Pharmacological Management of Oral and Esophageal Candidiasis: A Clinical Pharmacotherapy Perspective
Abstract
1. Introduction
2. Oral Health Care
3. Clinical Guidelines for the Treatment of Oral and Esophageal Candidiasis
3.1. Oral Candidiasis
3.2. Esophageal Candidiasis
4. Pharmacological Mechanism
5. Clinical Pharmacokinetics
6. Toxicity
7. Drug–Drug Interaction
7.1. Pharmacokinetic Interaction
7.1.1. Opioids
7.1.2. Antithrombotic Drugs
7.1.3. Cardiovascular Drugs
7.1.4. Immunosuppressant Drugs
7.1.5. Chemotherapeutic Drugs
7.2. Pharmacodynamic Interaction
Nephrotoxicity and Electrolyte Disorder
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Jørgensen, M.R. Pathophysiological microenvironments in oral candidiasis. APMIS 2024, 132, 956–973. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 2012, 36, 288–305. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Verma, R.; Murari, A.; Agrawal, A. Oral candidiasis: An overview. J. Oral Maxillofac. Pathol. 2014, 18, S81–S85. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Lu, X.L.; Mounmin, F.A. Diagnosis and Treatment of Esophageal Candidiasis: Current Updates. Can. J. Gastroenterol. Hepatol. 2019, 2019, 3585136. [Google Scholar] [CrossRef]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans-The Virulence Factors and Clinical Manifestations of Infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Patil, S.; Rao, R.S.; Majumdar, B.; Anil, S. Clinical Appearance of Oral Candida Infection and Therapeutic Strategies. Front. Microbiol. 2015, 6, 1391. [Google Scholar] [CrossRef]
- Coronado-Castellote, L.; Jiménez-Soriano, Y. Clinical and microbiological diagnosis of oral candidiasis. J. Clin. Exp. Dent. 2013, 5, e279–e286. [Google Scholar] [CrossRef]
- Rich, A.M.; Hussaini, H.M.; Nizar, M.A.M.; Gavidi, R.O.; Tauati-Williams, E.; Yakin, M.; Seo, B. Diagnosis of oral potentially malignant disorders: Overview and experience in Oceania. Front. Oral Health 2023, 4, 1122497. [Google Scholar] [CrossRef]
- Sims, C.R.; Ostrosky-Zeichner, L.; Rex, J.H. Invasive candidiasis in immunocompromised hospitalized patients. Arch. Med. Res. 2005, 36, 660–671. [Google Scholar] [CrossRef]
- Dropulic, L.K.; Lederman, H.M. Overview of Infections in the Immunocompromised Host. Microbiol. Spectrum. 2016, 4. [Google Scholar] [CrossRef]
- Fidel, P.L., Jr. Candida-host interactions in HIV disease: Implications for oropharyngeal candidiasis. Adv. Dent. Res. 2011, 23, 45–49. [Google Scholar] [CrossRef]
- Teoh, F.; Pavelka, N. How Chemotherapy Increases the Risk of Systemic Candidiasis in Cancer Patients: Current Paradigm and Future Directions. Pathogens 2016, 5, 6. [Google Scholar] [CrossRef]
- Pappas, P.G.; Silveira, F.P. Candida in solid organ transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. 4), S173–S179. [Google Scholar] [CrossRef]
- Perić, M.; Miličić, B.; Kuzmanović Pfićer, J.; Živković, R.; Arsić Arsenijević, V. A Systematic Review of Denture Stomatitis: Predisposing Factors, Clinical Features, Etiology, and Global Candida spp. Distribution. J. Fungi 2024, 10, 328. [Google Scholar] [CrossRef] [PubMed]
- Tarapan, S.; Matangkasombut, O.; Trachootham, D.; Sattabanasuk, V.; Talungchit, S.; Paemuang, W.; Phonyiam, T.; Chokchaitam, O.; Mungkung, O.O.; Lam-Ubol, A. Oral Candida colonization in xerostomic postradiotherapy head and neck cancer patients. Oral Dis. 2019, 25, 1798–1808. [Google Scholar] [CrossRef] [PubMed]
- Goh, E.Z.; Beech, N.; Johnson, N.R.; Batstone, M. The dental management of patients irradiated for head and neck cancer. Br. Dent. J. 2023, 234, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.; Lopez-Pintor, R.M.; Gonzalez-Serrano, J.; Fernandez-Castro, M.; Casanas, E.; Hernandez, G. Oral lesions in Sjogren’s syndrome: A systematic review. Med. Oral Patol. Oral Cir. Bucal 2018, 23, e391–e400. [Google Scholar] [CrossRef]
- Musinguzi, B.; Obuku, E.A.; Mwesigwa, A.; Migisha, R.; Kinengyere, A.A.; Ndagire, R.; Baguma, A.; Okek, E.J.; Olum, R.; Itabangi, H.; et al. Distribution of Candida species isolated from people living with human immunodeficiency virus with oropharyngeal and oral candidiasis in Africa in the era of universal test and treat policy: A systematic review and meta-analysis. Trop. Med. Health 2024, 52, 88. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Meroi, M.; Cardozo, C.; Cuervo, G.; Giacobbe, D.R.; Salavert, M.; Merino, P.; Gioia, F.; Fernández-Ruiz, M.; et al. Factors associated with the development of septic shock in patients with candidemia: A post hoc analysis from two prospective cohorts. Crit. Care 2020, 24, 117. [Google Scholar] [CrossRef]
- Mazi, P.B.; Olsen, M.A.; Stwalley, D.; Rauseo, A.M.; Ayres, C.; Powderly, W.G.; Spec, A. Attributable Mortality of Candida Bloodstream Infections in the Modern Era: A Propensity Score Analysis. Clin. Infect. Dis. 2022, 75, 1031–1036. [Google Scholar] [CrossRef]
- Antinori, S.; Milazzo, L.; Sollima, S.; Galli, M.; Corbellino, M. Candidemia and invasive candidiasis in adults: A narrative review. Eur. J. Intern. Med. 2016, 34, 21–28. [Google Scholar] [CrossRef]
- Darwazeh, A.M.G.; Darwazeh, T.A. What Makes Oral Candidiasis Recurrent Infection? A Clinical View. J. Mycol. 2014, 2014, 758394. [Google Scholar] [CrossRef]
- Jackson, K.D.; Achour, B.; Lee, J.; Geffert, R.M.; Beers, J.L.; Latham, B.D. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab. Dispos. 2023, 51, 1238–1253. [Google Scholar] [CrossRef]
