Optimization of the Use of Generic Medications in Oncology: Improving Safety and Therapeutic Quality
Abstract
1. Introduction
1.1. Regulatory Context
1.2. Bioequivalence and Its Limitations in Oncology
1.3. Factors Influencing Safety and Efficacy
1.4. Evidence Gaps and Need for Surveillance
2. Materials and Methods
2.1. Formation of the Working Group
2.2. Literature Review
2.3. Development of Recommendations
2.4. Open Debate
2.5. Independence Assurance
3. Results
3.1. Delphi Panel Consensus
3.2. Evidence from Peer-Reviewed Studies
4. Discussion
4.1. Importance of Rigorous Regulation and Control in the Authorization of Generic Medications
4.2. Active Participation of Physicians in Treatment Selection
4.3. Ensuring Adequate Access to Quality Medications
4.4. The SORDOS Strategy
4.5. Role of Real-World Evidence
4.6. Challenges in Oncology-Specific Evaluation
4.7. Integrated Interpretation
4.8. Limitations of Current Bioequivalence Studies
4.9. Study Limitations
4.10. Priority Areas for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANMAT | Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (Argentina) |
| API | Active Pharmaceutical Ingredient |
| ASD | Amorphous Solid Dispersion |
| BCS | Biopharmaceutical Classification System |
| CHMP | Committee for Medicinal Products for Human Use |
| CI | Confidence Interval |
| CML | Chronic Myeloid Leukemia |
| COFEPRIS | Comisión Federal para la Protección contra Riesgos Sanitarios (Mexico) |
| DCI | Denominación Común Internacional (International Nonproprietary Name) |
| DIGEMID | Dirección General de Medicamentos, Insumos y Drogas (Peru) |
| EMA | European Medicines Agency |
| FDA | Food and Drug Administration (United States) |
| GI | Gastrointestinal |
| GMP | Good Manufacturing Practices |
| ICH | International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use |
| INVIMA | Instituto Nacional de Vigilancia de Medicamentos y Alimentos (Colombia) |
| IPTW | Inverse Probability of Treatment Weighting |
| ISP | Instituto de Salud Pública (Chile) |
| MGI | Medicamento Genérico Intercambiable (Interchangeable Generic Drug) |
| OS | Overall Survival |
| PFS | Progression-Free Survival |
| PSA | Prostate-Specific Antigen |
| PSM | Propensity Score Matching |
| RR | Response Rate |
| SORDOS | Systematize, Organize, Respond, Disseminate, Advocate, Synthesize |
| U.S. | United States |
| WHO | World Health Organization |
References
- Wu, Z.; Xia, F.; Lin, R. Global burden of cancer and associated risk factors in 204 countries and territories, 1980–2021: A systematic analysis for the GBD 2021. J. Hematol. Oncol. 2024, 17, 119. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.T.; Nagai, S.; Chen, B.K.; Qureshi, Z.P.; Lebby, A.A.; Kessler, S.; Georgantopoulos, P.; Raisch, D.W.; Sartor, O.; Hermanson, T.; et al. Generic oncology drugs: Are they all safe? Lancet Oncol. 2016, 17, e493–e501. [Google Scholar] [CrossRef]
- Kantarjian, H.; Rajkumar, S.V. Why are cancer drugs so expensive in the United States, and what are the solutions? Mayo Clin. Proc. 2015, 90, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Alpert, A.; Dusetzina, S.B. Generic price competition for specialty drugs: Too little, too late? Health Aff. 2018, 37, 738–742. [Google Scholar]
- Werutsky, G.; Gössling, G.; Pellegrini, R.A.; Ampuero, G.A.S.; Rebelatto, T. Socioeconomic impact of cancer in Latin America and the Caribbean. Arch. Med. Res. 2022, 53, 818–825. [Google Scholar] [CrossRef]
- US Food and Drug Administration (FDA). Generic Drugs; FDA: Silver Spring, MD, USA, 2025. Available online: https://www.fda.gov/drugs/buying-using-medicine-safely/generic-drugs (accessed on 4 March 2025).
- Future Market Insights. Generic Oncology Drugs Market Size & Trends 2025 to 2035 [Internet]. Available online: https://www.futuremarketinsights.com/reports/generic-oncology-drugs-market (accessed on 31 March 2025).
