Artificial Intelligence Tools for Supporting Histopathologic and Molecular Characterization of Gynecological Cancers: A Review
Abstract
1. Introduction
2. Methodology
3. Computational Pathology Dedicated to Gynecological Cancers
4. Ovarian Cancer
4.1. Diagnosis
4.2. Prognosis
4.3. Response to Treatment Prediction
Patients/ Original Images (n) | Original Image Type | Image for AI Training Size (Pixels) | Features to Be Assessed/Final Model | AI Tool Input | AI Tool Output | Internal Results Metrics | Internal Results | |
---|---|---|---|---|---|---|---|---|
Histotyping | ||||||||
BenTaieb et al., 2016 [34] | 80/80 | WSI | 500 × 500 | Color, texture, cellular morphology, cytology/SVM | WSI | 5 classes * | Accuracy | 95% |
BenTaieb et al., 2017 [35] | 133/133 | WSI | 500 × 500 | CNN features novel K-means/SVM | WSI | 5 classes * | Accuracy | 90% |
Levine et al., 2020 [36] | 406/406 | WSI | 256 × 256 | CNN VGG19 | patch | 5 classes * | Accuracy | 70.87% |
AUC | 0.92 | |||||||
Kasture et al., 2020 [37] | ≤500/500 | patch | N/D | CNN novel KK Net | patch | 5 classes * | Accuracy | 91% |
AUC | 0.95 | |||||||
Boschman et al., 2022 [38] | 160/308 | WSI | 256 × 256 | CNN ResNet 18 | WSI | 5 classes * | AUC | 0.97 |
Farahani et al., 2022 [39] | 485/948 | WSI | 512 × 512 | CNN VGG19 | WSI | 5 classes * | AUC | 0.95 |
Idlahcen et al., 2025 [40] | 500/500 | WSI | 224 × 224 | Autoencoder + CNN (DenseNet-201) | patch | 5 classes * | Accuracy | 94.88% |
Staging and grading | ||||||||
Yu et al., 2020 [43] | 80/80 | WSI | N/D | CNN VGG16 | WSI | 2 grades (low/moderate and high) | AUC | 0.812 |
Ghoniem et al., 2021 [44] | 160/308 | WSI | 256 × 256 | CNN altered VGG16 | WSI | 5 FIGO stages (I–IV) and N/D | Accuracy | 98.87% |
Prognosis | ||||||||
Poruthoor et al., 2013 [50] | 382/≤382 | WSI | 512 × 512 | CNN features/novel SVM | WSI | 2 classes of survival rate (<5 years/ ≥5 years | Accuracy | 55% |
Yang et al., 2024 [51] | 874/1826 | WSI | 224 × 224 | Transformer network/graph deep-learning analysis | WSI | 2 classes of survival rate (high and low OCDPI) | Comparison of survival rate | <0.001 |
BRCA1/2 mutation status | ||||||||
Zeng et al., 2021 [17] | 229/≥229 | WSI | 256 × 256 | CNN features VGG19/ random forest | WSI | 2 classes of BRCA mutations (BRCAmut and BRCAwt) | AUC | 0.912 |
Nero et al., 2022 [59] | 664/664 | N/D | 256 × 256 | CNN Features ResNet50/ CNN (CLAM) | WSI | 2 classes of BRCA mutations (BRCAmut and BRCAwt) | AUC | 0.59 |
Ho et al., 2023 [60] | 609/609 | WSI | 224 × 224 | CNN features novel KK Net/CNNResNet 182 | WSI | 2 classes of BRCA mutations (BRCAmut and BRCAwt) | AUC | 0.43 |
Borgade et al., 2023 [18] | 867/867 | WSI | 512 × 512 | PyTorch 3.7, Deepflash2 U-Net, DeepLabv3, UNet++, LinkNet, ResNet, Inception, EfficientNet, ResNeSt | WSI | 2 classes of BRCA mutations (BRCAmut and BRCAwt) | AUC | 0.681 |
MMR mutation status | ||||||||
Zeng et al., 2021 [17] | 229/≥229 | WSI | 1000 × 1000 | texture, cellular, and nuclear morphology/random forest | WSI | 3 classes of MMR status (MSI high/ MSI stable/N/A | AUC dMMR | 0.919 |
AUC pMMR | 0.924 | |||||||
HRD status | ||||||||
Loeffler et al., 2023 [64] | 520/520 | WSI | 224 × 224 | ResNet50 (pretrained) + attMIL | WSI | 2 classes: HRD-high/low and HRD prediction score | AUROC | 0.61 |