- Rawson, T.M.; Wilson, R.C.; O’Hare, D.; Herrero, P.; Kambugu, A.; Lamorde, M.; Ellington, M.; Georgiou, P.; Cass, A.; Hope, W.W.; et al. Optimizing antimicrobial use: Challenges, advances and opportunities. Nat. Rev. Microbiol. 2021, 19, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Carmo, A.; Rocha, M.; Pereirinha, P.; Tomé, R.; Costa, E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics 2023, 12, 884. [Google Scholar] [CrossRef]
- Silva, S.; Rodrigues, C.F.; Araújo, D.; Rodrigues, M.E.; Henriques, M. Candida Species Biofilms’ Antifungal Resistance. J. Fungi 2017, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Nobile, C.J. Antifungal drug-resistance mechanisms in Candida biofilms. Curr. Opin. Microbiol. 2023, 71, 102237. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Annette, C.R.; Mindy, G.S.; Jose, A.V.; Thomas, J.W.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef]
- Elad, S.; Cheng, K.K.F.; Lalla, R.V.; Yarom, N.; Hong, C.; Logan, R.M.; Bowen, J.; Gibson, R.; Saunders, D.P.; Zadik, Y.; et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 2020, 126, 4423–4431. [Google Scholar] [CrossRef]
- Patel, M. Oral Cavity and Candida albicans: Colonisation to the Development of Infection. Pathogens 2022, 11, 335. [Google Scholar] [CrossRef] [PubMed]
- Felton, D.; Cooper, L.; Duqum, I.; Minsley, G.; Guckes, A.; Haug, S.; Meredith, P.; Solie, C.; Avery, D.; Deal Chandler, N.; et al. Evidence-based guidelines for the care and maintenance of complete dentures: A publication of the American College of Prosthodontists. J. Prosthodont. 2011, 20 (Suppl. 1), S1–S12. [Google Scholar] [CrossRef]
- Mylonas, P.; Milward, P.; McAndrew, R. Denture cleanliness and hygiene: An overview. Br. Dent. J. 2022, 233, 20–26. [Google Scholar] [CrossRef]
- Epstein, J.B.; Emerton, S.; Le, N.D.; Stevenson-Moore, P. A double-blind crossover trial of Oral Balance gel and Biotene toothpaste versus placebo in patients with xerostomia following radiation therapy. Oral Oncol. 1999, 35, 132–137. [Google Scholar] [CrossRef]
- Sugimoto, J.; Kanehira, T.; Mizugai, H.; Chiba, I.; Morita, M. Relationship between salivary histatin 5 levels and Candida CFU counts in healthy elderly. Gerodontology 2006, 23, 164–169. [Google Scholar] [CrossRef]
- Edgerton, M.; Koshlukova, S.E. Salivary histatin 5 and its similarities to the other antimicrobial proteins in human saliva. Adv. Dent. Res. 2000, 14, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Mathews, S.A.; Kurien, B.T.; Scofield, R.H. Oral manifestations of Sjögren’s syndrome. J. Dent. Res. 2008, 87, 308–318. [Google Scholar] [CrossRef]
- Lu, S.Y. Oral Candidosis: Pathophysiology and Best Practice for Diagnosis, Classification, and Successful Management. J. Fungi 2021, 7, 555. [Google Scholar] [CrossRef]
- Martori, E.; Ayuso-Montero, R.; Willaert, E.; Viñas, M.; Peraire, M.; Martinez-Gomis, J. Status of Removable Dentures and Relationship with Oral Candida-Associated Factors in a Geriatric Population in Catalonia. J. Prosthodont. 2017, 26, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Compagnoni, M.A.; Souza, R.F.; Marra, J.; Pero, A.C.; Barbosa, D.B. Relationship between Candida and nocturnal denture wear: Quantitative study. J. Oral Rehabil. 2007, 34, 600–605. [Google Scholar] [CrossRef]
- Stoopler, E.T.; Villa, A.; Bindakhil, M.; Díaz, D.L.O.; Sollecito, T.P. Common Oral Conditions: A Review. Jama 2024, 331, 1045–1054. [Google Scholar] [CrossRef]
- Wolff, A.; Joshi, R.K.; Ekström, J.; Aframian, D.; Pedersen, A.M.; Proctor, G.; Narayana, N.; Villa, A.; Sia, Y.W.; Aliko, A.; et al. A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI. Drugs R D 2017, 17, 1–28. [Google Scholar] [CrossRef]
- Mercadante, V.; Jensen, S.B.; Smith, D.K.; Bohlke, K.; Bauman, J.; Brennan, M.T.; Coppes, R.P.; Jessen, N.; Malhotra, N.K.; Murphy, B.; et al. Salivary Gland Hypofunction and/or Xerostomia Induced by Nonsurgical Cancer Therapies: ISOO/MASCC/ASCO Guideline. J. Clin. Oncol. 2021, 39, 2825–2843. [Google Scholar] [CrossRef] [PubMed]
- Minakuchi, S.; Tsuga, K.; Ikebe, K.; Ueda, T.; Tamura, F.; Nagao, K.; Furuya, J.; Matsuo, K.; Yamamoto, K.; Kanazawa, M.; et al. Oral hypofunction in the older population: Position paper of the Japanese Society of Gerodontology in 2016. Gerodontology 2018, 35, 317–324. [Google Scholar] [CrossRef]
- Yap, B.S.; Bodey, G.P. Oropharyngeal candidiasis treated with a troche form of clotrimazole. Arch. Intern. Med. 1979, 139, 656–657. [Google Scholar] [CrossRef]
- Van Roey, J.; Haxaire, M.; Kamya, M.; Lwanga, I.; Katabira, E. Comparative efficacy of topical therapy with a slow-release mucoadhesive buccal tablet containing miconazole nitrate versus systemic therapy with ketoconazole in HIV-positive patients with oropharyngeal candidiasis. J. Acquir. Immune Defic. Syndr. 2004, 35, 144–150. [Google Scholar] [CrossRef]
- Vazquez, J.A.; Patton, L.L.; Epstein, J.B.; Ramlachan, P.; Mitha, I.; Noveljic, Z.; Fourie, J.; Conway, B.; Lalla, R.V.; Barasch, A.; et al. Randomized, comparative, double-blind, double-dummy, multicenter trial of miconazole buccal tablet and clotrimazole troches for the treatment of oropharyngeal candidiasis: Study of miconazole Lauriad® efficacy and safety (SMiLES). HIV Clin. Trials 2010, 11, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Patton, L.L.; Bonito, A.J.; Shugars, D.A. A systematic review of the effectiveness of antifungal drugs for the prevention and treatment of oropharyngeal candidiasis in HIV-positive patients. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 92, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Finlay, P.M.; Richardson, M.D.; Robertson, A.G. A comparative study of the efficacy of fluconazole and amphotericin B in the treatment of oropharyngeal candidosis in patients undergoing radiotherapy for head and neck tumours. Br. J. Oral Maxillofac. Surg. 1996, 34, 23–25. [Google Scholar] [CrossRef]