- US Food and Drug Administration (FDA). A Real-World Case Study of Levothyroxine Use Addresses Institutional Concerns About Generic Product Interchangeability; FDA: Silver Spring, MD, USA, 2022. Available online: https://www.fda.gov/drugs/spotlight-cder-science/real-world-case-study-levothyroxine-use-addresses-institutional-concerns-about-generic-product (accessed on 6 March 2025).
- Qin, X.; Huckfeldt, P.; Abraham, J.; Yee, D.; Virnig, B.A. Hormonal therapy drug switching, out-of-pocket costs, and adherence among older women with breast cancer. J. Natl. Cancer Inst. 2022, 114, 1029–1035. [Google Scholar] [CrossRef]
- Conrad, R.; Nance, S.; Tillman, Z.; Davis, K. Estimating Cost Savings from New Generic Drug Approvals in 2022; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2022. [Google Scholar]
- Gozzo, L.; Caraci, F.; Drago, F. Bioequivalence, drugs with narrow therapeutic index and the phenomenon of biocreep: A critical analysis of the system for generic substitution. Healthcare 2022, 10, 1392. [Google Scholar] [CrossRef]
- Renner, L.; Nkansah, F.A.; Dodoo, A.N.O. The role of generic medicines and biosimilars in oncology in low-income countries. Ann. Oncol. 2013, 24, v29–v32. [Google Scholar] [CrossRef]
- Alvo, E.M. Regulación y Competencia en el Mercado de Medicamentos: Experiencias Relevantes Para América Latina; CEPAL: Santiago de Chile, Chile, 2010. [Google Scholar]
- Organización Panamericana de la Salud. Guía Para la Implementación de Estrategias de Medicamentos Genéricos en Los Países de América Latina y el Caribe Como Mecanismo Para Mejorar el Acceso a Medicamentos; OPS: Washington, DC, USA, 2012. [Google Scholar]
- Organización Mundial de la Salud. Fortalecimiento de los Sistemas Regulatorios en la Región de las Américas; OMS: Ginebra, Colombia, 2021. [Google Scholar]
- FirstWord Pharma. EU Body Calls for Suspending Some 100 Generic Drugs over Flawed Testing by CRO [Internet]. Available online: https://firstwordpharma.com/story/5577055 (accessed on 1 April 2025).
- International Council for Harmonisation (ICH). Reflection Paper: Further Opportunities for Harmonization of Standards for Generic Drugs [Internet]. 2019. Available online: https://admin.ich.org/sites/default/files/2019-04/ICH_ReflectionPaper_GenericDrugs_Final_2019_0130.pdf (accessed on 5 March 2025).
- Electronic Code of Federal Regulations (eCFR). 21 CFR 314.3—Definitions [Internet]. Available online: https://www.ecfr.gov/current/title-21/chapter-I/subchapter-D/part-314/subpart-A/section-314.3 (accessed on 6 March 2025).
- Committee for Medicinal Products for Human Use (CHMP). Guidelines on the Investigation of Bioequivalence; European Medicines Agency: London, UK, 2010. [Google Scholar]
- U.S. Department of Health and Human Services; Food and Drug Administration; Center for Drug Evaluation and Research. Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs: General Considerations; FDA: Silver Spring, MD, USA, 2014. [Google Scholar]
- U.S. Department of Health and Human Services; Food and Drug Administration. Approved Drug Products; FDA: Silver Spring, MD, USA, 2025. [Google Scholar]
- Tampal, N.; Mandula, H.; Zhang, H.; Li, B.V.; Nguyen, H.; Conner, D.P. Biopharmaceutics classification system-based biowaivers for generic oncology drug products: Case studies. AAPS PharmSciTech 2015, 16, 5–9. [Google Scholar] [CrossRef][Green Version]
- Song, S.; Wang, C.; Wang, S.; Siegel, R.A.; Sun, C.C. Efficient development of sorafenib tablets with improved oral bioavailability enabled by coprecipitated amorphous solid dispersion. Int. J. Pharm. 2021, 610, 121216. [Google Scholar] [CrossRef] [PubMed]
- Wiergowska, G.; Stasiłowicz, A.; Miklaszewski, A.; Lewandowska, K.; Cielecka-Piontek, J. Structural polymorphism of sorafenib tosylate as a key factor in its solubility differentiation. Pharmaceutics 2021, 13, 384. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Baek, M.J.; Lee, J.Y.; Kim, K.T.; Cho, H.J.; Kim, D.D. Preparation and characterization of sorafenib-loaded microprecipitated bulk powder for enhancing oral bioavailability. Int. J. Pharm. 2020, 589, 119836. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.; Holt, D.W. Substandard drugs: A potential crisis for public health. Br. J. Clin. Pharmacol. 2014, 78, 218–243. [Google Scholar] [CrossRef]
