med. J. 2021, 17, 93. [Google Scholar] [CrossRef]
- Jung, H.N.; Jung, C.H.; Hwang, Y.-C. Sarcopenia in youth. Metabolism 2023, 144, 155557. [Google Scholar] [CrossRef] [PubMed]
- Pongchaiyakul, C.; Limpawattana, P.; Kotruchin, P.; Rajatanavin, R. Prevalence of sarcopenia and associated factors among Thai population. J. Bone Miner. Metab. 2013, 31, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Torres Moral, T.; Sanchez-Niubo, A.; Monistrol-Mula, A.; Gerardi, C.; Banzi, R.; Garcia, P.; Demotes-Mainard, J.; Haro, J.M.; The Permit, G. Methods for Stratification and Validation Cohorts: A Scoping Review. J. Pers Med. 2022, 12, 688. [Google Scholar] [CrossRef]
- Collins, G.S.; de Groot, J.A.; Dutton, S.; Omar, O.; Shanyinde, M.; Tajar, A.; Voysey, M.; Wharton, R.; Yu, L.-M.; Moons, K.G.; et al. External validation of multivariable prediction models: A systematic review of methodological conduct and reporting. BMC Med. Res. Methodol. 2014, 14, 40. [Google Scholar] [CrossRef]
- Kappen, T.H.; van Klei, W.A.; van Wolfswinkel, L.; Kalkman, C.J.; Vergouwe, Y.; Moons, K.G.M. Evaluating the impact of prediction models: Lessons learned, challenges, and recommendations. Diagn. Progn. Res. 2018, 2, 11. [Google Scholar] [CrossRef]






| Predictors | Validation Cohort | LDL-C Model Development Cohort | p-Value | Non-HDL-C Development Cohort | p-Value |
|---|---|---|---|---|---|
| N = 1099 | N = 2222 | N = 5149 | |||
| Age (years) a | 30.4 (4.7) | 31.3 (4.7) | <0.001 | 31.0 (5.2) | <0.001 |
| Gender b | |||||
| Female | 850 (77.3%) | 1877 (84.5%) | <0.001 | 4024 (78.2%) | 0.57 |
| Male | 249 (22.7%) | 345 (15.5%) | 1125 (21.8%) | ||
| Body mass index (kg/m2) a | 22.9 (4.5) | 22.5 (4.5) | 0.006 | 23.0 (4.8) | 0.44 |
| Waist circumference (cm) a | 79.0 (12.2) | 77.4 (11.2) | <0.001 | 79.4 (12.1) | 0.32 |
| Fat mass (kg) a | 16.9 (8.3) | 16.4 (8.3) | 0.12 | 17.0 (8.9) | 0.53 |
| Muscle mass (kg) a | 41.0 (8.6) | 39.8 (7.9) | <0.001 | 41.2 (8.9) | 0.47 |
| Basal metabolic rate (kcal/day) a | 1290.8 (247.8) | 1256.0 (233.2) | <0.001 | 1295.9 (259.6) | 0.56 |
| Metabolic age (years) a | 31.0 (12.6) | 30.1 (12.3) | 0.041 | 31.1 (12.9) | 0.83 |
| Visceral fat index (point) a | 5.2 (3.7) | 4.8 (3.4) | 0.003 | 5.3 (3.8) | 0.25 |
| Systolic blood pressure (mmHg) a | 115.5 (13.2) | 115.3 (12.6) | 0.64 | 116.8 (13.3) | 0.003 |
| Diastolic blood pressure (mmHg) a | 70.4 (10.1) | 70.5 (9.9) | 0.78 | 71.9 (10.5) | <0.001 |
| Diagnostic Endpoints | Validation Cohort | LDL-C Model Development Cohort | p-Value | Non-HDL-C Development Cohort | p-Value |
| N = 1099 | N = 2222 | N = 5149 | |||
| Serum LDL-C (mg/dL) a,c | 123.1 (33.1) | 125.2 (32.1) | 0.072 | ||
| LDL-C classification b,c | |||||
| Normal (<160 mg/dL) | 964 (87.7%) | 1919 (86.4%) | 0.3 | ||
| Elevated (≥160 mg/dL) | 135 (12.3%) | 303 (13.6%) | |||
| Linear predictor of LDL-C a,c | −1.96 (0.45) | −2.04 (0.41) | <0.001 | ||
| Serum non-HDL-C (mg/dL) a,c | 136.5 (36.5) | 131.7 (35.6) | <0.001 | ||
| Non-HDL-C classification b,c | |||||
| Normal (<160 mg/dL) | 848 (77.2%) | 4136 (80.3%) | 0.018 | ||
| Elevated (≥160 mg/dL) | 251 (22.8%) | 1013 (19.7%) | |||
| Linear predictor of non-HDL-C a,c | −1.43 (0.79) | −1.41 (0.81) | 0.35 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiratipaisarl, W.; Surawattanasakul, V.; Sirikul, W.; Phinyo, P. A Temporal Validation Study of Diagnostic Prediction Models for the Screening of Elevated Low-Density and Non-High-Density Lipoprotein Cholesterol. J. Clin. Med. 2025, 14, 7617. https://doi.org/10.3390/jcm14217617
Kiratipaisarl W, Surawattanasakul V, Sirikul W, Phinyo P. A Temporal Validation Study of Diagnostic Prediction Models for the Screening of Elevated Low-Density and Non-High-Density Lipoprotein Cholesterol. Journal of Clinical Medicine. 2025; 14(21):7617. https://doi.org/10.3390/jcm14217617
Chicago/Turabian StyleKiratipaisarl, Wuttipat, Vithawat Surawattanasakul, Wachiranun Sirikul, and Phichayut Phinyo. 2025. "A Temporal Validation Study of Diagnostic Prediction Models for the Screening of Elevated Low-Density and Non-High-Density Lipoprotein Cholesterol" Journal of Clinical Medicine 14, no. 21: 7617. https://doi.org/10.3390/jcm14217617
APA StyleKiratipaisarl, W., Surawattanasakul, V., Sirikul, W., & Phinyo, P. (2025). A Temporal Validation Study of Diagnostic Prediction Models for the Screening of Elevated Low-Density and Non-High-Density Lipoprotein Cholesterol. Journal of Clinical Medicine, 14(21), 7617. https://doi.org/10.3390/jcm14217617