- Pons, V.; Greenspan, D.; Lozada-Nur, F.; McPhail, L.; Gallant, J.E.; Tunkel, A.; Johnson, C.C.; McCarty, J.; Panzer, H.; Levenstein, M.; et al. Oropharyngeal candidiasis in patients with AIDS: Randomized comparison of fluconazole versus nystatin oral suspensions. Clin. Infect. Dis. 1997, 24, 1204–1207. [Google Scholar] [CrossRef]
- Koletar, S.L.; Russell, J.A.; Fass, R.J.; Plouffe, J.F. Comparison of oral fluconazole and clotrimazole troches as treatment for oral candidiasis in patients infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 1990, 34, 2267–2268. [Google Scholar] [CrossRef] [PubMed]
- Saag, M.S.; Fessel, W.J.; Kaufman, C.A.; Merrill, K.W.; Ward, D.J.; Moskovitz, B.L.; Thomas, C.; Oleka, N.; Guarnieri, J.A.; Lee, J.; et al. Treatment of fluconazole-refractory oropharyngeal candidiasis with itraconazole oral solution in HIV-positive patients. AIDS Res. Hum. Retroviruses 1999, 15, 1413–1417. [Google Scholar] [CrossRef]
- Skiest, D.J.; Vazquez, J.A.; Anstead, G.M.; Graybill, J.R.; Reynes, J.; Ward, D.; Hare, R.; Boparai, N.; Isaacs, R. Posaconazole for the treatment of azole-refractory oropharyngeal and esophageal candidiasis in subjects with HIV infection. Clin. Infect. Dis. 2007, 44, 607–614. [Google Scholar] [CrossRef]
- Hegener, P.; Troke, P.F.; Fätkenheuer, G.; Diehl, V.; Ruhnke, M. Treatment of fluconazole-resistant candidiasis with voriconazole in patients with AIDS. Aids 1998, 12, 2227–2228. [Google Scholar]
- Lake, D.E.; Kunzweiler, J.; Beer, M.; Buell, D.N.; Islam, M.Z. Fluconazole versus amphotericin B in the treatment of esophageal candidiasis in cancer patients. Chemotherapy 1996, 42, 308–314. [Google Scholar] [CrossRef]
- Kristanc, L.; Božič, B.; Jokhadar, Š.Z.; Dolenc, M.S.; Gomišček, G. The pore-forming action of polyenes: From model membranes to living organisms. Biochim. Biophys. Acta Biomembr. 2019, 1861, 418–430. [Google Scholar] [CrossRef]
- Ramos, H.; Valdivieso, E.; Gamargo, M.; Dagger, F.; Cohen, B.E. Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. J. Membr. Biol. 1996, 152, 65–75. [Google Scholar] [CrossRef]
- Brüggemann, R.J.; Jensen, G.M.; Lass-Flörl, C. Liposomal amphotericin B—The past. J. Antimicrob. Chemother. 2022, 77 (Suppl. 2), ii3–ii10. [Google Scholar] [CrossRef]
- Ghannoum, M.A.; Rice, L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 1999, 12, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and emerging azole antifungal agents. Clin. Microbiol. Rev. 1999, 12, 40–79. [Google Scholar] [CrossRef] [PubMed]
- Szymański, M.; Chmielewska, S.; Czyżewska, U.; Malinowska, M.; Tylicki, A. Echinocandins—Structure, mechanism of action and use in antifungal therapy. J. Enzyme Inhib. Med. Chem. 2022, 37, 876–894. [Google Scholar] [CrossRef]
- Subirà, M.; Martino, R.; Gómez, L.; Martí, J.M.; Estany, C.; Sierra, J. Low-dose amphotericin B lipid complex vs. conventional amphotericin B for empirical antifungal therapy of neutropenic fever in patients with hematologic malignancies—A randomized, controlled trial. Eur. J. Haematol. 2004, 72, 342–347. [Google Scholar] [CrossRef]
- Haro-Reyes, T.; Díaz-Peralta, L.; Galván-Hernández, A.; Rodríguez-López, A.; Rodríguez-Fragoso, L.; Ortega-Blake, I. Polyene Antibiotics Physical Chemistry and Their Effect on Lipid Membranes; Impacting Biological Processes and Medical Applications. Membranes 2022, 12, 681. [Google Scholar] [CrossRef]
- Mroczyńska, M.; Brillowska-Dąbrowska, A. Review on Current Status of Echinocandins Use. Antibiotics 2020, 9, 227. [Google Scholar] [CrossRef]
- Bellmann, R.; Smuszkiewicz, P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017, 45, 737–779. [Google Scholar] [CrossRef] [PubMed]
- Hope, W.W.; Drusano, G.L. Antifungal pharmacokinetics and pharmacodynamics: Bridging from the bench to bedside. Clin. Microbiol. Infect. 2009, 15, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, A. Antifungal therapeutic drug monitoring: Focus on drugs without a clear recommendation. Clin. Microbiol. Infect. 2020, 26, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Laniado-Laborín, R.; Cabrales-Vargas, M.N. Amphotericin B: Side effects and toxicity. Rev. Iberoam. Micol. 2009, 26, 223–227. [Google Scholar] [CrossRef]
- Stone, N.R.; Bicanic, T.; Salim, R.; Hope, W. Liposomal Amphotericin B (AmBisome(®)): A Review of the Pharmacokinetics, Pharmacodynamics, Clinical Experience and Future Directions. Drugs 2016, 76, 485–500. [Google Scholar] [CrossRef]
- Bekersky, I.; Fielding, R.M.; Dressler, D.E.; Lee, J.W.; Buell, D.N.; Walsh, T.J. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob. Agents Chemother. 2002, 46, 828–833. [Google Scholar] [CrossRef]
- Falci, D.R.; Pasqualotto, A.C. Profile of isavuconazole and its potential in the treatment of severe invasive fungal infections. Infect. Drug Resist. 2013, 6, 163–174. [Google Scholar] [CrossRef]
- Heykants, J.; Van Peer, A.; Van de Velde, V.; Van Rooy, P.; Meuldermans, W.; Lavrijsen, K.; Woestenborghs, R.; Van Cutsem, J.; Cauwenbergh, G. The clinical pharmacokinetics of itraconazole: An overview. Mycoses 1989, 32 (Suppl. 1), 67–87. [Google Scholar] [CrossRef]
- Lewis, J.S., II; Wiederhold, N.P.; Hakki, M.; Thompson, G.R., III. New Perspectives on Antimicrobial Agents: Isavuconazole. Antimicrob. Agents Chemother. 2022, 66, e0017722. [Google Scholar] [CrossRef]
- Brüggemann, R.J.; Alffenaar, J.W.; Blijlevens, N.M.; Billaud, E.M.; Kosterink, J.G.; Verweij, P.E.; Burger, D.M. Clinical relevance of the pharmacokinetic interactions of azole antifungal drugs with other coadministered agents. Clin. Infect. Dis. 2009, 48, 1441–1458. [Google Scholar] [CrossRef]