- Santos, O.M.M.; Reis, M.E.D.; Jacon, J.T.; Lino, M.E.S.; Simões, J.S.; Doriguetto, A.C. Polymorphism: An evaluation of the potential risk to the quality of drug products from the Farmácia Popular Rede Própria. Braz. J. Pharm. Sci. 2013, 50, 1–24. [Google Scholar] [CrossRef]
- Lu, J.; Rohani, S. Polymorphism and crystallization of active pharmaceutical ingredients (APIs). Curr. Med. Chem. 2009, 16, 884–905. [Google Scholar] [CrossRef]
- Mastoraki, E.; Michalopoulos, A.; Kriaras, I.; Mouchtouri, E.; Falagas, M.E.; Falagas, M.; Karatza, D.; Geroulanos, S. Incidence of postoperative infections in patients undergoing coronary artery bypass grafting surgery receiving antimicrobial prophylaxis with original and generic cefuroxime. J. Infect. 2008, 56, 35–39. [Google Scholar] [CrossRef]
- Lambert, P.A.; Conway, B.R. Pharmaceutical quality of ceftriaxone generic drug products compared with Rocephin®. J. Chemother. 2003, 15, 357–368. [Google Scholar] [CrossRef]
- Laserson, K.F.; Kenyon, A.S.; Kenyon, T.A.; Layloff, T.; Binkin, N.J. Substandard tuberculosis drugs on the global market and their simple detection. Int. J. Tuberc. Lung Dis. 2001, 5, 448–454. [Google Scholar]
- Trefi, S.; Gilard, V.; Malet-Martino, M.; Martino, R. Generic ciprofloxacin tablets contain the stated amount of drug and different impurity profiles: A 19F, 1H and DOSY NMR analysis. J. Pharm. Biomed. Anal. 2007, 44, 743–754. [Google Scholar] [CrossRef]
- Vial, J.; Cohen, M.; Sassiat, P.; Thiébaut, D. Pharmaceutical quality of docetaxel generics versus originator drug product: A comparative analysis. Curr. Med. Res. Opin. 2008, 24, 2019–2033. [Google Scholar] [CrossRef]
- Hallowell, D.; Jadad, J. Qualitative research: Consensus methods for medical and health services research. BMJ 1995, 311, 376. [Google Scholar] [CrossRef]
- Boulkedid, R.; Abdoul, H.; Loustau, M.; Sibony, O.; Alberti, C. Using and reporting the Delphi method for selecting healthcare quality indicators: A systematic review. PLoS ONE 2011, 6, e20476. [Google Scholar] [CrossRef]
- Barrios, C.; Lopes Gde, L.; Yusof, M.M.; Rubagumya, F.; Rutkowski, P.; Sengar, M. Barriers in access to oncology drugs: A global crisis. Nat. Rev. Clin. Oncol. 2023, 20, 7–15. [Google Scholar] [CrossRef]
- Alwan, A.F.; Matti, B.F.; Naji, A.S.; Muhammed, A.H.; Abdulsahib, M.A. Prospective single-center study of chronic myeloid leukemia in chronic phase: Switching from branded imatinib to a copy drug and back. Leuk. Lymphoma 2014, 55, 2830–2834. [Google Scholar] [CrossRef]
- Erçalışkan, A.; Erdoğan, D.S.; Eşkazan, A.E. Current evidence on the efficacy and safety of generic imatinib in CML and the impact of generics on health care costs. Blood Adv. 2021, 5, 3344–3353. [Google Scholar] [CrossRef]
- Dalle, I.A.; Kantarjian, H.; Burger, J.; Estrov, Z.; Ohanian, M.; Verstovsek, S.; Ravandi, F.; Borthakur, G.; Garcia-Manero, G.; Jabbour, E.; et al. Efficacy and safety of generic imatinib after switching from original imatinib in patients treated for chronic myeloid leukemia in the United States. Cancer Med. 2019, 8, 6559–6565. [Google Scholar] [CrossRef]
- Scalzulli, E.; Colafigli, G.; Latagliata, R.; Pepe, S.; Diverio, D.; Stocchi, F.; Di Prima, A.; Efficace, F.; Martelli, M.; Foà, R.; et al. Switch from branded to generic imatinib: Impact on molecular responses and safety in chronic-phase chronic myeloid leukemia patients. Ann. Hematol. 2020, 99, 2773–2777. [Google Scholar] [CrossRef]
- Klil-Drori, A.J.; Yin, H.; Azoulay, L.; Harnois, M.; Gratton, M.O.; Busque, L.; Assouline, S.E. Persistence with generic imatinib for chronic myeloid leukemia: A matched cohort study. Haematologica 2019, 104, e293–e295. [Google Scholar] [CrossRef] [PubMed]
- Uyanik, M.S.; Pamuk, G.E.; Maden, M.; Merev, E.; Cevik, G.; Uyanik, V.; Umit, E.G.; Demir, A.M.; Akker, M. The impact of new generic formulations of imatinib mesylate on general quality of life in chronic phase chronic myeloid leukaemia patients. Eur. J. Cancer Care 2017, 26, e12423. [Google Scholar] [CrossRef]
