Regional Anesthesia: A Narrative Review of Impact on Oxidative Stress Biomarkers
Abstract
1. Introduction
2. Materials and Methods
- 1.
- In the study, patients were undergoing surgical procedures (general surgery, orthopedic, obstetric/gynecologic), both adults and children. In addition to clinical studies in adults and children, relevant animal studies were included to broaden the evidence base and provide supplementary mechanistic data for analysis.
- 2.
- The study was based on a comparison of general anesthesia (including inhalation anesthesia, TIVA, or mixed techniques) with regional anesthesia (such as epidural anesthesia, spinal anesthesia, or other regional anesthesia techniques).
- 3.
- At least one biomarker of oxidative stress was evaluated in the study. One of the studies included in this review investigated gene expression profiles related to oxidative stress, focusing on the expression of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPX). Twenty-one research articles comparing general anesthesia and regional anesthesia in the context of their impact on oxidative stress parameters were found. To facilitate comparison and ensure systematic presentation, the results were organized into sections corresponding to surgical disciplines (orthopedics, general surgery, obstetrics/gynecology) and animal models, allowing evaluation of similar patient groups within each category.
3. Biomarkers of Oxidative Stress
3.1. Products of Oxidative Damage
- (a)
- Lipid Peroxidation Products
- (b)
- Protein Oxidation Products
3.2. Indicators of Antioxidant Status
3.3. Global Oxidative Stress Indicators
4. Oxidative Stress Across Surgical Disciplines
4.1. General Surgery
4.2. Orthopedics Surgery
4.3. Pediatric Studies
4.4. Gynecology and Obstetrics
4.5. Animal Studies
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| 8-OHdG | 8-Hydroxy-2′-deoxyguanosine |
| ABTS | 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
| ASA | American Society of Anesthesiologists |
| CAT | Catalase |
| COPD | Chronic Obstructive Pulmonary Disease |
| CRP | C-reactive Protein |
| cTnI | Cardiac Troponin I |
| DNPH | 2,4-Dinitrophenylhydrazine |
| DS | Disulfide |
| EGR1 | Early Growth Response 1 |
| ERCC3 | Excision Repair Cross-Complementation Group 3 |
| FiO2 | Fraction of Inspired Oxygen |
| F2-IsoP/F2-IsoPs | F2-Isoprostanes |
| FNB | Femoral Nerve Block |
| GA | General Anesthesia |
| GC-MS | Gas Chromatography–Mass Spectrometry |
| GPX/GPX1 | Glutathione Peroxidase/Glutathione Peroxidase 1 |
| GR | Glutathione Reductase |
| GSH | Reduced Glutathione |
| GSSG | Glutathione Disulfide |
| H2O2 | Hydrogen Peroxide |
| HSF1 | Heat Shock Factor 1 |
| hs-CRP | High-sensitivity C-reactive Protein |
| IB | Interscalene Block |
| IMA | Ischemia-Modified Albumin |
| IsoF/IsoFs | Isofurans |
| LD | Lactate Dehydrogenase |
| MDA | Malondialdehyde |
| NADPH | Nicotinamide Adenine Dinucleotide Phosphate (reduced form) |
| NO• | Nitric Oxide |
| NO2− | Nitrite |
| NT | Native Thiol |
| ONOO− | Peroxynitrite |
| ORIF | Open Reduction and Internal Fixation |
| OSI | Oxidative Stress Index |
| O2•− | Superoxide Anion |
| PONV | Postoperative Nausea and Vomiting |
| QoR-15C | Quality of Recovery–15 Questionnaire (Chinese version) |
| RA | Regional Anesthesia |