- Lee, S.; Kim, B.H.; Nam, W.S.; Yoon, S.H.; Cho, J.Y.; Shin, S.G.; Jang, I.J.; Yu, K.S. Effect of CYP2C19 polymorphism on the pharmacokinetics of voriconazole after single and multiple doses in healthy volunteers. J. Clin. Pharmacol. 2012, 52, 195–203. [Google Scholar] [CrossRef]
- Lipp, H.P. Clinical pharmacodynamics and pharmacokinetics of the antifungal extended-spectrum triazole posaconazole: An overview. Br. J. Clin. Pharmacol. 2010, 70, 471–480. [Google Scholar] [CrossRef]
- Perlin, D.S. Current perspectives on echinocandin class drugs. Future Microbiol. 2011, 6, 441–457. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Lewis, J.S., II. The echinocandin micafungin: A review of the pharmacology, spectrum of activity, clinical efficacy and safety. Expert Opin. Pharmacother. 2007, 8, 1155–1166. [Google Scholar] [CrossRef]
- Gigliotti, F.; Shenep, J.L.; Lott, L.; Thornton, D. Induction of prostaglandin synthesis as the mechanism responsible for the chills and fever produced by infusing amphotericin B. J. Infect. Dis. 1987, 156, 784–789. [Google Scholar] [CrossRef]
- Goodwin, S.D.; Cleary, J.D.; Walawander, C.A.; Taylor, J.W.; Grasela, T.H., Jr. Pretreatment regimens for adverse events related to infusion of amphotericin B. Clin. Infect. Dis. 1995, 20, 755–761. [Google Scholar] [CrossRef]
- Paterson, D.L.; David, K.; Mrsic, M.; Cetkovsky, P.; Weng, X.H.; Sterba, J.; Krivan, G.; Boskovic, D.; Lu, M.; Zhu, L.P.; et al. Pre-medication practices and incidence of infusion-related reactions in patients receiving AMPHOTEC: Data from the Patient Registry of Amphotericin B Cholesteryl Sulfate Complex for Injection Clinical Tolerability (PRoACT) registry. J. Antimicrob. Chemother. 2008, 62, 1392–1400. [Google Scholar] [CrossRef]
- Sabra, R.; Branch, R.A. Amphotericin B nephrotoxicity. Drug Saf. 1990, 5, 94–108. [Google Scholar] [CrossRef]
- Adler-Moore, J.; Lewis, R.E.; Brüggemann, R.J.M.; Rijnders, B.J.A.; Groll, A.H.; Walsh, T.J. Preclinical Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Antifungal Activity of Liposomal Amphotericin, B. Clin. Infect. Dis. 2019, 68, S244–S259. [Google Scholar] [CrossRef]
- Rosner, M.H. Polyuria in a Patient with Aspergillus Infection. Clin. J. Am. Soc. Nephrol. 2017, 12, 1343–1346. [Google Scholar] [CrossRef]
- Vallés, P.G.; Batlle, D. Hypokalemic Distal Renal Tubular Acidosis. Adv. Chronic Kidney Dis. 2018, 25, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Benitez, L.L.; Carver, P.L. Adverse Effects Associated with Long-Term Administration of Azole Antifungal Agents. Drugs 2019, 79, 833–853. [Google Scholar] [CrossRef]
- Tan, K.; Brayshaw, N.; Tomaszewski, K.; Troke, P.; Wood, N. Investigation of the potential relationships between plasma voriconazole concentrations and visual adverse events or liver function test abnormalities. J. Clin. Pharmacol. 2006, 46, 235–243. [Google Scholar] [CrossRef]
- Jin, H.; Wang, T.; Falcione, B.A.; Olsen, K.M.; Chen, K.; Tang, H.; Hui, J.; Zhai, S. Trough concentration of voriconazole and its relationship with efficacy and safety: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2016, 71, 1772–1785. [Google Scholar] [CrossRef]
- Saad, A.H.; DePestel, D.D.; Carver, P.L. Factors influencing the magnitude and clinical significance of drug interactions between azole antifungals and select immunosuppressants. Pharmacotherapy 2006, 26, 1730–1744. [Google Scholar] [CrossRef]
- Balcerek, M.I.; Stewart, A.G.; Chapman, P.; Lazarus, S. Reducing the off-target endocrinologic adverse effects of azole antifungals-can it be done? Int. J. Antimicrob. Agents 2022, 59, 106587. [Google Scholar] [CrossRef]
- Sung, D.J.; Kim, J.G.; Won, K.J.; Kim, B.; Shin, H.C.; Park, J.Y.; Bae, Y.M. Blockade of K+ and Ca2+ channels by azole antifungal agents in neonatal rat ventricular myocytes. Biol. Pharm. Bull. 2012, 35, 1469–1475. [Google Scholar] [CrossRef]
- Owens, R.C., Jr.; Nolin, T.D. Antimicrobial-associated QT interval prolongation: Pointes of interest. Clin. Infect. Dis. 2006, 43, 1603–1611. [Google Scholar] [CrossRef]
- Keirns, J.; Desai, A.; Kowalski, D.; Lademacher, C.; Mujais, S.; Parker, B.; Schneidkraut, M.J.; Townsend, R.; Wojtkowski, T.; Yamazaki, T.; et al. QT Interval Shortening with Isavuconazole: In Vitro and In Vivo Effects on Cardiac Repolarization. Clin. Pharmacol. Ther. 2017, 101, 782–790. [Google Scholar] [CrossRef]
- Lewis, R.E. Current concepts in antifungal pharmacology. Mayo Clin. Proc. 2011, 86, 805–817. [Google Scholar] [CrossRef]
- Yang, L.; Wang, C.; Zhang, Y.; Wang, Q.; Qiu, Y.; Li, S.; Yang, B.; Du, Q.; Chen, J.; Teng, M.; et al. Central Nervous System Toxicity of Voriconazole: Risk Factors and Threshold—A Retrospective Cohort Study. Infect. Drug Resist. 2022, 15, 7475–7484. [Google Scholar] [CrossRef]
- Aguilar-Zapata, D.; Petraitiene, R.; Petraitis, V. Echinocandins: The Expanding Antifungal Armamentarium. Clin. Infect. Dis. 2015, 61 (Suppl. 6), S604–S611. [Google Scholar] [CrossRef] [PubMed]
- Grover, N.D. Echinocandins: A ray of hope in antifungal drug therapy. Indian J. Pharmacol. 2010, 42, 9–11. [Google Scholar] [CrossRef]
- Denning, D.W. Echinocandin antifungal drugs. Lancet 2003, 362, 1142–1151. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Tragiannidis, A.; Munchen, S.; Groll, A.H. Clinical hepatotoxicity associated with antifungal agents. Expert Opin. Drug Saf. 2017, 16, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Song, J.C.; Deresinski, S. Hepatotoxicity of antifungal agents. Curr. Opin. Investig. Drugs 2005, 6, 170–177. [Google Scholar] [PubMed]
