Advancing Obstructive Sleep Apnea Management: Recent Trends from Conventional to Innovative Therapies
Abstract
1. Introduction
2. Conventional Therapies
2.1. PAP
2.2. Oral Appliance
2.3. Surgery
2.4. Weight Loss
2.5. Positional Therapy
2.6. Orofacial Myofunctional Therapy (OMT)
3. Innovative Therapies
3.1. HGNS
3.2. Anti-Obesity Medication (GLP-1 Receptor Agonists)
3.3. Upper Airway Muscle Modulating Agents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AHI | Apnea–hypopnea index |
| BMI | Body mass index |
| CCC | Complete concentric collapse |
| CPAP | Continuous positive airway pressure |
| DISE | Drug-induced sleep endoscopy |
| ESS | Epworth sleepiness scale |
| FDA | U.S. Food and Drug Administration |
| FOSQ | Functional outcomes in sleep questionnaire |
| GLP-1 RA | Glucagon-like peptide-1 receptor agonist |
| HGNS | Hypoglossal nerve stimulation |
| MAD | Mandibular advancement device |
| MMA | Maxillomandibular advancement |
| MRI | Magnetic resonance imaging |
| ODI | Oxygen desaturation index |
| SA | Obstructive sleep apnea |
| PAP | Positive airway pressure |
| SpO2 | Oxygen saturation |
| UAS | Upper airway stimulation |
| UPPP | Uvulopalatopharyngoplasty |
References
- Guilleminault, C.; Tilkian, A.; Dement, W.C. The sleep apnea syndromes. Annu. Rev. Med. 1976, 27, 465–484. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Sleep Medicine. International Classification of Sleep Disorders, 3rd ed.; American Academy of Sleep Medicine: Darien, IL, USA, 2014. [Google Scholar]
- Somers, V.K.; Dyken, M.E.; Clary, M.P.; Abboud, F.M. Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Investig. 1995, 96, 1897–1904. [Google Scholar] [CrossRef]
- Javaheri, S.; Barbe, F.; Campos-Rodriguez, F.; Dempsey, J.A.; Khayat, R.; Javaheri, S.; Malhotra, A.; Martinez-Garcia, M.A.; Mehra, R.; Pack, A.I.; et al. Sleep Apnea: Types, Mechanisms, and Clinical Cardiovascular Consequences. J. Am. Coll. Cardiol. 2017, 69, 841–858. [Google Scholar] [CrossRef]
- Malhotra, A.; Loscalzo, J. Sleep and cardiovascular disease: An overview. Prog. Cardiovasc. Dis. 2009, 51, 279–284. [Google Scholar] [CrossRef]
- Young, T.; Palta, M.; Dempsey, J.; Skatrud, J.; Weber, S.; Badr, S. The occurrence of sleep-disordered breathing among middle-aged adults. N. Engl. J. Med. 1993, 328, 1230–1235. [Google Scholar] [CrossRef]
- Peppard, P.E.; Young, T.; Barnet, J.H.; Palta, M.; Hagen, E.W.; Hla, K.M. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 2013, 177, 1006–1014. [Google Scholar] [CrossRef]
- Choi, J.H. Treatments for adult obstructive sleep apnea. Sleep Med. Res. 2021, 12, 9–14. [Google Scholar] [CrossRef]
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult obstructive sleep apnoea. Lancet 2014, 383, 736–747. [Google Scholar] [CrossRef]
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef] [PubMed]
- Borsoi, L.; Armeni, P.; Donin, G.; Costa, F.; Ferini-Strambi, L. The invisible costs of obstructive sleep apnea (OSA): Systematic review and cost-of-illness analysis. PLoS ONE 2022, 17, e0268677. [Google Scholar] [CrossRef] [PubMed]
- Sforza, E.; Roche, F. Sleep apnea syndrome and cognition. Front. Neurol. 2012, 3, 87. [Google Scholar] [CrossRef]
- Harris, M.; Glozier, N.; Ratnavadivel, R.; Grunstein, R.R. Obstructive sleep apnea and depression. Sleep Med. Rev. 2009, 13, 437–444. [Google Scholar] [CrossRef]
- Kim, S.D.; Cho, K.S. Obstructive Sleep Apnea and Testosterone Deficiency. World J. Men’s Health 2019, 37, 12–18. [Google Scholar] [CrossRef]
- El Hage Chehade, N.; Fu, Y.; Ghoneim, S.; Shah, S.; Song, G.; Fass, R. Association between obstructive sleep apnea and gastroesophageal reflux disease: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2023, 38, 1244–1251. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, P.; Shi, R.; Yang, S.; Liu, K.; Zhou, Z.; Li, Q. Relationship Between Obstructive Sleep Apnea and Enuresis in Children: Current Perspectives and Beyond. Nat. Sci. Sleep 2025, 17, 211–222. [Google Scholar] [CrossRef]
- Akhavizadegan, H.; Locke, J.A.; Stothers, L.; Kavanagh, A. A comprehensive review of adult enuresis. Can. Urol. Assoc. J. 2019, 13, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Epstein, L.J.; Kristo, D.; Strollo, P.J., Jr.; Friedman, N.; Malhotra, A.; Patil, S.P.; Ramar, K.; Rogers, R.; Schwab, R.J.; Weaver, E.M.; et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 2009, 5, 263–276. [Google Scholar] [CrossRef]
- Weaver, T.E.; Grunstein, R.R. Adherence to continuous positive airway pressure therapy: The challenge to effective treatment. Proc. Am. Thorac. Soc. 2008, 5, 173–178. [Google Scholar] [CrossRef] [PubMed]
- McNicholas, W.T.; Korkalainen, H. Translation of obstructive sleep apnea pathophysiology and phenotypes to personalized treatment: A narrative review. Front. Neurol. 2023, 14, 1239016. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Zinchuk, A. The Present and Future of the Clinical Use of Physiological Traits for the Treatment of Patients with OSA: A Narrative Review. J. Clin. Med. 2024, 13, 1636. [Google Scholar] [CrossRef]
- Pinto, V.L.; Sankari, A.; Sharma, S. Continuous Positive Airway Pressure; StatPearls Publishing: Treasure Island, FL, USA, 2025; p. NBK482178. [Google Scholar]
- Patel, S.R.; White, D.P.; Malhotra, A.; Stanchina, M.L.; Ayas, N.T. Continuous positive airway pressure therapy for treating sleepiness in a diverse population with obstructive sleep apnea: Results of a meta-analysis. Arch. Intern. Med. 2003, 163, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Giles, T.L.; Lasserson, T.J.; Smith, B.J.; White, J.; Wright, J.; Cates, C.J. Continuous positive airways pressure for obstructive sleep apnoea in adults. Cochrane Database Syst. Rev. 2006, 25, CD001106. [Google Scholar]