| RNB | Regional Nerve Block |
| RNS | Reactive Nitrogen Species |
| ROS | Reactive Oxygen Species |
| RSB | Rectus Sheath Block |
| SA | Spinal Anesthesia |
| SOD/SOD1 | Superoxide Dismutase/Superoxide Dismutase 1 |
| SS | Disulfide |
| TAC | Total Antioxidant Capacity |
| TAS | Total Antioxidant Status |
| TIVA | Total Intravenous Anesthesia |
| TNB | 5-thio-2-nitrobenzoic acid |
| TOL | Total Oxidant Level |
| TOS | Total Oxidant Status |
| TT | Total Thiol |
| VAS | Visual Analogue Scale |
| XRCC1 | X-ray Repair Cross-Complementing Protein 1 |
| XO | Xanthine Oxidase |
References
- Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal. 2006, 8, 1865–1879. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, A.; Miranda-Díaz, A.G.; Cardona-Muñoz, E.G. The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. Oxidative Med. Cell. Longev. 2020, 2020, 2082145. [Google Scholar] [CrossRef]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef] [PubMed]
- Braz, M.G.; Braz, L.G.; Freire, C.M.M.; Lucio, L.M.C.; Braz, J.R.C.; Tang, G.; Salvadori, D.M.F.; Yeum, K.J. Isoflurane and Propofol Contribute to Increasing the Antioxidant Status of Patients During Minor Elective Surgery: A Randomized Clinical Study. Medicine 2015, 94, e1266. [Google Scholar] [CrossRef] [PubMed]
- Kundović, S.A.; Rašić, D.; Popović, L.; Peraica, M.; Črnjar, K. Oxidative stress under general intravenous and inhalation anaesthesia. Arch. Ind. Hyg. Toxicol. 2020, 71, 169–177. [Google Scholar] [CrossRef]
- Abilés, J.; de la Cruz, A.P.; Castaño, J.; Rodríguez-Elvira, M.; Aguayo, E.; Moreno-Torres, R.; Llopis, J.; Aranda, P.; Argüelles, S.; Ayala, A.; et al. Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: A cohort study. Crit. Care 2006, 10, R146. [Google Scholar] [CrossRef]
- Senoner, T.; Velik-Salchner, C.; Luckner, G.; Tauber, H. Anesthesia-Induced Oxidative Stress: Are There Differences between Intravenous and Inhaled Anesthetics? Oxidative Med. Cell. Longev. 2021, 2021, 8782387. [Google Scholar] [CrossRef]
- Bedirli, N.; Akyürek, N.; Kurtipek, O.; Kavutcu, M.; Kartal, S.; Bayraktar, A.C. Thoracic epidural bupivacaine attenuates inflammatory response, intestinal lipid peroxidation, oxidative injury, and mucosal apoptosis induced by mesenteric ischemia/reperfusion. Anesth. Analg. 2011, 113, 1226–1232. [Google Scholar] [CrossRef]
- Derindağ, G.; Akgül, H.M.; Kızıltunç, A.; Özkan, H.; Kızıltunç Özmen, H.; Akgül, N. Evaluation of saliva glutathione, glutathione peroxidase, and malondialdehyde levels in head-neck radiotherapy patients. Turk. J. Med Sci. 2021, 51, 644–649. [Google Scholar] [CrossRef]
- Jhang, J.F.; Yu, W.R.; Huang, W.T.; Kuo, H.C. Combination of urinary biomarkers and machine-learning models provided a higher predictive accuracy to predict long-term treatment outcomes of patients with interstitial cystitis/bladder pain syndrome. World J. Urol. 2024, 42, 173. [Google Scholar] [CrossRef]
- Mori, T.A.; Croft, K.D.; Puddey, I.B.; Beilin, L.J. An improved method for the measurement of urinary and plasma F2-isoprostanes using gas chromatography-mass spectrometry. Anal. Biochem. 1999, 268, 117–125. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G.; Ahn, B.W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar] [CrossRef]
- Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 2003, 329, 23–38. [Google Scholar] [CrossRef]