- Song, Y.; Li, C.; Liu, G.; Liu, R.; Chen, Y.; Li, W.; Cao, Z.; Zhao, B.; Lu, C.; Liu, Y. Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes. Clin. Pharmacokinet. 2021, 60, 585–601. [Google Scholar] [CrossRef]
- Zhang, H.F.; Wang, H.H.; Gao, N.; Wei, J.Y.; Tian, X.; Zhao, Y.; Fang, Y.; Zhou, J.; Wen, Q.; Gao, J.; et al. Physiological Content and Intrinsic Activities of 10 Cytochrome P450 Isoforms in Human Normal Liver Microsomes. J. Pharmacol. Exp. Ther. 2016, 358, 83–93. [Google Scholar] [CrossRef]
- Paine, M.F.; Hart, H.L.; Ludington, S.S.; Haining, R.L.; Rettie, A.E.; Zeldin, D.C. The human intestinal cytochrome P450 “pie”. Drug Metab. Dispos. 2006, 34, 880–886. [Google Scholar] [CrossRef]
- König, J.; Müller, F.; Fromm, M.F. Transporters and drug-drug interactions: Important determinants of drug disposition and effects. Pharmacol. Rev. 2013, 65, 944–966. [Google Scholar] [CrossRef]
- Bruckmueller, H.; Cascorbi, I. Drug-Drug-Gene Interactions: A Call for Clinical Consideration. Clin. Pharmacol. Ther. 2021, 110, 549–551. [Google Scholar] [CrossRef] [PubMed]
- Malki, M.A.; Pearson, E.R. Drug–drug–gene interactions and adverse drug reactions. Pharmacogenomics J. 2020, 20, 355–366. [Google Scholar] [CrossRef]
- Brunet, M.; van Gelder, T.; Åsberg, A.; Haufroid, V.; Hesselink, D.A.; Langman, L.; Lemaitre, F.; Marquet, P.; Seger, C.; Shipkova, M.; et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther. Drug Monit. 2019, 41, 261–307. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, A.; Ott, C.; Bruckner, T.; Foerster, K.I.; Burhenne, J.; Weiss, J.; Zorn, M.; Haefeli, W.E.; Czock, D. Prolonged-Release Tacrolimus Is Less Susceptible to Interaction with the Strong CYP3A Inhibitor Voriconazole in Healthy Volunteers. Clin. Pharmacol Ther. 2019, 106, 1290–1298. [Google Scholar] [CrossRef]
- Venkataramanan, R.; Zang, S.; Gayowski, T.; Singh, N. Voriconazole inhibition of the metabolism of tacrolimus in a liver transplant recipient and in human liver microsomes. Antimicrob. Agents Chemother. 2002, 46, 3091–3093. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, Y.; Zhang, J.; Xiang, H.; Mei, H.; Liu, L.; Tong, L.; Zeng, F.; Huang, Y.; Zhou, H.; et al. The importance of CYP2C19 genotype in tacrolimus dose optimization when concomitant with voriconazole in heart transplant recipients. Br. J. Clin. Pharmacol. 2022, 88, 4515–4525. [Google Scholar] [CrossRef] [PubMed]
- Imamura, C.K.; Furihata, K.; Okamoto, S.; Tanigawara, Y. Impact of cytochrome P450 2C19 polymorphisms on the pharmacokinetics of tacrolimus when coadministered with voriconazole. J. Clin. Pharmacol. 2016, 56, 408–413. [Google Scholar] [CrossRef]
- Lewis, R.; Niazi-Ali, S.; McIvor, A.; Kanj, S.S.; Maertens, J.; Bassetti, M.; Levine, D.; Groll, A.H.; Denning, D.W. Triazole antifungal drug interactions-practical considerations for excellent prescribing. J. Antimicrob. Chemother. 2024, 79, 1203–1217. [Google Scholar] [CrossRef]
- Dodds-Ashley, E. Management of drug and food interactions with azole antifungal agents in transplant recipients. Pharmacotherapy 2010, 30, 842–854. [Google Scholar] [CrossRef] [PubMed]
- Isoherranen, N.; Kunze, K.L.; Allen, K.E.; Nelson, W.L.; Thummel, K.E. Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab. Dispos. 2004, 32, 1121–1131. [Google Scholar] [CrossRef]
- Liu, L.; Bello, A.; Dresser, M.J.; Heald, D.; Komjathy, S.F.; O’Mara, E.; Rogge, M.; Stoch, S.A.; Robertson, S.M. Best practices for the use of itraconazole as a replacement for ketoconazole in drug-drug interaction studies. J. Clin. Pharmacol. 2016, 56, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Ino, K.; Ikejiri, M.; Tawara, I.; Iwamoto, T. Dual Inhibition of CYP3A4 by Voriconazole and Clarithromycin Influences Tacrolimus Pharmacokinetics: Case Series Study. Eur. J. Drug Metab. Pharmacokinet. 2022, 47, 889–893. [Google Scholar] [CrossRef]
- Nivoix, Y.; Levêque, D.; Herbrecht, R.; Koffel, J.C.; Beretz, L.; Ubeaud-Sequier, G. The enzymatic basis of drug-drug interactions with systemic triazole antifungals. Clin. Pharmacokinet. 2008, 47, 779–792. [Google Scholar] [CrossRef]
- Smith, H.S. Opioid metabolism. Mayo Clin. Proc. 2009, 84, 613–624. [Google Scholar] [CrossRef]
- Kinnunen, M.; Piirainen, P.; Kokki, H.; Lammi, P.; Kokki, M. Updated Clinical Pharmacokinetics and Pharmacodynamics of Oxycodone. Clin. Pharmacokinet. 2019, 58, 705–725. [Google Scholar] [CrossRef]
- Watanabe, M.; Homma, M.; Momo, K.; Okoshi, Y.; Wada, T.; Hara, A.; Chiba, S.; Kohda, Y. Effects of voriconazole co-administration on oxycodone-induced adverse events: A case in the retrospective survey. Eur. J. Clin. Pharmacol. 2011, 67, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Saari, T.I.; Laine, K.; Neuvonen, M.; Neuvonen, P.J.; Olkkola, K.T. Effect of voriconazole and fluconazole on the pharmacokinetics of intravenous fentanyl. Eur. J. Clin. Pharmacol. 2008, 64, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Wittkowsky, A.K. Warfarin and other coumarin derivatives: Pharmacokinetics, pharmacodynamics, and drug interactions. Semin. Vasc. Med. 2003, 3, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Breckenridge, A.; Orme, M.; Wesseling, H.; Lewis, R.J.; Gibbons, R. Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man. Clin. Pharmacol. Ther. 1974, 15, 424–430. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, R.A. Studies on the optical enantiomorphs of warfarin in man. Clin. Pharmacol. Ther. 1974, 16, 348–354. [Google Scholar] [CrossRef]
- Kaminsky, L.S.; Zhang, Z.Y. Human P450 metabolism of warfarin. Pharmacol. Ther. 1997, 73, 67–74. [Google Scholar] [CrossRef]