- Haentjens, P.; Van Meerhaeghe, A.; Moscariello, A.; De Weerdt, S.; Poppe, K.; Dupont, A.; Velkeniers, B. The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: Evidence from a meta-analysis of placebo-controlled randomized trials. Arch. Intern. Med. 2007, 167, 757–764. [Google Scholar] [CrossRef]
- McArdle, N.; Douglas, N.J. Effect of continuous positive airway pressure on sleep architecture in the sleep apnea-hypopnea syndrome: A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2001, 164 Pt 1, 1459–1463. [Google Scholar] [CrossRef]
- Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Tregear, S.; Reston, J.; Schoelles, K.; Phillips, B. Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: Systematic review and meta-analysis. Sleep 2010, 33, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Margel, D.; Shochat, T.; Getzler, O.; Livne, P.M.; Pillar, G. Continuous positive airway pressure reduces nocturia in patients with obstructive sleep apnea. Urology 2006, 67, 974–977. [Google Scholar] [CrossRef]
- Yokoe, T.; Minoguchi, K.; Matsuo, H.; Oda, N.; Minoguchi, H.; Yoshino, G.; Hirano, T.; Adachi, M. Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 2003, 107, 1129–1134. [Google Scholar] [CrossRef]
- Baessler, A.; Nadeem, R.; Harvey, M.; Madbouly, E.; Younus, A.; Sajid, H.; Naseem, J.; Asif, A.; Bawaadam, H. Treatment for sleep apnea by continuous positive airway pressure improves levels of inflammatory markers—A meta-analysis. J. Inflamm. 2013, 10, 13. [Google Scholar] [CrossRef]
- Jelic, S.; Lederer, D.J.; Adams, T.; Padeletti, M.; Colombo, P.C.; Factor, P.H.; Le Jemtel, T.H. Vascular inflammation in obesity and sleep apnea. Circulation 2010, 121, 1014–1021. [Google Scholar] [CrossRef]
- Kaneko, Y.; Floras, J.S.; Usui, K.; Plante, J.; Tkacova, R.; Kubo, T.; Ando, S.; Bradley, T.D. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N. Engl. J. Med. 2003, 348, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Laharnar, N.; Bailly, S.; Basoglu, O.K.; Buskova, J.; Drummond, M.; Fanfulla, F.; Mihaicuta, S.; Pataka, A.; Riha, R.L.; Bouloukaki, I.; et al. Bed partner perception of CPAP therapy on relationship satisfaction and intimacy-A European perspective from the ESADA network. J. Sleep Res. 2024, 33, e14125. [Google Scholar] [CrossRef] [PubMed]
- Rotenberg, B.W.; Murariu, D.; Pang, K.P. Trends in CPAP adherence over twenty years of data collection: A flattened curve. J. Otolaryngol. Head Neck Surg. 2016, 45, 43. [Google Scholar] [CrossRef]
- Lindberg, E.; Berne, C.; Elmasry, A.; Hedner, J.; Janson, C. CPAP treatment of a population-based sample--what are the benefits and the treatment compliance? Sleep Med. 2006, 7, 553–560. [Google Scholar] [CrossRef]
- Rotty, M.C.; Suehs, C.M.; Mallet, J.P.; Martinez, C.; Borel, J.C.; Rabec, C.; Bertelli, F.; Bourdin, A.; Molinari, N.; Jaffuel, D. Mask side-effects in long-term CPAP-patients impact adherence and sleepiness: The InterfaceVent real-life study. Respir. Res. 2021, 22, 17. [Google Scholar] [CrossRef]
- Borel, J.C.; Tamisier, R.; Dias-Domingos, S.; Sapene, M.; Martin, F.; Stach, B.; Grillet, Y.; Muir, J.F.; Levy, P.; Series, F.; et al. Type of mask may impact on continuous positive airway pressure adherence in apneic patients. PLoS ONE 2013, 8, e64382. [Google Scholar] [CrossRef] [PubMed]
- Watson, N.F.; Mystkowski, S.K. Aerophagia and gastroesophageal reflux disease in patients using continuous positive airway pressure: A preliminary observation. J. Clin. Sleep Med. 2008, 4, 434–438. [Google Scholar] [CrossRef]
- Ghadiri, M.; Grunstein, R.R. Clinical side effects of continuous positive airway pressure in patients with obstructive sleep apnoea. Respirology 2020, 25, 593–602. [Google Scholar] [CrossRef]
- Pieh, C.; Bach, M.; Popp, R.; Jara, C.; Crönlein, T.; Hajak, G.; Geisler, P. Insomnia symptoms influence CPAP compliance. Sleep Breath. 2013, 17, 99–104. [Google Scholar] [CrossRef]
- Palm, A.; Midgren, B.; Theorell-Haglöw, J.; Ekström, M.; Ljunggren, M.; Janson, C.; Lindberg, E. Factors influencing adherence to continuous positive airway pressure treatment in obstructive sleep apnea and mortality associated with treatment failure—A national registry-based cohort study. Sleep Med. 2018, 51, 85–91. [Google Scholar] [CrossRef]
- Benjafield, A.V.; Oldstone, L.M.; Willes, L.A.; Kelly, C.; Nunez, C.M.; Malhotra, A.; On Behalf Of The medXcloud, G. Positive Airway Pressure Therapy Adherence with Mask Resupply: A Propensity-Matched Analysis. J. Clin. Med. 2021, 10, 720. [Google Scholar] [CrossRef]
- Sutherland, K.; Kairaitis, K.; Yee, B.J.; Cistulli, P.A. From CPAP to tailored therapy for obstructive sleep Apnoea. Multidiscip. Respir. Med. 2018, 13, 44. [Google Scholar] [CrossRef]
- Sutherland, K.; Vanderveken, O.M.; Tsuda, H.; Marklund, M.; Gagnadoux, F.; Kushida, C.A.; Cistulli, P.A. Oral appliance treatment for obstructive sleep apnea: An update. J. Clin. Sleep Med. 2014, 10, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Marklund, M. Update on Oral Appliance Therapy for OSA. Curr. Sleep Med. Rep. 2017, 3, 143–151. [Google Scholar] [CrossRef]
- Chan, A.S.; Sutherland, K.; Schwab, R.J.; Zeng, B.; Petocz, P.; Lee, R.W.; Darendeliler, M.A.; Cistulli, P.A. The effect of mandibular advancement on upper airway structure in obstructive sleep apnoea. Thorax 2010, 65, 726–732. [Google Scholar] [CrossRef]