- Poimenova, I.A.; Sozarukova, M.M.; Ratova, D.V.; Nikitina, V.N.; Khabibullin, V.R.; Mikheev, I.V.; Proskurnina, E.V.; Proskurnin, M.A. Analytical Methods for Assessing Thiol Antioxidants in Biological Fluids: A Review. Molecules 2024, 29, 4433. [Google Scholar] [CrossRef]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- De Cassai, A.; Sella, N.; Geraldini, F.; Tulgar, S.; Ahiskalioglu, A.; Dost, B.; Manfrin, S.; Karapinar, Y.E.; Paganini, G.; Beldagli, M.; et al. Single-shot regional anesthesia for laparoscopic cholecystectomies: A systematic review and network meta-analysis. Korean J. Anesthesiol. 2023, 76, 34–46. [Google Scholar] [CrossRef]
- Baloyiannis, I.; Perivoliotis, K.; Sarakatsianou, C.; Tzovaras, G. Laparoscopic total extraperitoneal hernia repair under regional anesthesia: A systematic review of the literature. Surg. Endosc. 2018, 32, 2184–2192. [Google Scholar] [CrossRef]
- Purdy, M.; Kokki, M.; Anttila, M.; Aspinen, S.; Juvonen, P.; Selander, T.; Kokki, H.; Pulkki, K.; Eskelinen, M. Does Post-Surgery Placement of Rectus Sheath Block Analgesia Alter the Oxidative Stress Biomarker 8-OHdG Concentrations: A Randomised Trial of Patients with Cancer and Benign Disease. Cancer Genom. Proteom. 2016, 13, 239–244. [Google Scholar]
- Purdy, M.; Kärkkäinen, J.; Kokki, M.; Anttila, M.; Aspinen, S.; Juvonen, P.; Kokki, H.; Pulkki, K.; Rantanen, T.; Eskelinen, M. Does Rectus Sheath Block Analgesia Alter Levels of the Oxidative Stress Biomarker Glutathione Peroxidase: A Randomised Trial of Patients with Cancer and Benign Disease. Anticancer Res. 2017, 37, 897–902. [Google Scholar] [CrossRef]
- Kärkkäinen, J.; Selander, T.; Purdy, M.; Juvonen, P.; Eskelinen, M. Patients with Increased Levels of the Oxidative Stress Biomarker SOD1 Appear to Have Diminished Postoperative Pain After Midline Laparotomy: A Randomised Trial with Special Reference to Postoperative Pain Score (NRS). Anticancer. Res. 2018, 38, 1003–1008. [Google Scholar] [CrossRef]
- Çelik, F.; Dağlı, R.; İlanbey, B. Comparison of the effects of Anesthesia Methods on Dynamic Thiol/Disulfide Homeostasis in Patients with Chronic Obstructive Pulmonary Disease Under Surgical Stress. Ahi Evran Med. J. 2024, 8, 104–110. [Google Scholar] [CrossRef]
- Shin, S.; Bai, S.J.; Rha, K.H.; So, Y.; Oh, Y.J. The effects of combined epidural and general anesthesia on the autonomic nervous system and bioavailability of nitric oxide in patients undergoing laparoscopic pelvic surgery. Surg. Endosc. 2013, 27, 918–926. [Google Scholar] [CrossRef]
- Greimel, F.; Maderbacher, G.; Baier, C.; Keshmiri, A.; Schwarz, T.; Zeman, F.; Meissner, W.; Grifka, J.; Benditz, A. Multicenter cohort-study of 15326 cases analyzing patient satisfaction and perioperative pain management: General, regional and combination anesthesia in knee arthroplasty. Sci. Rep. 2018, 8, 3723. [Google Scholar] [CrossRef]
- Koşucu, M.; Coşkun, I.; Eroglu, A.; Kutanis, D.; Menteşe, A.; Karahan, S.C.; Baki, E.; Kerimoğlu, S.; Topbas, M. The effects of spinal, inhalation, and total intravenous anesthetic techniques on ischemia-reperfusion injury in arthroscopic knee surgery. BioMed Res. Int. 2014, 2014, 846570. [Google Scholar] [CrossRef]