- Yamazaki, H.; Shimada, T. Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Biochem. Pharmacol. 1997, 54, 1195–1203. [Google Scholar] [CrossRef]
- Schelleman, H.; Bilker, W.B.; Brensinger, C.M.; Han, X.; Kimmel, S.E.; Hennessy, S. Warfarin with fluoroquinolones, sulfonamides, or azole antifungals: Interactions and the risk of hospitalization for gastrointestinal bleeding. Clin. Pharmacol. Ther. 2008, 84, 581–588. [Google Scholar] [CrossRef]
- Black, D.J.; Kunze, K.L.; Wienkers, L.C.; Gidal, B.E.; Seaton, T.L.; McDonnell, N.D.; Evans, J.S.; Bauwens, J.E.; Trager, W.F. Warfarin-fluconazole. II. A metabolically based drug interaction: In vivo studies. Drug Metab. Dispos. 1996, 24, 422–428. [Google Scholar] [CrossRef]
- Purkins, L.; Wood, N.; Kleinermans, D.; Nichols, D. Voriconazole potentiates warfarin-induced prothrombin time prolongation. Br. J. Clin. Pharmacol. 2003, 56 (Suppl. 1), 24–29. [Google Scholar] [CrossRef]
- Pemberton, M.N.; Oliver, R.J.; Theaker, E.D. Miconazole oral gel and drug interactions. Br. Dent. J. 2004, 196, 529–531. [Google Scholar] [CrossRef]
- Naberhaus, T.; Jones, M.J.; Burns, A.; Raney, E.C. Topical Miconazole Cream and Warfarin Interaction: A Case Report. J. Pharm. Technol. 2022, 38, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Ezsiás, A.; Wojnarowska, F.; Juniper, R. Topical use of miconazole antifungal oral gel on warfarinized patients: A word of caution. Dent. Update 1997, 24, 421–422. [Google Scholar]
- Hindley, B.; Lip, G.Y.H.; McCloskey, A.P.; Penson, P.E. Pharmacokinetics and pharmacodynamics of direct oral anticoagulants. Expert Opin. Drug Metab. Toxicol. 2023, 19, 911–923. [Google Scholar] [CrossRef]
- Foerster, K.I.; Hermann, S.; Mikus, G.; Haefeli, W.E. Drug-Drug Interactions with Direct Oral Anticoagulants. Clin. Pharmacokinet. 2020, 59, 967–980. [Google Scholar] [CrossRef]
- Brings, A.; Lehmann, M.L.; Foerster, K.I.; Burhenne, J.; Weiss, J.; Haefeli, W.E.; Czock, D. Perpetrator effects of ciclosporin (P-glycoprotein inhibitor) and its combination with fluconazole (CYP3A inhibitor) on the pharmacokinetics of rivaroxaban in healthy volunteers. Br. J. Clin. Pharmacol. 2019, 85, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
- Terrier, J.; Gaspar, F.; Fontana, P.; Youssef, D.; Reny, J.L.; Csajka, C.; Samer, C.F. Drug-Drug Interactions with Direct Oral Anticoagulants: Practical Recommendations for Clinicians. Am. J. Med. 2021, 134, 939–942. [Google Scholar] [CrossRef]
- Mar, P.L.; Gopinathannair, R.; Gengler, B.E.; Chung, M.K.; Perez, A.; Dukes, J.; Ezekowitz, M.D.; Lakkireddy, D.; Lip, G.Y.H.; Miletello, M.; et al. Drug Interactions Affecting Oral Anticoagulant Use. Circ. Arrhythm. Electrophysiol. 2022, 15, e007956. [Google Scholar] [CrossRef]
- Mullangi, R.; Srinivas, N.R. Clopidogrel: Review of bioanalytical methods, pharmacokinetics/pharmacodynamics, and update on recent trends in drug-drug interaction studies. Biomed. Chromatogr. 2009, 23, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Rehmel, J.L.; Eckstein, J.A.; Farid, N.A.; Heim, J.B.; Kasper, S.C.; Kurihara, A.; Wrighton, S.A.; Ring, B.J. Interactions of two major metabolites of prasugrel, a thienopyridine antiplatelet agent, with the cytochromes P450. Drug Metab. Dispos. 2006, 34, 600–607. [Google Scholar] [CrossRef]
- Farid, N.A.; Payne, C.D.; Small, D.S.; Winters, K.J.; Ernest, C.S., II; Brandt, J.T.; Darstein, C.; Jakubowski, J.A.; Salazar, D.E. Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently. Clin. Pharmacol. Ther. 2007, 81, 735–741. [Google Scholar] [CrossRef]
- Teng, R.; Butler, K. Effect of the CYP3A inhibitors, diltiazem and ketoconazole, on ticagrelor pharmacokinetics in healthy volunteers. J. Drug Assess. 2013, 2, 30–39. [Google Scholar] [CrossRef]
- Iisalo, E. Clinical pharmacokinetics of digoxin. Clin. Pharmacokinet. 1977, 2, 1–16. [Google Scholar] [CrossRef]
- Jalava, K.M.; Partanen, J.; Neuvonen, P.J. Itraconazole decreases renal clearance of digoxin. Ther. Drug Monit. 1997, 19, 609–613. [Google Scholar] [CrossRef]
- Mathis, A.S.; Friedman, G.S. Coadministration of digoxin with itraconazole in renal transplant recipients. Am. J. Kidney Dis. 2001, 37, E18. [Google Scholar] [CrossRef]
- Shumaker, A.C.; Bullard, H.M.; Churpek, J.; Knoebel, R.W. Posaconazole-digoxin drug-drug interaction mediated by inhibition of P-glycoprotein. J. Oncol. Pharm. Pract. 2019, 25, 1758–1761. [Google Scholar] [CrossRef]
- Hirai, T.; Kasai, H.; Shiga, T. Population pharmacokinetic analysis of the interaction of digoxin with N-desethylamiodarone in patients with atrial fibrillation and heart failure. Br. J. Clin. Pharmacol. 2025, 91, 2827–2835. [Google Scholar] [CrossRef] [PubMed]
- McGraw, J.; Cherney, M.; Bichler, K.; Gerhardt, A.; Nauman, M. The relative role of CYP3A4 and CYP3A5 in eplerenone metabolism. Toxicol. Lett. 2019, 315, 9–13. [Google Scholar] [CrossRef]
- Yamada, M.; Mendell, J.; Takakusa, H.; Shimizu, T.; Ando, O. Pharmacokinetics, Metabolism, and Excretion of [(14)C] Esaxerenone, a Novel Mineralocorticoid Receptor Blocker in Humans. Drug Metab. Dispos. 2019, 47, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Gerisch, M.; Heinig, R.; Engelen, A.; Lang, D.; Kolkhof, P.; Radtke, M.; Platzek, J.; Lovis, K.; Rohde, G.; Schwarz, T. Biotransformation of Finerenone, a Novel Nonsteroidal Mineralocorticoid Receptor Antagonist, in Dogs, Rats, and Humans, In Vivo and In Vitro. Drug Metab. Dispos. 2018, 46, 1546–1555. [Google Scholar] [CrossRef]