- Sekine, I.; Kubota, K.; Tamura, Y.; Asahina, H.; Yamada, K.; Horinouchi, H.; Nokihara, H.; Yamamoto, N.; Tamura, T. Innovator and generic cisplatin formulations: Comparison of renal toxicity. Cancer Sci. 2011, 102, 162–165. [Google Scholar] [CrossRef]
- Poirier, É.; Desbiens, C.; Poirier, B.; Hogue, J.C.; Lemieux, J.; Doyle, C.; Leblond, A.-F.; Côté, I.; Cantin, G.; Provencher, L. Comparison of serious adverse events between the original and a generic docetaxel in breast cancer patients. Ann. Pharmacother. 2014, 48, 447–455. [Google Scholar] [CrossRef]
- Schiff, G.D.; Galanter, W.L.; Duhig, J.; Koronkowski, M.J.; Lodolce, A.E.; Pontikes, P.; Busker, J.; Touchette, D.; Walton, S.; Lambert, B.L. A prescription for improving drug formulary decision making. PLoS Med. 2012, 9, e1001220. [Google Scholar] [CrossRef][Green Version]
- Haslé-Pham, E.; Arnould, B.; Späth, H.M.; Follet, A.; Duru, G.; Marquis, P. Role of clinical, patient-reported outcome and medico-economic studies in the public hospital drug formulary decision-making process: Results of a European survey. Health Policy 2005, 71, 205–212. [Google Scholar] [CrossRef]
- AJMC. How Clinical Evidence Drives Formulary Decision-Making [Internet]. Available online: https://www.ajmc.com/view/a-behind-the-scenes-look-at-how-clinical-evidence-drives-formulary-decision-making (accessed on 18 September 2025).
- World Health Organization. Good Governance for Medicines Initiatives [Internet]. Available online: https://cdn.who.int/media/docs/default-source/health-financing/technical-briefs-background-papers/25ggm.pdf?sfvrsn=b4c5d6a0_3&download=true (accessed on 18 September 2025).
- Pan American Health Organization. Good Pharmacovigilance Practices for the Americas; PAHO: Washington, DC, USA, 2011; Available online: https://www3.paho.org/hq/index.php?option=com_content&view=article&id=10395 (accessed on 18 September 2025).
- Gössling, G.; Rebelatto, T.F.; Villarreal-Garza, C.; Ferrigno, A.S.; Bretel, D.; Sala, R.; Giacomazzi, J.; William, W.N.; Werutsky, G. Current scenario of clinical cancer research in Latin America and the Caribbean. Curr. Oncol. 2023, 30, 653–662. [Google Scholar] [CrossRef]
- Franchetti, Y. Use of propensity scoring and its application to real-world data: Advantages, disadvantages, and methodological objectives explained to researchers without using mathematical equations. J. Clin. Pharmacol. 2022, 62, 304–319. [Google Scholar] [CrossRef]
- Bettega, F.; Mendelson, M.; Leyrat, C.; Bailly, S. Use and reporting of inverse-probability-of-treatment weighting for multicategory treatments in medical research: A systematic review. J. Clin. Epidemiol. 2024, 170, 111338. [Google Scholar] [CrossRef]
- Reyner, E.; Lum, B.; Jing, J.; Kagedal, M.; Ware, J.A.; Dickmann, L.J. Intrinsic and extrinsic pharmacokinetic variability of small molecule targeted cancer therapy. Clin. Transl. Sci. 2020, 13, 410–418. [Google Scholar] [CrossRef]
- Bonate, P.L.; Floret, S.; Bentzen, C. Population pharmacokinetics of APOMINE™: A meta-analysis in cancer patients and healthy males. Br. J. Clin. Pharmacol. 2004, 58, 142–155. [Google Scholar] [CrossRef]
- Pinter, M.; Trauner, M.; Peck-Radosavljevic, M.; Sieghart, W. Cancer and liver cirrhosis: Implications on prognosis and management. ESMO Open 2016, 1, e000042. [Google Scholar] [CrossRef]
- Moorkens, E.; Jonker-Exler, C.; Huys, I.; Declerck, P.; Simoens, S.; Vulto, A.G. Overcoming barriers to the market access of biosimilars in the European Union: The case of biosimilar monoclonal antibodies. Front. Pharmacol. 2016, 7, 193. [Google Scholar] [CrossRef]
- Lopes Gde, L. Cost comparison and economic implications of commonly used originator and generic chemotherapy drugs in India. Ann. Oncol. 2013, 24, v13–v16. [Google Scholar] [CrossRef]
- US Food and Drug Administration (FDA). FDA’s Sentinel Initiative; FDA: Silver Spring, MD, USA, 2025. Available online: https://www.fda.gov/safety/fdas-sentinel-initiative (accessed on 18 September 2025).