- Simsek, E.M.; Aksoy, S.M.; Manti, N.; Erel, O.; Neselioglu, S.; Firat, A. The Effect of Spinal and General Anesthesia on Thiol-Disulfide Balance During Ischemia/Reperfusion of the Leg in Patients Undergoing Knee Replacement Surgery. J. Anesth. /Anestezi Derg. 2023, 31, 222–229. [Google Scholar] [CrossRef]
- Mas, E.; Barden, A.E.; Corcoran, T.B.; Phillips, M.; Roberts, L.J., Sr.; Mori, T.A. Effects of spinal or general anesthesia on F2-isoprostanes and isofurans during ischemia/reperfusion of the leg in patients undergoing knee replacement surgery. Free. Radic. Biol. Med. 2011, 50, 1171–1176. [Google Scholar] [CrossRef]
- Peivandi Yazdi, A.; Bameshki, A.; Salehi, M.; Kazemzadeh, G.; Sharifian Razavi, M.; Rahmani, S.; Hashemy, S.I. The Effect of Spinal and General Anesthesia on Serum Lipid Peroxides and Total Antioxidant Capacity in Diabetic Patients with Lower Limb Amputation Surgery. Arch. Bone Jt. Surg. 2018, 6, 312–317. [Google Scholar]
- Aremu, P.A.; Ajayi, A.M.; Ben-Azu, B.; Orewole, O.T.; Umukoro, S. Spinal and general anesthesia produces differential effects on oxidative stress and inflammatory cytokines in orthopedic patients. Drug Metab. Pers. Ther. 2020, 36, 17–23. [Google Scholar] [CrossRef]
- Zhao, L.; Qiu, D. Ultrasound-guided femoral nerve block reduced the incidence of postoperative delirium after total knee arthroplasty: A double-blind, randomized study. Medicine 2024, 103, e40549. [Google Scholar] [CrossRef]
- Alleva, R.; Tognù, A.; Tomasetti, M.; Benassi, M.S.; Pazzaglia, L.; van Oven, H.; Viganò, E.; De Simone, N.; Pacini, I.; Giannone, S.; et al. Effect of different anaesthetic techniques on gene expression profiles in patients who underwent hip arthroplasty. PLoS ONE 2019, 14, e0219113. [Google Scholar] [CrossRef]
- Oksuz, M.; Abitagaoglu, S.; Kaciroglu, A.; Koksal, C.; Ozturk, B.Y.; Erel, O.; Senat, A.; Erdogan Ari, D. Effects of general anaesthesia and ultrasonography-guided interscalene block on pain and oxidative stress in shoulder arthroscopy: A randomised trial. Int. J. Clin. Pract. 2021, 75, e14948. [Google Scholar] [CrossRef]
- Kutanis, D.; Erturk, E.; Akdogan, A.; Besir, A.; Altinbas, A.; Orem, A.; Kara, H.; Yıldız, M.; Mentese, A. Comparison of the effects of axillary brachial plexus block, inhalation anesthesia, and total intravenous anesthesia on tourniquet-induced ischemia-reperfusion injury in upper extremity surgery. Turk. J. Trauma Emerg. Surg. 2024, 30, 510–517. [Google Scholar] [CrossRef]
- Budić, I.; Pavlović, D.; Cvetković, T.; Djordjević, N.; Simić, D.; Milojević, I.; Stojanović, M. The effects of different anesthesia techniques on free radical production after tourniquet-induced ischemia-reperfusion injury at children’s age. Vojnosanit. Pregl. 2010, 67, 659–664. [Google Scholar] [CrossRef]
- Budic, I.; Pavlovic, D.; Kocic, G.; Cvetkovic, T.; Simic, D.; Basic, J.; Zivanovic, D. Biomarkers of oxidative stress and endothelial dysfunction after tourniquet release in children. Physiol. Res. 2011, 60, S137–S145. [Google Scholar] [CrossRef]
- Xia, Q.; Chen, R.; Lin, C.; Zhang, B.; Zhou, L.; Xiong, J.; Lv, Z.; Mao, Y.; Ren, R. Effect of regional nerve block on tourniquet-related injury in pediatric patients undergoing lower limb surgery: A randomized controlled study. Ann. Med. 2025, 57, 2519669. [Google Scholar] [CrossRef]