- Bamagoos, A.A.; Eckert, D.J.; Sutherland, K.; Ngiam, J.; Cistulli, P.A. Dose-dependent effects of mandibular advancement on optimal positive airway pressure requirements in obstructive sleep apnoea. Sleep Breath. 2020, 24, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Doff, M.H.; Veldhuis, S.K.; Hoekema, A.; Slater, J.J.; Wijkstra, P.J.; de Bont, L.G.; Stegenga, B. Long-term oral appliance therapy in obstructive sleep apnea syndrome: A controlled study on temporomandibular side effects. Clin. Oral Investig. 2012, 16, 689–697. [Google Scholar] [CrossRef]
- Ramar, K.; Dort, L.C.; Katz, S.G.; Lettieri, C.J.; Harrod, C.G.; Thomas, S.M.; Chervin, R.D. Clinical Practice Guideline for the Treatment of Obstructive Sleep Apnea and Snoring with Oral Appliance Therapy: An Update for 2015. J. Clin. Sleep Med. 2015, 11, 773–827. [Google Scholar] [CrossRef]
- Phillips, C.L.; Grunstein, R.R.; Darendeliler, M.A.; Mihailidou, A.S.; Srinivasan, V.K.; Yee, B.J.; Marks, G.B.; Cistulli, P.A. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2013, 187, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Marklund, M.; Verbraecken, J.; Randerath, W. Non-CPAP therapies in obstructive sleep apnoea: Mandibular advancement device therapy. Eur. Respir. J. 2012, 39, 1241–1247. [Google Scholar] [CrossRef]
- Bratton, D.J.; Gaisl, T.; Wons, A.M.; Kohler, M. CPAP vs Mandibular Advancement Devices and Blood Pressure in Patients With Obstructive Sleep Apnea: A Systematic Review and Meta-analysis. JAMA 2015, 314, 2280–2293. [Google Scholar] [CrossRef]
- Ou, Y.H.; Colpani, J.T.; Cheong, C.S.; Loke, W.; Thant, A.T.; Shih, E.C.; Lee, F.; Chan, S.P.; Sia, C.H.; Koo, C.Y.; et al. Mandibular Advancement vs CPAP for Blood Pressure Reduction in Patients With Obstructive Sleep Apnea. J. Am. Coll. Cardiol. 2024, 83, 1760–1772. [Google Scholar] [CrossRef]
- Sutherland, K.; Cistulli, P.A. Oral Appliance Therapy for Obstructive Sleep Apnoea: State of the Art. J. Clin. Med. 2019, 8, 2121. [Google Scholar] [CrossRef]
- Liao, J.; Shi, Y.; Gao, X.; Zhang, B.; Li, Y.; Xu, W.; Han, D. Efficacy of Oral Appliance for Mild, Moderate, and Severe Obstructive Sleep Apnea: A Meta-analysis. Otolaryngol. Head Neck Surg. 2024, 170, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Araie, T.; Okuno, K.; Ono Minagi, H.; Sakai, T. Dental and skeletal changes associated with long-term oral appliance use for obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med. Rev. 2018, 41, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Raut, A.; Mathur, A. The Occlusal Side Effects of Mandibular Advancement Device Therapy in Adult Sleep Apnea Patients: A Systematic Review. Cureus 2023, 15, e48682. [Google Scholar] [CrossRef]
- Almeida, F.R.; Lowe, A.A.; Sung, J.O.; Tsuiki, S.; Otsuka, R. Long-term sequellae of oral appliance therapy in obstructive sleep apnea patients: Part 1. Cephalometric analysis. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ishiyama, H.; Angkulmahasuk, S.; Nishiyama, A.; Fueki, K. Short- and long-term effects of mandibular advancement device therapy for obstructive sleep apnea on temporomandibular disorders: A systematic review and meta-analysis. J. Prosthodont. Res. 2025; ahead of print. [Google Scholar] [CrossRef]
- Sangalli, L.; Yanez-Regonesi, F.; Moreno-Hay, I. Evolution of adherence and self-reported symptoms over 36 months with mandibular advancement device therapy for obstructive sleep apnea: A retrospective study. J. Clin. Sleep Med. 2024, 20, 487–496. [Google Scholar] [CrossRef]
- Bortolotti, F.; Corazza, G.; Bartolucci, M.L.; Incerti Parenti, S.; Paganelli, C.; Alessandri-Bonetti, G. Dropout and adherence of obstructive sleep apnoea patients to mandibular advancement device therapy: A systematic review of randomised controlled trials with meta-analysis and meta-regression. J. Oral Rehabil. 2022, 49, 553–572. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, J.Y.; Choi, J.H. Oral appliance therapy for obstructive sleep apnea: Clinical benefits and limitations. Sleep Med. Res. 2023, 14, 175–182. [Google Scholar] [CrossRef]
- Dieltjens, M.; Vanderveken, O.M.; Hamans, E.; Verbraecken, J.A.; Wouters, K.; Willemen, M.; De Backer, W.A.; Van de Heyning, P.H.; Braem, M.J. Treatment of obstructive sleep apnea using a custom-made titratable duobloc oral appliance: A prospective clinical study. Sleep Breath. 2013, 17, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Caples, S.M.; Rowley, J.A.; Prinsell, J.R.; Pallanch, J.F.; Elamin, M.B.; Katz, S.G.; Harwick, J.D. Surgical modifications of the upper airway for obstructive sleep apnea in adults: A systematic review and meta-analysis. Sleep 2010, 33, 1396–1407. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.Y.; Lin, P.W.; Lin, H.C.; Chang, C.T.; Lin, C.Y.; Friedman, M.; Salapatas, A.M. Systematic review and updated meta-analysis of multi-level surgery for patients with OSA. Auris Nasus Larynx 2022, 49, 421–430. [Google Scholar] [CrossRef]
- Stuck, B.A.; Ravesloot, M.J.L.; Eschenhagen, T.; de Vet, H.C.W.; Sommer, J.U. Uvulopalatopharyngoplasty with or without tonsillectomy in the treatment of adult obstructive sleep apnea—A systematic review. Sleep Med. 2018, 50, 152–165. [Google Scholar] [CrossRef]
- Li, H.Y.; Lee, L.A.; Kezirian, E.J. Efficacy of Coblation Endoscopic Lingual Lightening in Multilevel Surgery for Obstructive Sleep Apnea. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Byun, Y.J.; Nguyen, S.A.; Lentsch, E.J.; Gillespie, M.B. Transoral Robotic Surgery versus Plasma Ablation for Tongue Base Reduction in Obstructive Sleep Apnea: Meta-analysis. Otolaryngol. Head Neck Surg. 2020, 162, 839–852. [Google Scholar] [CrossRef]