- Hirai, T.; Ueda, S.; Ogura, T.; Katayama, K.; Dohi, K.; Hosohata, K.; Aoyama, T.; Matsumoto, Y.; Iwamoto, T. Hyperkalemia by eplerenone or esaxerenone in the presence or absence of clarithromycin in hypertensive patients: A retrospective observational cohort study. J. Hypertens. 2023, 41, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Schachter, M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: An update. Fundam. Clin. Pharmacol. 2005, 19, 117–125. [Google Scholar] [CrossRef]
- Zheng, E.; Madura, P.; Grandos, J.; Broncel, M.; Pawlos, A.; Woźniak, E.; Gorzelak-Pabiś, P. When the same treatment has different response: The role of pharmacogenomics in statin therapy. Biomed. Pharmacother. 2024, 170, 115966. [Google Scholar] [CrossRef] [PubMed]
- Neuvonen, P.J.; Niemi, M.; Backman, J.T. Drug interactions with lipid-lowering drugs: Mechanisms and clinical relevance. Clin. Pharmacol. Ther. 2006, 80, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Neuvonen, P.J.; Kantola, T.; Kivistö, K.T. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin. Pharmacol. Ther. 1998, 63, 332–341. [Google Scholar] [CrossRef]
- Hesselink, D.A.; van Gelder, T.; van Schaik, R.H. The pharmacogenetics of calcineurin inhibitors: One step closer toward individualized immunosuppression? Pharmacogenomics 2005, 6, 323–337. [Google Scholar] [CrossRef]
- Knops, N.; Levtchenko, E.; van den Heuvel, B.; Kuypers, D. From gut to kidney: Transporting and metabolizing calcineurin-inhibitors in solid organ transplantation. Int. J. Pharm. 2013, 452, 14–35. [Google Scholar] [CrossRef]
- Udomkarnjananun, S.; Francke, M.I.; De Winter, B.C.M.; Mulder, M.B.; Baan, C.C.; Metselaar, H.J.; den Hoed, C.M.; Hesselink, D.A. Therapeutic drug monitoring of immunosuppressive drugs in hepatology and gastroenterology. Best Pract. Res. Clin. Gastroenterol. 2021, 54-55, 101756. [Google Scholar] [CrossRef]
- Canafax, D.M.; Graves, N.M.; Hilligoss, D.M.; Carleton, B.C.; Gardner, M.J.; Matas, A.J. Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 1991, 51, 1014–1018. [Google Scholar] [CrossRef]
- López-Gil, J.A. Fluconazole-cyclosporine interaction: A dose-dependent effect? Ann. Pharmacother. 1993, 27, 427–430. [Google Scholar] [CrossRef]
- Tian, Y.; Song, Y.; Qiao, Y.; Song, L.; Zhao, Q.; Yin, D.; Wang, S.; Hou, R. Effects of Triazole Antifungal Agents on the Plasma Concentration and Dosage of Cyclosporin in Patients with Aplastic Anaemia. J. Clin. Pharm. Ther. 2024, 2024, 6850289. [Google Scholar] [CrossRef]
- Kamdem, L.K.; Streit, F.; Zanger, U.M.; Brockmöller, J.; Oellerich, M.; Armstrong, V.W.; Wojnowski, L. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin. Chem. 2005, 51, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.M.; Lewis, J.S., II; Le, H.; Bubalo, J.S. Comparative effects of fluconazole, posaconazole, and isavuconazole upon tacrolimus and cyclosporine serum concentrations. J. Oncol. Pharm. Pract. 2022, 28, 1357–1362. [Google Scholar] [CrossRef]
- Vanhove, T.; Bouwsma, H.; Hilbrands, L.; Swen, J.J.; Spriet, I.; Annaert, P.; Vanaudenaerde, B.; Verleden, G.; Vos, R.; Kuypers, D.R.J. Determinants of the Magnitude of Interaction Between Tacrolimus and Voriconazole/Posaconazole in Solid Organ Recipients. Am. J. Transpl. 2017, 17, 2372–2380. [Google Scholar] [CrossRef]
- Suetsugu, K.; Ikesue, H.; Miyamoto, T.; Shiratsuchi, M.; Yamamoto-Taguchi, N.; Tsuchiya, Y.; Matsukawa, K.; Uchida, M.; Watanabe, H.; Akashi, K.; et al. Analysis of the variable factors influencing tacrolimus blood concentration during the switch from continuous intravenous infusion to oral administration after allogeneic hematopoietic stem cell transplantation. Int. J. Hematol. 2017, 105, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Lebrun-Vignes, B.; Archer, V.C.; Diquet, B.; Levron, J.C.; Chosidow, O.; Puech, A.J.; Warot, D. Effect of itraconazole on the pharmacokinetics of prednisolone and methylprednisolone and cortisol secretion in healthy subjects. Br. J. Clin. Pharmacol. 2001, 51, 443–450. [Google Scholar] [CrossRef]
- Groll, A.H.; Desai, A.; Han, D.; Howieson, C.; Kato, K.; Akhtar, S.; Kowalski, D.; Lademacher, C.; Lewis, W.; Pearlman, H.; et al. Pharmacokinetic Assessment of Drug-Drug Interactions of Isavuconazole with the Immunosuppressants Cyclosporine, Mycophenolic Acid, Prednisolone, Sirolimus, and Tacrolimus in Healthy Adults. Clin. Pharmacol. Drug Dev. 2017, 6, 76–85. [Google Scholar] [CrossRef]
- Madsen, M.L.; Due, H.; Ejskjær, N.; Jensen, P.; Madsen, J.; Dybkær, K. Aspects of vincristine-induced neuropathy in hematologic malignancies: A systematic review. Cancer Chemother. Pharmacol. 2019, 84, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.J.; Lew, K.; Casciano, C.N.; Clement, R.P.; Johnson, W.W. Interaction of common azole antifungals with P glycoprotein. Antimicrob. Agents Chemother. 2002, 46, 160–165. [Google Scholar] [CrossRef]
- Venkatakrishnan, K.; von Moltke, L.L.; Greenblatt, D.J. Effects of the antifungal agents on oxidative drug metabolism: Clinical relevance. Clin. Pharmacokinet. 2000, 38, 111–180. [Google Scholar] [CrossRef]
- Scripture, C.D.; Figg, W.D. Drug interactions in cancer therapy. Nat. Rev. Cancer 2006, 6, 546–558. [Google Scholar] [CrossRef]
- van Leeuwen, R.W.; van Gelder, T.; Mathijssen, R.H.; Jansman, F.G. Drug-drug interactions with tyrosine-kinase inhibitors: A clinical perspective. Lancet Oncol. 2014, 15, e315-26. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Singh, T.G. Drug induced nephrotoxicity- A mechanistic approach. Mol. Biol. Rep. 2023, 50, 6975–6986. [Google Scholar] [CrossRef] [PubMed]
- Luber, A.D.; Maa, L.; Lam, M.; Guglielmo, B.J. Risk factors for amphotericin B-induced nephrotoxicity. J. Antimicrob. Chemother. 1999, 43, 267–271. [Google Scholar] [CrossRef]