- Shi, X.; Xu, C.; Wen, Y.; Jiang, M.; Yu, H.; Wang, X.; Yuan, H.; Feng, S. Perinatal outcome of emergency cesarean section under neuraxial anesthesia versus general anesthesia: A seven-year retrospective analysis. BMC Anesthesiol. 2024, 24, 33. [Google Scholar] [CrossRef]
- Sung, T.Y.; Jee, Y.S.; You, H.J.; Cho, C.K. Comparison of the effect of general and spinal anesthesia for elective cesarean section on maternal and fetal outcomes: A retrospective cohort study. Anesth. Pain Med. 2021, 16, 49–55. [Google Scholar] [CrossRef]
- Karabayırlı, S.; Keskin, E.A.; Kaya, A.; Koca, C.; Erel, O.; Demircioglu, R.I.; Muslu, B. Assessment of fetal antioxidant and oxidant status during different anesthesia techniques for elective cesarean sections. J. Res. Med Sci. 2015, 20, 739–744. [Google Scholar] [CrossRef]
- Karam, R.S.; Mohammad, F.K. Changes in blood oxidative stress biomarker and cholinesterase activity after general vs spinal anesthesia for elective cesarean sections. Anaesth. Pain Intensiv. Care 2023, 27, 396–404. [Google Scholar] [CrossRef]
- Akin, F.; Kozanhan, B.; Deniz, C.D.; Sahin, O.; Goktepe, H.; Neselioglu, S.; Erel, O. Effects of the anesthesia technique used during cesarean section on maternal-neonatal thiol disulfide homeostasis. Minerva Anestesiol. 2019, 85, 1175–1183. [Google Scholar] [CrossRef]
- Pusapati, R.N.; Sivashanmugam, T.; Ravishankar, M. Respiratory changes during spinal anaesthesia for gynaecological laparoscopic surgery. J. Anaesthesiol. Clin. Pharmacol. 2010, 26, 475–479. [Google Scholar]
- Kaya Uğur, B.; Pirbudak, L.; Öztürk, E.; Balat, Ö.; Uğur, M.G. Spinal versus general anesthesia in gynecologic laparoscopy: A prospective, randomized study. J. Turk. Soc. Obstet. Gynecol. 2020, 17, 186–195. [Google Scholar] [CrossRef]
- Akkoç, M.F.; Kapı, E.; Bozkurt, M.; Işık, F.B.; Çelik, Y. Comparison of the Effects of Inhalation and Spinal Anesthesia on Microcirculation in Transverse Rectus Abdominis and Gluteus Maximus Muscle-Skin Flap Applications in Experimental Rat Models. Gevher Nesibe J. Med. Health Sci. 2022, 7, 92–101. [Google Scholar] [CrossRef]
- Liu, T.J.; Shih, V.; Yeh, Y.C.; Lee, W.L.; Wang, L.C.; Lai, H.C. Impact of spinal anesthesia on myocardial damage, ultrastructure and cellular mechanisms in rats undergoing thoracic incision surgery. Toxicol. Appl. Pharmacol. 2025, 499, 117349. [Google Scholar] [CrossRef]
- Bruehl, S.; Milne, G.; Schildcrout, J.; Shi, Y.; Anderson, S.; Shinar, A.; Polkowski, G.; Mishra, P.; Billings, F.T. Perioperative oxidative stress predicts subsequent pain-related outcomes in the 6 months after total knee arthroplasty. Pain 2023, 164, 111–118. [Google Scholar] [CrossRef]
- Araki, O.; Matsumura, Y.; Inoue, T.; Karube, Y.; Maeda, S.; Kobayashi, S.; Chida, M. Association of Perioperative Redox Balance on Long-Term Outcome in Patients Undergoing Lung Resection. Ann. Thorac. Cardiovasc. Surg. 2018, 24, 13–18. [Google Scholar] [CrossRef]
- Geng, J.; Qian, J.; Si, W.; Cheng, H.; Ji, F.; Shen, Z. The clinical benefits of perioperative antioxidant vitamin therapy in patients undergoing cardiac surgery: A meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 966–974. [Google Scholar] [CrossRef]