- Hussain, S.; Hayat, J.; Chowdhury, R.; Ebrahim, M.; Alterki, A.; Bahgat, A.; Al-Sayed, A.A.; Padhye, V.; Capasso, R. Coblation Versus Radiofrequency for Tongue Base Reduction in Obstructive Sleep Apnea: A Meta-analysis. OTO Open 2025, 9, e70076. [Google Scholar] [CrossRef]
- Moxness, M.H.; Nordgård, S. An observational cohort study of the effects of septoplasty with or without inferior turbinate reduction in patients with obstructive sleep apnea. BMC Ear Nose Throat Disord. 2014, 14, 11. [Google Scholar] [CrossRef]
- Li, H.Y.; Lin, Y.; Chen, N.H.; Lee, L.A.; Fang, T.J.; Wang, P.C. Improvement in quality of life after nasal surgery alone for patients with obstructive sleep apnea and nasal obstruction. Arch. Otolaryngol. Head Neck Surg. 2008, 134, 429–433. [Google Scholar] [CrossRef]
- Kim, S.T.; Choi, J.H.; Jeon, H.G.; Cha, H.E.; Kim, D.Y.; Chung, Y.S. Polysomnographic effects of nasal surgery for snoring and obstructive sleep apnea. Acta Otolaryngol. 2004, 124, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Park, D.Y.; Cho, J.H.; Jung, Y.G.; Choi, J.H.; Kim, D.K.; Kim, S.W.; Kim, H.J.; Kim, H.Y.; Park, S.K.; Park, C.S.; et al. Clinical Practice Guideline: Clinical Efficacy of Nasal Surgery in the Treatment of Obstructive Sleep Apnea. Clin. Exp. Otorhinolaryngol. 2023, 16, 201–216. [Google Scholar] [CrossRef]
- Holty, J.E.; Guilleminault, C. Maxillomandibular advancement for the treatment of obstructive sleep apnea: A systematic review and meta-analysis. Sleep Med. Rev. 2010, 14, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Li, K.K.; Riley, R.W.; Powell, N.B.; Guilleminault, C. Maxillomandibular advancement for persistent obstructive sleep apnea after phase I surgery in patients without maxillomandibular deficiency. Laryngoscope 2000, 110 Pt 1, 1684–1688. [Google Scholar] [CrossRef]
- Zaghi, S.; Holty, J.E.; Certal, V.; Abdullatif, J.; Guilleminault, C.; Powell, N.B.; Riley, R.W.; Camacho, M. Maxillomandibular Advancement for Treatment of Obstructive Sleep Apnea: A Meta-analysis. JAMA Otolaryngol. Head Neck Surg. 2016, 142, 58–66. [Google Scholar] [CrossRef]
- Camacho, M.; Certal, V.; Capasso, R. Comprehensive review of surgeries for obstructive sleep apnea syndrome. Braz. J. Otorhinolaryngol. 2013, 79, 780–788. [Google Scholar] [CrossRef]
- He, M.; Yin, G.; Zhan, S.; Xu, J.; Cao, X.; Li, J.; Ye, J. Long-term Efficacy of Uvulopalatopharyngoplasty among Adult Patients with Obstructive Sleep Apnea: A Systematic Review and Meta-analysis. Otolaryngol. Head Neck Surg. 2019, 161, 401–411. [Google Scholar] [CrossRef]
- Lee, M.K.; Lee, J.Y.; Choi, J.H. Surgical outcomes for obstructive sleep apnea in Korea. Sleep Med. Res. 2022, 13, 63–67. [Google Scholar] [CrossRef]
- Dedhia, R.C.; Strollo, P.J.; Soose, R.J. Upper Airway Stimulation for Obstructive Sleep Apnea: Past, Present, and Future. Sleep 2015, 38, 899–906. [Google Scholar] [CrossRef]
- Boyd, S.B.; Walters, A.S.; Waite, P.; Harding, S.M.; Song, Y. Long-Term Effectiveness and Safety of Maxillomandibular Advancement for Treatment of Obstructive Sleep Apnea. J. Clin. Sleep Med. 2015, 11, 699–708. [Google Scholar] [CrossRef]
- Riley, R.W.; Powell, N.B.; Li, K.K.; Troell, R.J.; Guilleminault, C. Surgery and obstructive sleep apnea: Long-term clinical outcomes. Otolaryngol. Head Neck Surg. 2000, 122, 415–421. [Google Scholar] [CrossRef]
- Bosco, G.; Morato, M.; Pérez-Martín, N.; Navarro, A.; Racionero, M.A.; O’Connor-Reina, C.; Baptista, P.; Plaza, G. One-Stage Multilevel Surgery for Treatment of Obstructive Sleep Apnea Syndrome. J. Clin. Med. 2021, 10, 4822. [Google Scholar] [CrossRef]
- Kezirian, E.J.; Hohenhorst, W.; de Vries, N. Drug-induced sleep endoscopy: The VOTE classification. Eur. Arch. Otorhinolaryngol. 2011, 268, 1233–1236. [Google Scholar] [CrossRef]
- Kim, B.; Choi, J.H. Weight Loss for Obstructive Sleep Apnea: Pharmacological and Surgical Management. J. Rhinol. 2023, 30, 1–5. [Google Scholar] [CrossRef]
- Schwartz, A.R.; Patil, S.P.; Laffan, A.M.; Polotsky, V.; Schneider, H.; Smith, P.L. Obesity and obstructive sleep apnea: Pathogenic mechanisms and therapeutic approaches. Proc. Am. Thorac. Soc. 2008, 5, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Kuna, S.T.; Reboussin, D.M.; Strotmeyer, E.S.; Millman, R.P.; Zammit, G.; Walkup, M.P.; Wadden, T.A.; Wing, R.R.; Pi-Sunyer, F.X.; Spira, A.P.; et al. Effects of Weight Loss on Obstructive Sleep Apnea Severity. Ten-Year Results of the Sleep AHEAD Study. Am. J. Respir. Crit. Care Med. 2021, 203, 221–229. [Google Scholar] [CrossRef]
- Malhotra, A.; Heilmann, C.R.; Banerjee, K.K.; Dunn, J.P.; Bunck, M.C.; Bednarik, J. Weight reduction and the impact on apnea-hypopnea index: A systematic meta-analysis. Sleep Med. 2024, 121, 26–31. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Tasali, E. Weight Loss Is Integral to Obstructive Sleep Apnea Management. Ten-Year Follow-up in Sleep AHEAD. Am. J. Respir. Crit. Care Med. 2021, 203, 161–162. [Google Scholar] [CrossRef]
- Peppard, P.E.; Young, T.; Palta, M.; Dempsey, J.; Skatrud, J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 2000, 284, 3015–3021. [Google Scholar] [CrossRef] [PubMed]
- Foster, G.D.; Borradaile, K.E.; Sanders, M.H.; Millman, R.; Zammit, G.; Newman, A.B.; Wadden, T.A.; Kelley, D.; Wing, R.R.; Pi-Sunyer, F.X.; et al. A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: The Sleep AHEAD study. Arch. Intern. Med. 2009, 169, 1619–1626. [Google Scholar] [CrossRef]