- European Medicines Agency (EMA). Guideline on the Investigation of Bioequivalence; Committee for Medicinal Products for Human Use (CHMP): Amsterdam, The Netherlands, 2010; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf (accessed on 18 September 2025).
- Wang, W. Optimal unbiased tests for equivalence in intrasubject variability. J. Am. Stat. Assoc. 1997, 92, 1163–1170. [Google Scholar] [CrossRef]
- Peer, A.V. Variability and impact on design of bioequivalence studies. Basic. Clin. Pharmacol. Toxicol. 2010, 106, 146–153. [Google Scholar] [CrossRef]
- Rusticus, S.A.; Lovato, C.Y. Impact of sample size and variability on the power and type I error rates of equivalence tests: A simulation study. Pract. Assess. Res. Eval. 2014, 19, 11. [Google Scholar] [CrossRef]
- González, C.P.V.; Fitzgerald, J.F.; Bermúdez, J.A.Z. Definición de medicamento genérico: ¿un fin o un medio? Análisis de la regulación en 14 países de la Región de las Américas. Rev. Panam. Salud Pública 2006, 20, 314–323. [Google Scholar] [CrossRef]
- Ministerio de Salud de Colombia. ABECE: Medicamentos Genéricos; Minsalud: Bogotá, Colombia, 2025. Available online: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/MET/abece-genericos-msps.pdf (accessed on 10 March 2025).


| Phase/ Domain | Key Finding | Recommendation | Reported Score (Mean/Median) |
|---|---|---|---|
| Open-Ended Questions (Phase I) | Innovator profile rated as predictable and manageable | Mean: 9.3 | |
| Generic profile rated as predictable and manageable | Mean: 4.3 | ||
| Relevance of bioavailability in oncology | Mean: 9.8 | ||
| Recommendations (Phase II) | Differences in bioavailability and impact on clinical efficacy | It is recommended to acknowledge that differences in bioavailability between innovator drugs and their generic versions can significantly affect clinical efficacy, particularly in oncology. Factors such as particle size, chemical polymorphisms, excipients used in generic formulations, and the quality of storage and the supply chain can influence drug absorption and, consequently, therapeutic effectiveness. | Mean: 9.9 |
| Evaluation of bioequivalence in oncology | It is recommended that comparative studies between innovator and generic oncology medications include robust non-inferiority trials that account for interindividual variability and assess clinically relevant outcomes, such as tumor response, survival, and toxicity. These studies would allow for more reliable comparisons within the oncology setting. | Mean: 9.9 | |
| Assessment of bioequivalence in healthy volunteers and applicability to oncology | Assessing the bioequivalence of generic drugs through studies in healthy volunteers and small patient cohorts is insufficient to extrapolate findings to oncology patients. Cancer patients often exhibit altered pharmacokinetics due to changes in organ function—particularly in the liver, kidneys, and gastrointestinal tract—which can impact absorption, distribution, metabolism, and elimination [22,37]. | Median: 9.9 | |
| Differences in clinical outcomes between innovator and generic products | In clinical practice, significant differences in outcomes have been observed between patients treated with innovator products and those receiving generics, particularly in terms of therapeutic failures in oncology. Variability in toxicity and side effects has also been noted. These differences must be carefully considered in clinical decision-making. | Mean: 9.9 | |
| Clinical outcomes to be evaluated in oncology (RR, QoL, PFS, OS) | From a clinical perspective, both short- and long-term outcomes should be evaluated to determine the efficacy and safety of cancer treatments. Short-term outcomes include response rate (RR), quality of life metrics, and toxicity profiles, which allow for early assessment of therapeutic benefit. In the long term, progression-free survival (PFS) and overall survival (OS) are key endpoints. | Mean: 9.8 | |