- Zheng, H.; Zheng, H.; Wei, L.; Xue, Z.; Xu, B.; Hu, M.; Yu, J.; Xie, R.; Zhang, L.; Zheng, Z.; et al. Risk stratification models incorporating oxidative stress factors to predict survival and recurrence in patients with gastric cancer after radical gastrectomy: A real-world multicenter study. Eur. J. Surg. Oncol. 2024, 50, 108658. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.L.; Feelisch, M.; Martin, D.S. Perioperative Oxidative Stress: The Unseen Enemy. Anesth. Analg. 2019, 129, 1749–1760. [Google Scholar] [CrossRef]
| Type of Oxidative Stress Biomarker | Name of Oxidative Stress Biomarker | Biological Function | Expected Change Under OS |
|---|---|---|---|
| Lipid Peroxidation Products | MDA | Oxidative damage to cell membranes | ↑ |
| Isofurane (IsoF) | Markers of lipid peroxidation and oxidative stress under normal oxygen levels | ↑ | |
| F2-Isoprostanes | Lipid peroxidation markers formed preferentially under high oxygen tension | ↑ | |
| Protein Oxidation Products | Protein Carbonyls | Markers of oxidative protein damage and irreversible protein oxidation | ↑ |
| Total Thiol (TT) | Reflects overall antioxidant capacity of plasma thiol groups | ↓ | |
| Native Thiol (NT) | Represents reduced thiol groups with direct antioxidant activity | ↓ | |
| Disulfide Levels (DS) | Indicate oxidized form of thiols; increase reflects oxidative stress | ↑ | |
| Thiol-Disulfide Ratio (NT/DS): | Dynamic indicator of redox balance between antioxidants and oxidants | ↓ | |
| Indicators of Antioxidant Status | Catalase (CAT) | Antioxidant enzyme whose activity reflects cellular response to hydrogen peroxide–mediated oxidative stress | ↑ |
| Glutathione Peroxidase (GPX) | Antioxidant enzyme that reduces peroxides; its activity indicates cellular defense against oxidative stress | ↓ | |
| Global oxidative stress indicators | TAC (Total Antioxidant Capacity) | Reflects the overall ability of plasma to neutralize free radicals | ↓ |
| TAS (Total Antioxidant Status) | Cumulative measure of all antioxidants present in plasma | ↓ | |
| TOS (Total Oxidant Status) | Indicates the total concentration of oxidants; elevated levels reflect increased oxidative stress | ↑ | |
| OSI (Oxidative Stress Index) | Ratio of TOS to TAS; represents the balance between oxidants and antioxidants | ↑ |
| Surgery | Type of Anesthesia | Number of Participants | Oxidative Stress Biomarker | Result |
|---|---|---|---|---|
| Knee replacement surgery [30] | GA vs. SA | 39 | F2-IsoPs and IsoFs | SA: lower plasma levels of IsoFs GA: lower plasma levels of F2-IsoPs |
| Arthroscopic knee surgery [28] | SA vs. TIVA vs. GA (Sevoflurane) | 60 | MDA | TIVA: the lowest MDA levels |
| Lower Limb Amputation Surgery [31] | SA vs. GA | MDA, TAC | SA: MDA decrease more significant GA: TAC decrease more significant | |
| 40 | ||||
| Hip arthroplasty [34] | GA vs. RA (lumbar plexus block) vs. Integrated anesthesia (lumbar plexus block + spinal anesthesia + general anesthesia) | 99 | gene expression profiles involved in oxidative stress (SOD, GPX) | RA: reduced activation of oxidative stress-related genes compared to general anesthesia |
| ORIF [32] | GA vs. SA | 40 | MDA, glutathione, catalase | GA: increase in postoperative MDA levels reduction in catalase activity |
| Shoulder arthroscopy [35] | Interscalene block vs. GA | 42 | Native thiol, total thiol, disulphide | IB: higher native thiol and total thiol levels, lower levels of disulphide |