- Greenburg, D.L.; Lettieri, C.J.; Eliasson, A.H. Effects of surgical weight loss on measures of obstructive sleep apnea: A meta-analysis. Am. J. Med. 2009, 122, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Tuomilehto, H.P.; Seppä, J.M.; Partinen, M.M.; Peltonen, M.; Gylling, H.; Tuomilehto, J.O.; Vanninen, E.J.; Kokkarinen, J.; Sahlman, J.K.; Martikainen, T.; et al. Lifestyle intervention with weight reduction: First-line treatment in mild obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2009, 179, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Bouloukaki, I.; Daskalaki, E.; Mavroudi, E.; Moniaki, V.; Schiza, S.E.; Tsiligianni, I. A Dietary and Lifestyle Intervention Improves Treatment Adherence and Clinical Outcomes in Overweight and Obese Patients with Obstructive Sleep Apnea: A Randomized, Controlled Trial. Life 2023, 13, 1755. [Google Scholar] [CrossRef]
- Carneiro-Barrera, A.; Amaro-Gahete, F.J.; Guillén-Riquelme, A.; Jurado-Fasoli, L.; Sáez-Roca, G.; Martín-Carrasco, C.; Buela-Casal, G.; Ruiz, J.R. Effect of an Interdisciplinary Weight Loss and Lifestyle Intervention on Obstructive Sleep Apnea Severity: The INTERAPNEA Randomized Clinical Trial. JAMA Netw. Open. 2022, 5, e228212. [Google Scholar] [CrossRef]
- Hudgel, D.W.; Patel, S.R.; Ahasic, A.M.; Bartlett, S.J.; Bessesen, D.H.; Coaker, M.A.; Fiander, P.M.; Grunstein, R.R.; Gurubhagavatula, I.; Kapur, V.K.; et al. The Role of Weight Management in the Treatment of Adult Obstructive Sleep Apnea. An Official American Thoracic Society Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e70–e87. [Google Scholar] [CrossRef]
- Joosten, S.A.; O’Driscoll, D.M.; Berger, P.J.; Hamilton, G.S. Supine position related obstructive sleep apnea in adults: Pathogenesis and treatment. Sleep Med. Rev. 2014, 18, 7–17. [Google Scholar] [CrossRef]
- Marques, M.; Genta, P.R.; Sands, S.A.; Azarbazin, A.; de Melo, C.; Taranto-Montemurro, L.; White, D.P.; Wellman, A. Effect of Sleeping Position on Upper Airway Patency in Obstructive Sleep Apnea Is Determined by the Pharyngeal Structure Causing Collapse. Sleep 2017, 40, zsx005. [Google Scholar] [CrossRef]
- Messineo, L.; Joosten, S.; Perger, E. Mechanisms relating to sleeping position to the endotypes of sleep disordered breathing. Curr. Opin. Pulm. Med. 2023, 29, 543–549. [Google Scholar] [CrossRef]
- Cartwright, R.D. Effect of sleep position on sleep apnea severity. Sleep 1984, 7, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Omobomi, O.; Quan, S.F. Positional therapy in the management of positional obstructive sleep apnea-a review of the current literature. Sleep Breath. 2018, 22, 297–304. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Mohammed, O.M.; Liu, S.; Al-Balaa, M.; Al-Warafi, L.A.; Peng, S.J.; Qiao, Y.Q. Oral appliance therapy vs. positional therapy for managing positional obstructive sleep apnea; a systematic review and meta-analysis of randomized control trials. BMC Oral Health 2024, 24, 666. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, S.; Li, W.; Lai, Y. Comparative efficacy of sleep positional therapy, oral appliance therapy, and CPAP in obstructive sleep apnea: A meta-analysis of mean changes in key outcomes. Front. Med. 2025, 12, 1517274. [Google Scholar] [CrossRef]
- Lee, K.I.; Choi, J.H. Positional therapy for obstructive sleep apnea: Therapeutic modalities and clinical effects. Sleep Med. Res. 2023, 14, 129–134. [Google Scholar] [CrossRef]
- Srijithesh, P.R.; Aghoram, R.; Goel, A.; Dhanya, J. Positional therapy for obstructive sleep apnoea. Cochrane Database Syst. Rev. 2019, 5, CD010990. [Google Scholar] [CrossRef]
- van Maanen, J.P.; de Vries, N. Long-term effectiveness and compliance of positional therapy with the sleep position trainer in the treatment of positional obstructive sleep apnea syndrome. Sleep 2014, 37, 1209–1215. [Google Scholar] [CrossRef]
- Saba, E.S.; Kim, H.; Huynh, P.; Jiang, N. Orofacial Myofunctional Therapy for Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. Laryngoscope 2024, 134, 480–495. [Google Scholar] [CrossRef]
- Camacho, M.; Certal, V.; Abdullatif, J.; Zaghi, S.; Ruoff, C.M.; Capasso, R.; Kushida, C.A. Myofunctional Therapy to Treat Obstructive Sleep Apnea: A Systematic Review and Meta-analysis. Sleep 2015, 38, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Poncin, W.; Willemsens, A.; Gely, L.; Contal, O. Assessment and rehabilitation of tongue motor skills with myofunctional therapy in obstructive sleep apnea: A systematic review and meta-analysis. J. Clin. Sleep Med. 2024, 20, 1535–1549. [Google Scholar] [CrossRef] [PubMed]
- Prakassajjatham, M.; Opascharoenkij, R.; Rojanamungkalporn, M. The effect of orofacial myofunctional therapy on biometrics and compliance of positive airway pressure therapy in patients with obstructive sleep apnea. Sleep Breath. 2025, 29, 163. [Google Scholar] [CrossRef] [PubMed]
- O’Connor-Reina, C.; Ignacio Garcia, J.M.; Rodriguez Alcala, L.; Rodríguez Ruiz, E.; Garcia Iriarte, M.T.; Casado Morente, J.C.; Baptista, P.; Plaza, G. Improving Adherence to Myofunctional Therapy in the Treatment of Sleep-Disordered Breathing. J. Clin. Med. 2021, 10, 5772. [Google Scholar] [CrossRef]