Frenel et al., 2024 [65] | 244/≥244 | WSI | N/D | Fusion-like DNN | WSI | 2 classes: HRD+/− and HRD prediction score | AUC (internal) | 0.74 |
AUC (external) | 0.67 | |||||||
Marmé et al., 2025 [66] | 669/675 | WSI | 224 × 224 | ResNet18&Transformer | WSI | 2 classes HRD status positive/negative and HRD prediction score | AUROC (internal) | 72% |
AUROC (external) | 57% | |||||||
Bergstrom et al., 2024 [67] | 600/≥1356 | WSI | 256 × 256 | Multiresolution MIL-ResNet18 | WSI | classes: HRD+/− and HRD prediction score | AUC (internal) | 0.81 |
AUC (external) | N/D | |||||||
Zhang et al., 2025 [68] | 205/205 | WSI | 512 × 512 | UNet++ and Hover-Net | patch | HRD status (deficient/proficient) at WSI level | AUC | 0.769 |
F1-score | 0.762 | |||||||
Chemotherapy response 2prediction | ||||||||
Wang et al., 2023 [65] | <180/180 | WSI | 512 × 512 | CNN features novel/SVM | TMA | 2 classes of CT efficacy (effective/ invalid) | Accuracy | 90% |
Wang et al., 2022 [69] | 78/288 | WSI | 256 × 256 | CNN (Inception V3) | WSI | 2 classes of CT efficacy (effective/ invalid) | AUC | 0.99 |
Yu et al., 2020 [43] | 570 ≤ 1358 | WSI | N/D | CNN features VGG16 | WSI | 2 classes of relapse (early/late relapse) | AUC | 0.95 |
Accuracy | 91% | |||||||
Gilley et al., 2024 [71] | 78/288 | WSI | 1000 × 1000 | SVM | patch | 2 classes of relapse (responders/nonresponders) | AUC (linear SVM) | 0.83 |
AUC (Gaussian SVM | 0.82 |
Patients/ Original Images (n) | Original Image Type | Image for AI Training Size (Pixels) | Features to Be Assessed/ Final Model | AI Tool Input | AI Tool Output | Internal Results Metrics | Internal Results | |
---|---|---|---|---|---|---|---|---|
Histotyping | ||||||||
Hong et al., 2021 [73] | 456/ 20,000 | WSI | 299 × 299 | Inception Resnet-based/CNN | WSI, patch | 2 histotypes (endometrioid/ serous) | AUROC patient | 0.969 |
AUROC patch | 0.870 | |||||||
Song et al., 2022 [74] | 109 | WSI | 360 × 360 | Inception-v3 | WSI | 2 histotypes (endometrioid/ serous) | AUROC | 0.944 |
Grading | ||||||||
Goyal et al., 2024 [75] | 929/ N/D | WSI | N/D | EndoNet | WSI | 2 grades: low/high | F1-score | 0.91 |
AUC | 0.9 | |||||||
Immunohistochemical markers automatic assessment | ||||||||
Kildal et al., 2024 [76] | 1228/ 2456 | WSI | 800 × 800 | YOLOv5 for nuclear model | patch | 2 classes of nuclei as (positive/negative); fraction of positive tumor cells | CCR (PMS2) | 95.3% |
CCR (MSH6) | 90.0% | |||||||
CCR (MSI, combined PMS2 and MSH6) | 90.7% | |||||||
Ji et al., 2024 [77] | 57/114 | WSI | 256 × 256 | U-Net and DenseNet-121 | patch | Digitally generated H-DAB IHC-stained images | Rintraslide validation: | 0.98 |
Rcross-case validation | 0.66 | |||||||
Molecular subtypes | ||||||||
Hong, 2021 [73] | 456/ 20,000 | WSI * | 299 × 299 | Inception Resnet-based CNN | WSI, patch | 4 molecular subtypes | AUROC patient CNV-L | 0.889 |
AUROC patch CNV-L | 0.710 | |||||||
AUROC patient CNV-H | 0.873 | |||||||
AUROC patch CNV-H | 0.713 | |||||||
AUROC patient MSI-H | 0.827 | |||||||
AUROC patch MSI-H | 0.638 | |||||||
Fremond, 2023 [78] | 2028/ 1,170,931 | WSI | 224 × 224 | ResNet 50, MoCo-v2 | WSI | POLE | AUROC | 0.849 |
dMMR | AUROC | 0.844 | ||||||