- Takazono, T.; Tashiro, M.; Ota, Y.; Obata, Y.; Wakamura, T.; Miyazaki, T.; Nishino, T.; Izumikawa, K. Factor analysis of acute kidney injury in patients administered liposomal amphotericin B in a real-world clinical setting in Japan. Sci. Rep. 2020, 10, 15033. [Google Scholar] [CrossRef]
- Stanzani, M.; Vianelli, N.; Cavo, M.; Maritati, A.; Morotti, M.; Lewis, R.E. Retrospective Cohort Analysis of Liposomal Amphotericin B Nephrotoxicity in Patients with Hematological Malignancies. Antimicrob. Agents Chemother. 2017, 61, e02651-16. [Google Scholar] [CrossRef]
- Novak, J.E.; Ellison, D.H. Diuretics in States of Volume Overload: Core Curriculum 2022. Am. J. Kidney Dis. 2022, 80, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.B.; Hoenig, M.P. Potassium Homeostasis. Adv. Kidney Dis. Health 2024, 31, 504–513. [Google Scholar] [CrossRef]
- Hirai, T.; Yamaga, R.; Kei, M.; Hosohata, K.; Itoh, T. Geriatric Patients Are at a High Risk of Hypokalemia Associated with Yokukansan Preparation: A Retrospective Cohort Study. Biol. Pharm. Bull. 2020, 43, 1742–1748. [Google Scholar] [CrossRef]
- Veltri, K.T.; Mason, C. Medication-induced hypokalemia. PT 2015, 40, 185–190. [Google Scholar]
- Orofiamma, L.A.; Vural, D.; Antonescu, C.N. Control of cell metabolism by the epidermal growth factor receptor. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119359. [Google Scholar] [CrossRef]
- Hsieh, M.C.; Wu, C.F.; Chen, C.W.; Shi, C.S.; Huang, W.S.; Kuan, F.C. Hypomagnesemia and clinical benefits of anti-EGFR monoclonal antibodies in wild-type KRAS metastatic colorectal cancer: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 2047. [Google Scholar] [CrossRef] [PubMed]
- Workeneh, B.T.; Uppal, N.N.; Jhaveri, K.D.; Rondon-Berrios, H. Hypomagnesemia in the Cancer Patient. Kidney360 2021, 2, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.L.; Kuo, E. Mechanism of hypokalemia in magnesium deficiency. J. Am. Soc. Nephrol. 2007, 18, 2649–2652. [Google Scholar] [CrossRef]
- Rosner, M.H.; Ha, N.; Palmer, B.F.; Perazella, M.A. Acquired Disorders of Hypomagnesemia. Mayo Clin. Proc. 2023, 98, 581–596. [Google Scholar] [CrossRef] [PubMed]
- Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S445–S451. [Google Scholar] [CrossRef]
- Rautemaa, R.; Ramage, G. Oral candidosis—clinical challenges of a biofilm disease. Crit. Rev. Microbiol. 2011, 37, 328–336. [Google Scholar] [CrossRef]
- Akbar, Z.; Aamir, M.; Saleem, Z. Optimizing antifungal therapy: A systematic review of pharmacist interventions, stewardship approaches, and outcomes. Front. Med. 2024, 11, 1489109. [Google Scholar] [CrossRef]


| Drug | Formulation | Route | Dose | Frequency |
|---|---|---|---|---|
| First line (mild) | ||||
| Clotrimazole | Troches | Topical (oral cavity) | 10 mg | 5 times/day |
| Nystatin | Suspension Pastilles | Topical (oral cavity) | 400,000–600,000 U (suspension) 1 pastille (pastilles) | 4 times/day |
| Miconazole | Mucoadhesive buccal tablet | Topical (buccal) | 50 mg | Once daily |
| First line (Moderate to Severe) | ||||
| Fluconazole | Tablet/capsule | Oral | 100–200 mg (Day 1: 200 mg) | Once daily |
| Alternative option | ||||
| Itraconazole | Oral solution | Oral | 200 mg | Once daily |
| Posaconazole | Oral suspension | Oral | 400 mg | Twice daily for 3 days, then once daily |
| Voriconazole | Tablet | Oral | 200 mg | Twice daily |
| Drug | Formulation | Route | Dose | Frequency |
|---|---|---|---|---|
| First line | ||||
| Fluconazole | Tablet/capsule, IV solution | Oral/IV | 200–400 mg (Day 1: 400 mg) | Once daily |
| Second line | ||||
| Itraconazole | Oral solution | Oral | 200 mg | Once daily |
| Posaconazole | Oral suspension DR tablet | Oral | 400 mg (suspension) 300 mg (tablet) | Once or twice daily |
| Voriconazole | Tablet, Injection | Oral/IV | 200 mg | Twice daily |
| Micafungin | Injection | IV | 150 mg | Once daily |
| Amphotericin B deoxycholate | Injection | IV | 3 mg/kg | Once daily |
| Liposomal amphotericin B | Injection | IV | 3 mg/kg | Once daily |
| Drug Class | Adverse Events | Comment |
|---|---|---|
| Polyene macrolides (Amphotericin B) | Infusion reaction Nephrotoxicity, hypokalemia, hypomagnesemia | Liposomal formulations reduce toxicity |
| Azoles | Hepatotoxicity Gynecomastia, adrenal suppression QT prolongation (except isavuconazole) | Voriconazole; CNS toxicity and visual disturbance |
| Echinocandins | Infusion reaction Hepatotoxicity | Generally tolerated |
| Fluconazole | Miconazole | Itraconazole | Voriconazole | Posaconazole | Isavuconazole | |
|---|---|---|---|---|---|---|
| Substrate | ||||||
| CYP2C9 | Y | |||||
| CYP2C19 | Y | |||||
| CYP3A4 | Y | Y | Y | |||
| P-gp | Y | |||||
| Inhibitor | ||||||
| CYP2C9 | ++ | ++ | + | |||
| CYP2C19 | +++ | ++ | ||||
| CYP3A4 | ++ | +++ | +++ | +++ | ++ | |
| P-gp | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirai, T.; Nashi, M. Pharmacological Management of Oral and Esophageal Candidiasis: A Clinical Pharmacotherapy Perspective. J. Clin. Med. 2025, 14, 7537. https://doi.org/10.3390/jcm14217537
Hirai T, Nashi M. Pharmacological Management of Oral and Esophageal Candidiasis: A Clinical Pharmacotherapy Perspective. Journal of Clinical Medicine. 2025; 14(21):7537. https://doi.org/10.3390/jcm14217537
Chicago/Turabian StyleHirai, Toshinori, and Masanori Nashi. 2025. "Pharmacological Management of Oral and Esophageal Candidiasis: A Clinical Pharmacotherapy Perspective" Journal of Clinical Medicine 14, no. 21: 7537. https://doi.org/10.3390/jcm14217537
APA StyleHirai, T., & Nashi, M. (2025). Pharmacological Management of Oral and Esophageal Candidiasis: A Clinical Pharmacotherapy Perspective. Journal of Clinical Medicine, 14(21), 7537. https://doi.org/10.3390/jcm14217537