- Strollo, P.J., Jr.; Soose, R.J.; Maurer, J.T.; de Vries, N.; Cornelius, J.; Froymovich, O.; Hanson, R.D.; Padhya, T.A.; Steward, D.L.; Gillespie, M.B.; et al. Upper-airway stimulation for obstructive sleep apnea. N. Engl. J. Med. 2014, 370, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Mashaqi, S.; Patel, S.I.; Combs, D.; Estep, L.; Helmick, S.; Machamer, J.; Parthasarathy, S. The Hypoglossal Nerve Stimulation as a Novel Therapy for Treating Obstructive Sleep Apnea-A Literature Review. Int. J. Environ. Res. Public Health 2021, 18, 1642. [Google Scholar] [CrossRef] [PubMed]
- Tukanov, E.; Van Loo, D.; Dieltjens, M.; Verbraecken, J.; Vanderveken, O.M.; Op de Beeck, S. Baseline Characteristics Associated with Hypoglossal Nerve Stimulation Treatment Outcomes in Patients with Obstructive Sleep Apnea: A Systematic Review. Life 2024, 14, 1129. [Google Scholar] [CrossRef] [PubMed]
- Vanderveken, O.M.; Maurer, J.T.; Hohenhorst, W.; Hamans, E.; Lin, H.S.; Vroegop, A.V.; Anders, C.; de Vries, N.; Van de Heyning, P.H. Evaluation of drug-induced sleep endoscopy as a patient selection tool for implanted upper airway stimulation for obstructive sleep apnea. J. Clin. Sleep Med. 2013, 9, 433–438. [Google Scholar] [CrossRef]
- Suurna, M.V.; Steffen, A.; Boon, M.; Chio, E.; Copper, M.; Patil, R.D.; Green, K.; Hanson, R.; Heiser, C.; Huntley, C.; et al. Impact of Body Mass Index and Discomfort on Upper Airway Stimulation: ADHERE Registry 2020 Update. Laryngoscope 2021, 131, 2616–2624. [Google Scholar] [CrossRef]
- Inspire Medical Systems, Inc. Announces FDA Approval for Apnea-Hypopnea Index Indication Expansion and Increased Body Mass Index Labeling. Available online: https://finance.yahoo.com/news/inspire-medical-systems-inc-announces-120000084.html (accessed on 16 June 2023).
- Suurna, M.V.; Jacobowitz, O.; Chang, J.; Koutsourelakis, I.; Smith, D.; Alkan, U.; D’Agostino, M.; Boon, M.; Heiser, C.; Hoff, P.; et al. Improving outcomes of hypoglossal nerve stimulation therapy: Current practice, future directions, and research gaps. Proceedings of the 2019 International Sleep Surgery Society Research Forum. J. Clin. Sleep Med. 2021, 17, 2477–2487. [Google Scholar] [CrossRef]
- Inspire Medical Systems, Inc. Presents Early Clinical Outcomes of the Next-Generation Inspire V System at the 2025 International Surgical Sleep Society and AAO-HNS Meetings. Available online: https://www.globenewswire.com/news-release/2025/10/10/3164781/0/en/Inspire-Medical-Systems-Inc-Publishes-Inspire-V-Data-at-ISSS-AAO-HNS-Meetings.html (accessed on 16 October 2025).
- Strollo, P.J., Jr.; Gillespie, M.B.; Soose, R.J.; Maurer, J.T.; de Vries, N.; Cornelius, J.; Hanson, R.D.; Padhya, T.A.; Steward, D.L.; Woodson, B.T.; et al. Upper Airway Stimulation for Obstructive Sleep Apnea: Durability of the Treatment Effect at 18 Months. Sleep 2015, 38, 1593–1598. [Google Scholar] [CrossRef]
- Woodson, B.T.; Strohl, K.P.; Soose, R.J.; Gillespie, M.B.; Maurer, J.T.; de Vries, N.; Padhya, T.A.; Badr, M.S.; Lin, H.S.; Vanderveken, O.M.; et al. Upper Airway Stimulation for Obstructive Sleep Apnea: 5-Year Outcomes. Otolaryngol. Head Neck Surg. 2018, 159, 194–202. [Google Scholar] [CrossRef]
- Pietzsch, J.B.; Liu, S.; Garner, A.M.; Kezirian, E.J.; Strollo, P.J. Long-Term Cost-Effectiveness of Upper Airway Stimulation for the Treatment of Obstructive Sleep Apnea: A Model-Based Projection Based on the STAR Trial. Sleep 2015, 38, 735–744. [Google Scholar] [CrossRef]
- Schwartz, A.R.; Jacobowitz, O.; Eisele, D.W.; Mickelson, S.A.; Miller, M.B.; Oliven, A.; Certal, V.; Hopp, M.L.; Winslow, D.H.; Huntley, T.C.; et al. Targeted Hypoglossal Nerve Stimulation for Patients With Obstructive Sleep Apnea: A Randomized Clinical Trial. JAMA Otolaryngol. Head Neck Surg. 2023, 149, 512–520. [Google Scholar] [CrossRef]
- Mwenge, G.B.; Rombaux, P.; Dury, M.; Lengelé, B.; Rodenstein, D. Targeted hypoglossal neurostimulation for obstructive sleep apnoea: A 1-year pilot study. Eur. Respir. J. 2013, 41, 360–367. [Google Scholar] [CrossRef]
- Eastwood, P.R.; Barnes, M.; MacKay, S.G.; Wheatley, J.R.; Hillman, D.R.; Nguyên, X.L.; Lewis, R.; Campbell, M.C.; Pételle, B.; Walsh, J.H.; et al. Bilateral hypoglossal nerve stimulation for treatment of adult obstructive sleep apnoea. Eur. Respir. J. 2020, 55, 1901320. [Google Scholar] [CrossRef] [PubMed]
- Woodson, B.T.; Suurna, M.V.; Gillespie, M.B.; Huntley, T.C.; Hancock, M.; Santos, A.; Subbaroyan, J.; Makori, F.; Fesneau, G.; Heiser, C.; et al. Multicentre study conducted across centres in the USA, Europe and Australia to assess the safety and effectiveness of a bilateral hypoglossal nerve stimulation system for the treatment of obstructive sleep apnoea in adults: A protocol for a pivotal, multicentre, open-label, single-arm study. BMJ Open. 2024, 14, e085218. [Google Scholar]
- Woodson, B.T.; Kent, D.T.; Huntley, C.; Hancock, M.K.; Van Daele, D.J.; Boon, M.S.; Huntley, T.C.; Mickelson, S.; Gillespie, M.B.; Suurna, M.V.; et al. Bilateral hypoglossal nerve stimulation for obstructive sleep apnea: A nonrandomized clinical trial. J. Clin. Sleep Med. 2025. [Google Scholar] [CrossRef] [PubMed]
- Wollny, M.; Heiser, C.; Sommer, U.; Schöbel, C.; Braun, M. Adverse Events with Hypoglossal Nerve Stimulation in the Treatment of Obstructive Sleep Apnea-A Systematic Review of Clinical Trials and Real-World Data. J. Clin. Med. 2024, 13, 4282. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [PubMed]
- van Can, J.; Sloth, B.; Jensen, C.B.; Flint, A.; Blaak, E.E.; Saris, W.H. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int. J. Obes. 2014, 38, 784–793. [Google Scholar] [CrossRef]
- Nauck, M.A.; Meier, J.J. The incretin effect in healthy individuals and those with type 2 diabetes: Physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016, 4, 525–536. [Google Scholar] [CrossRef]