| Knee Replacement Surgery [29] | SA vs. GA | 56 | Native thiol, total thiol, disulphide | GA: higher Native Thiol and Total Thiol Levels. SA: higher Disulfide Levels. Thiol/Disulfide Ratios: Favorable in the GA |
| Unilateral hand or forearm surgery [36] | TIVA vs. inhalation anesthesia vs. brachial plexus block | 99 | TAS, TOS, IMA | Axillary Block: Showed the lowest oxidative stress markers (IMA and TOS) Inhalation Anesthesia: higher TAS levels |
| Lower and upper limb operations [38] | GA vs. TIVA vs. RA | 45 | MDA, xanthine oxidase, protein carbonyl groups | Protein Carbonyl Significantly higher in GA group 20 min after reperfusion. MDA: highest levels were observed in the GA group |
| Lower and upper limb operations [37] | GA vs. TIVA vs. RA | 45 | MDA, catalase | CAT activity increased in the GA and RA groups but significantly decreased in TIVA group during reperfusion |
| Knee arthroscopic surgery [39] | GA vs. GA + RA (femoral nerve block combined with sciatic nerve block) | 64 | MDA, SOD | RA: lower MDA levels and higher SOD activity after tourniquet release |
| Total knee arthroplasty [33] | GA vs. GA + FNB | 297 | MDA, GPX | RA: ↓ MDA, ↓ GPX |
| Robot assisted laparoscopic prostatectomy [26] | GA + epidural vs. GA | 45 | MDA | Increase in MDA levels in group GA |
| Midline laparotomy [22,23,24] | RSB + GA vs. GA | 56 | Glutathione Peroxidase | No significant increase in oxidative stress biomarkers caused by RSB |
| Inguinal hernia surgery [25] | GA vs. SA | 52 | Dynamic Thiol/Disulfide Homeostasis | No significant differences in oxidative stress levels (thiol/disulfide balance) between this two methods |
| Laparoscopy [46] | SA vs. GA | 60 | TAC, TOL, OSI | No significant difference was observed between SA and GA |
| Cesarean sections [42] | SA vs. GA vs. epidural | 47 | TAS, TOS, OSI | TAS and TOS: No statistically significant difference between the groups |
| Cesarean sections [44] | GA vs. SA | 80 | Native thiol, total thiol, disulfide | Neonates in the GA showed lower native and total thiol levels, increased postoperative maternal disulfide levels in GA group. Native thiol and total thiol levels reduced in mothers under GA |
| Cesarean sections [43] | GA vs. SA | 102 | MDA, TAS | MDA decreased significantly in both groups post-surgery; more pronounced reduction in the SA No significant change in TAS in both groups |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaruga, K.; Puścion-Jakubik, A.; Jakubów, P. Regional Anesthesia: A Narrative Review of Impact on Oxidative Stress Biomarkers. J. Clin. Med. 2025, 14, 7503. https://doi.org/10.3390/jcm14217503
Jaruga K, Puścion-Jakubik A, Jakubów P. Regional Anesthesia: A Narrative Review of Impact on Oxidative Stress Biomarkers. Journal of Clinical Medicine. 2025; 14(21):7503. https://doi.org/10.3390/jcm14217503
Chicago/Turabian StyleJaruga, Karolina, Anna Puścion-Jakubik, and Piotr Jakubów. 2025. "Regional Anesthesia: A Narrative Review of Impact on Oxidative Stress Biomarkers" Journal of Clinical Medicine 14, no. 21: 7503. https://doi.org/10.3390/jcm14217503
APA StyleJaruga, K., Puścion-Jakubik, A., & Jakubów, P. (2025). Regional Anesthesia: A Narrative Review of Impact on Oxidative Stress Biomarkers. Journal of Clinical Medicine, 14(21), 7503. https://doi.org/10.3390/jcm14217503