| Importance of real-world studies in oncology | Real-life studies are becoming increasingly relevant in clinical practice, as they provide data that reflect situations closer to the everyday conditions of patients. These studies allow for the analysis of patient profiles and outcomes in scenarios that are more representative of the usual clinical environment, as opposed to controlled and randomized clinical trials, which tend to be more structured and select more homogeneous populations. However, although real-life studies are valuable, their level of evidence and design can still be questioned, especially when conducted with small patient samples (e.g., 30 or 100), which could generate doubts about the generalization of results. | Not reported | |
| Cancer Type | Drug/Technology | Observed Differences with Generic | Oncology Endpoints Affected |
|---|---|---|---|
| Chronic Myeloid Leukemia (CML) | Imatinib | Higher rates of therapeutic failure [38,39]; increased adverse events [40,41], and toxicity [42,43] | Response Rate (RR), Progression-Free Survival (PFS), Overall Survival (OS), Toxicity |
| Prostate Cancer | Aromatase inhibitors | Increased PSA levels after switching to generics | Biochemical marker (PSA), Treatment Response, PFS |
| Abiraterone | Reduced PSA suppression with generics | PSA response, Biochemical PFS | |
| Multiple Solid Tumors | Docetaxel (generics) | Variable API content [34]; contamination (1–3%) [21]; increased febrile neutropenia [45]. | Toxicity profile, QoL, Treatment Adherence, PFS/OS (indirect) |
| Cisplatin | Higher renal failure rates (21% vs. 9%, p < 0.001) [44]. | Toxicity (renal), QoL, Treatment Continuity, OS (indirect) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez Abreo, D.; Alarcón Cano, D.F.; Ayala, F.; Belalcázar Carvajal, N.; Berrouet Mejía, M.C.; Beltrán, O.; Calderón-Ospina, C.A.; Castro-Salguero, H.; Escobar Cárdenas, D.M.; Lema-Medina, M.; et al. Optimization of the Use of Generic Medications in Oncology: Improving Safety and Therapeutic Quality. J. Clin. Med. 2025, 14, 7543. https://doi.org/10.3390/jcm14217543
Gómez Abreo D, Alarcón Cano DF, Ayala F, Belalcázar Carvajal N, Berrouet Mejía MC, Beltrán O, Calderón-Ospina CA, Castro-Salguero H, Escobar Cárdenas DM, Lema-Medina M, et al. Optimization of the Use of Generic Medications in Oncology: Improving Safety and Therapeutic Quality. Journal of Clinical Medicine. 2025; 14(21):7543. https://doi.org/10.3390/jcm14217543
Chicago/Turabian StyleGómez Abreo, Diego, Daniel F. Alarcón Cano, Fernando Ayala, Nelson Belalcázar Carvajal, Marie Claire Berrouet Mejía, Oscar Beltrán, Carlos Alberto Calderón-Ospina, Hugo Castro-Salguero, Diana Marcela Escobar Cárdenas, Mauricio Lema-Medina, and et al. 2025. "Optimization of the Use of Generic Medications in Oncology: Improving Safety and Therapeutic Quality" Journal of Clinical Medicine 14, no. 21: 7543. https://doi.org/10.3390/jcm14217543
APA StyleGómez Abreo, D., Alarcón Cano, D. F., Ayala, F., Belalcázar Carvajal, N., Berrouet Mejía, M. C., Beltrán, O., Calderón-Ospina, C. A., Castro-Salguero, H., Escobar Cárdenas, D. M., Lema-Medina, M., Marín Zuluaga, J. I., Milla Bernabé, P., Niño Velasco, R. E., Osorio Estévez, R., Ortiz, J. M., Rojas-Melo, L. J., Urrego, M., Vargas, C., & Zuluaga, A. F. (2025). Optimization of the Use of Generic Medications in Oncology: Improving Safety and Therapeutic Quality. Journal of Clinical Medicine, 14(21), 7543. https://doi.org/10.3390/jcm14217543