- Malhotra, A.; Grunstein, R.R.; Fietze, I.; Weaver, T.E.; Redline, S.; Azarbarzin, A.; Sands, S.A.; Schwab, R.J.; Dunn, J.P.; Chakladar, S.; et al. Tirzepatide for the Treatment of Obstructive Sleep Apnea and Obesity. N. Engl. J. Med. 2024, 391, 1193–1205. [Google Scholar] [CrossRef]
- Li, M.; Lin, H.; Yang, Q.; Zhang, X.; Zhou, Q.; Shi, J.; Ge, F. Glucagon-like peptide-1 receptor agonists for the treatment of obstructive sleep apnea: A meta-analysis. Sleep 2025, 48, zsae280. [Google Scholar] [CrossRef]
- Patel, D.; Smith, A. Patient initiation and maintenance of GLP-1 RAs for treatment of obesity. Expert. Rev. Clin. Pharmacol. 2021, 14, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Wang, Q.W.; Yang, X.Y.; Yang, W.; Li, D.R.; Jin, J.Y.; Zhang, H.C.; Zhang, X.F. GLP-1 receptor agonists for the treatment of obesity: Role as a promising approach. Front. Endocrinol. 2023, 14, 1085799. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhang, L.; Guo, J.; Wang, N.; Zhang, Q.; Qi, Z.; Wu, L.; Qin, L.; Liu, T. Glucagon-like Peptide-1 receptor agonists for obstructive sleep apnea in patients with obesity and type 2 diabetes mellitus: A systematic review and meta-analysis. J. Transl. Med. 2025, 23, 389. [Google Scholar] [CrossRef]
- Aronne, L.J.; Horn, D.B.; le Roux, C.W.; Ho, W.; Falcon, B.L.; Gomez Valderas, E.; Das, S.; Lee, C.J.; Glass, L.C.; Senyucel, C.; et al. Tirzepatide as Compared with Semaglutide for the Treatment of Obesity. N. Engl. J. Med. 2025, 393, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Xu, J.; Mu, X.; Shi, Y.; Fan, H.; Li, S. Safety issues of tirzepatide (pancreatitis and gallbladder or biliary disease) in type 2 diabetes and obesity: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1214334. [Google Scholar] [CrossRef]
- Caruso, I.; Di Gioia, L.; Di Molfetta, S.; Caporusso, M.; Cignarelli, A.; Sorice, G.P.; Laviola, L.; Giorgino, F. The real-world safety profile of tirzepatide: Pharmacovigilance analysis of the FDA Adverse Event Reporting System (FAERS) database. J. Endocrinol. Investig. 2024, 47, 2671–2678. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Smits, M.M.; Van Raalte, D.H. Safety of Semaglutide. Front. Endocrinol. 2021, 12, 645563. [Google Scholar] [CrossRef]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.; le Roux, C.W.; Violante Ortiz, R.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef]
- Barboza, J.J.; Huamán, M.R.; Melgar, B.; Diaz-Arocutipa, C.; Valenzuela-Rodriguez, G.; Hernandez, A.V. Efficacy of Liraglutide in Non-Diabetic Obese Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2022, 11, 2998. [Google Scholar] [CrossRef]
- Gleason, P.P.; Urick, B.Y.; Marshall, L.Z.; Friedlander, N.; Qiu, Y.; Leslie, R.S. Real-world persistence and adherence to glucagon-like peptide-1 receptor agonists among obese commercially insured adults without diabetes. J. Manag. Care Spec. Pharm. 2024, 30, 860–867. [Google Scholar] [CrossRef]
- The Lancet Diabetes Endocrinology. The era of GLP-1 receptor agonists: Costs versus benefits. Lancet Diabetes Endocrinol. 2025, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Look, M.; Dunn, J.P.; Kushner, R.F.; Cao, D.; Harris, C.; Gibble, T.H.; Stefanski, A.; Griffin, R. Body composition changes during weight reduction with tirzepatide in the SURMOUNT-1 study of adults with obesity or overweight. Diabetes Obes. Metab. 2025, 27, 2720–2729. [Google Scholar] [CrossRef]
- Sanchis-Gomar, F.; Neeland, I.J.; Lavie, C.J. Balancing weight and muscle loss in GLP1 receptor agonist therapy. Nat. Rev. Endocrinol. 2025, 21, 584–585. [Google Scholar] [CrossRef]
- Mediano, O.; Masa, J.F. Impact of Glucagon-Like Peptide-1 Analogues in the Treatment of Obstructive Sleep Apnoea: A Pro/Con Debate. Arch. Bronconeumol. 2025, 61, 581–585. [Google Scholar] [CrossRef]
- Jaganathan, N.; Kwon, Y.; Healy, W.J.; Taskar, V. The Emerging Role of Pharmacotherapy in Obstructive Sleep Apnea. J. Otorhinolaryngol. Hear. Balance Med. 2024, 5, 12. [Google Scholar] [CrossRef]
- Perger, E.; Bertoli, S.; Lombardi, C. Pharmacotherapy for obstructive sleep apnea: Targeting specific pathophysiological traits. Expert Rev. Respir. Med. 2023, 17, 663–673. [Google Scholar]
- Taranto-Montemurro, L.; Pho, H.; White, D.P. Development of a combination of noradrenergic and antimuscarinic drugs for the treatment of obstructive sleep apnea: Challenges and progress. Front. Sleep 2023, 2, 1148282. [Google Scholar] [CrossRef]
- Schweitzer, P.K.; Taranto-Montemurro, L.; Ojile, J.M.; Thein, S.G.; Drake, C.L.; Rosenberg, R.; Corser, B.; Abaluck, B.; Sangal, R.B.; Maynard, J. The Combination of Aroxybutynin and Atomoxetine in the Treatment of Obstructive Sleep Apnea (MARIPOSA): A Randomized Controlled Trial. Am. J. Respir. Crit. Care Med. 2023, 208, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Taranto-Montemurro, L.; Messineo, L.; Sands, S.A.; Azarbarzin, A.; Marques, M.; Edwards, B.A.; Eckert, D.J.; White, D.P.; Wellman, A. The Combination of Atomoxetine and Oxybutynin Greatly Reduces Obstructive Sleep Apnea Severity. A Randomized, Placebo-controlled, Double-Blind Crossover Trial. Am. J. Respir. Crit. Care Med. 2019, 199, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Taranto-Montemurro, L.; Messineo, L.; Azarbarzin, A.; Vena, D.; Hess, L.B.; Calianese, N.A.; White, D.P.; Wellman, A.; Sands, S.A. Effects of the Combination of Atomoxetine and Oxybutynin on OSA Endotypic Traits. Chest 2020, 157, 1626–1636. [Google Scholar] [CrossRef]
| Inspire Medical Systems (Inspire®) | LivaNova (aura6000™ System) | Nyxoah (Genio™ System) | |
|---|---|---|---|
| FDA approval status (U.S.) | FDA-approved (2014) | Not FDA-approved; PMA submission under review (2024) | FDA-approved (2025) |
| Mechanism | Unilateral hypoglossal nerve stimulation | Proximal hypoglossal nerve stimulation utilizing six electrodes and adjustable threshold control | Bilateral hypoglossal nerve stimulation |
| Implantable components | Pulse generator (with battery), respiratory sensing lead, and stimulation cuff electrode | Implantable proximal hypoglossal nerve stimulator (with battery) and associated electrodes | Wireless, battery-free implantable electrodes |
| External components | Remote control | Remote control | Single-use external patch and activation chip |
| Quantity and anatomical site of incisions | 2–3 incisions (submental, chest, intercostal) | Not comprehensively detailed (potentially 2) | One submental incision |
| DISE assessment requirement | Required (exclusion: complete concentric collapse at velum) | Indeterminate | Not required |
| OSA efficacy (AHI reduction) | ~20 events/h absolute AHI reduction (~68% relative decrease) | ~24 events/h absolute AHI reduction (~54% relative decrease) | ~18 events/h absolute AHI reduction (~66% relative decrease) |
| Most common adverse events | Tongue abrasion, pain, discomfort from electrodes, device malfunction | Lead migration, infection | Temporary localized skin irritation, dysphagia/pain |
| Estimated cost of device/procedure | ~$30,000–40,000 | Not specified | ~€25,000–30,000 (Europe) |
| Battery lifespan | ~10–11 years | ~8–10 years | Permanent (no battery required) |
| Unique characteristics/advantages | Extensive clinical usage history; based in the U.S.; most commonly utilized | Six electrodes provide high-precision stimulation | Battery-free, offers bilateral stimulation, minimally invasive, does not require DISE, MRI-compatible |
| Data robustness | Long-term data (>10 years) | Intermediate-term (12 months) | Mainly demonstrates short-term outcomes |
| Tirzepatide (Zepbound™, Mounjaro®) | Semaglutide (Ozempic®, Wegovy®, Rybelsus®) | Liraglutide (Saxenda®) | |
|---|---|---|---|
| Mechanism of action | Dual GIP/GLP-1 receptor agonist | GLP-1 receptor agonist | GLP-1 receptor agonist |
| Route of administration | Once-weekly subcutaneous injection | Weekly subcutaneous injection (Ozempic®, Wegovy®) or once-daily oral tablet (Rybelsus®) | Once-daily subcutaneous injection |
| FDA approval status | Approved for type 2 diabetes (Mounjaro®) and for obesity/OSA (Zepbound™) | Approved for type 2 diabetes (Ozempic®, Rybelsus®) and for obesity (Wegovy®); currently, no prospective clinical trial data in OSA, though efficacy is anticipated to be similar to tirzepatide | Approved for obesity and type 2 diabetes |
| Weight-loss efficacy | ~18–20% mean body weight reduction | ~15–17% mean body weight reduction | ~5–8% mean body weight reduction |
| OSA efficacy (AHI reduction) | ~25–30 events/h absolute AHI reduction (~55–63% relative decrease) | No prospective OSA clinical trials completed | absolute AHI reduction (~10–25% relative decrease) |
| Major adverse events | Most common: GI symptoms (diarrhea, nausea, constipation, vomiting, abdominal pain). Rare but serious risks: pancreatitis, gallbladder disease, acute kidney injury, severe allergic reactions, hypoglycemia, and thyroid C-cell tumors. | Common: GI symptoms (nausea, vomiting, diarrhea, constipation, abdominal pain, belching, dyspepsia), typically mild and transient. Rare but serious effects include pancreatitis, gallbladder disease, kidney complications, increased heart rate, and thyroid C-cell tumors (contraindicated in individuals with a personal or family history of MTC or MEN2). | Commonly reported: GI symptoms (nausea, vomiting, diarrhea, constipation). Rare but notable: pancreatitis and gallbladder disease. |
| Cost and insurance | FDA approval has broadened insurance coverage, now including OSA. | Monthly costs are substantial and can differ based on insurance policies. | Monthly costs are substantial and can differ based on insurance policies. |
| Additional features | One of the most potent GLP-1 RAs for achieving weight reduction; notably, it is the first FDA-approved medication for OSA, signaling a significant therapeutic advance. | Available in both injectable and oral formulations; extensively utilized for weight management. | Once-daily injectable formulation with a well-established history of clinical application. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.K.; Choi, J.H. Advancing Obstructive Sleep Apnea Management: Recent Trends from Conventional to Innovative Therapies. J. Clin. Med. 2025, 14, 7586. https://doi.org/10.3390/jcm14217586
Park SK, Choi JH. Advancing Obstructive Sleep Apnea Management: Recent Trends from Conventional to Innovative Therapies. Journal of Clinical Medicine. 2025; 14(21):7586. https://doi.org/10.3390/jcm14217586
Chicago/Turabian StylePark, Soo Kyoung, and Ji Ho Choi. 2025. "Advancing Obstructive Sleep Apnea Management: Recent Trends from Conventional to Innovative Therapies" Journal of Clinical Medicine 14, no. 21: 7586. https://doi.org/10.3390/jcm14217586
APA StylePark, S. K., & Choi, J. H. (2025). Advancing Obstructive Sleep Apnea Management: Recent Trends from Conventional to Innovative Therapies. Journal of Clinical Medicine, 14(21), 7586. https://doi.org/10.3390/jcm14217586