NSMP | AUROC | 0.883 | ||||||
p53 abn | AUROC | 0.928 | ||||||
Goyal, 2024 [79] | 2072/ 3,702,447 | WSI | 224 × 224 | HECTOR | WSI | 2: low/high grade | F1-score | 0.91 |
AUC | 0.95 | |||||||
MMR status | ||||||||
Zhang, 2018 [75] | N/A | N/A | 1000 × 1000 | Inception-V3 | WSI | 2 (MSI, MSS) | Accuracy | 84.2% |
Kather, 2019 [80] | 81/94 | WSI | N/D | ResNet18 | Patch | 2 (MSI, MSS) | AUC | 0.75 |
Wang, 2020 [81] | N/A | N/A | 512 × 512 | ResNet18 | WSI | 2 (MSI, MSS) | AUC | 0.73 |
Zhang, 2023 [75] | 95/ 22,044 | WSI | 256 × 256 | ResNet34 VGG16 | Patch | 2 (MSI, MSS) | AUC | 0799 |
F1-score | 0786 | |||||||
Wang, 2024 [82] | 344/ N/A | WSI | 512× 512 | Inception-V3 | WSI | 2 (MSI, MSS) | AUC | 87% |
F1-score | 84% | |||||||
Arslan, 2024 [61] | 61/ 12,093 (totally) | WSI | 256 × 256 | ResNet34 | WSI | 2 (MSI, MSS) | AUC | 0.771 |
Whangbo et al., 2024 [83] | 325/1168 | WSI | N/D | EfficientNetB2 | patch | 2 (MSI, MSS) on WSI level | AUC | 0.821 |
Accuracy | 0.778 | |||||||
Umemoto et al., 2024 [84] | 114 | WSI | 512 × 512 | ResNet50 | patch | 2 (MSI, MSS) on WSI level | AUC | 0.91 |
Accuracy | 0.80 | |||||||
Liu et al., 2025 [85] | 1027/1678 | WSI | 224 × 224 | ResNet18 and EfficientNet | patch | 2 (MSI, MSS) on WSI level via patch-level probability averaging. | AUC (internal) | 0.897 |
AUC (external) | 0.790–0.863 |
5. Fallopian Tube Cancer
6. Uterine Cancer
6.1. Endometrial Cancer
6.2. Uterine Mesenchymal Tumors
6.2.1. Uterine Smooth Muscle Tumors
6.2.2. Uterine Stromal Sarcoma
6.3. Trophoblastic Tumors
7. Lower Genital Tract
7.1. Cervical Cancer
7.2. Vulvar and Vaginal Cancers
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AUC | Area under the curve |
CNN | Convolutional neural network |
CTransPat | Transformer-based unsupervised contrastive learning for histopathological image classification |
dMMR | MMR deficient mismatch repair |
dVIN | Differentiated VIN |
FDA | Food and Drug Administration |
FIGO | The International Federation of Gynecology and Obstetrics |
H&E | Hematoxylin and eosin |
HECTOR | Histopathology-based Endometrial Cancer Tailored Outcome Risk |
HGSC | High-grade serous cancer |
HPV | Human papillomavirus |
IHC | Immunohistochemical |
LGSC | Low-grade serous cancer |
LGSS | Low-grade stromal sarcoma |
MDT | Multidisciplinary Team |
MEK | Mitogen-activated protein kinase |
ML | Machine learning |
PAIP | Pathology Artificial Intelligence Platform |
PARP | Poly(ADP-ribose) polymerase |
PCA | Principal component analysis |
POLE | Polymerase epsilon |
RetCCL | Retrieval with Clustering-guided Contrastive Learning |
SCC | Squamous cell carcinoma |
STIC | Inhibitors serous tubal intraepithelial carcinoma |
STIL | Serous tubal intraepithelial lesion |
STRs | Short tandem repeats |
SVM | Support vector machine |
TCGA | The Cancer Genome Atlas |
uVIN | Vulvar intraepithelial neoplasia of usual type |
WHO | World Health Organization |
WSI | Whole-slide imaging |
References
- Marth, C.; Landoni, F.; Mahner, S.; McCormack, M.; Gonzalez-Martin, A.; Colombo, N.; ESMO Guidelines Committee. Cervical cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv72–iv83. [Google Scholar] [CrossRef] [PubMed]
- Ledermann, J.A.; Matias-Guiu, X.; Amant, F.; Concin, N.; Davidson, B.; Fotopoulou, C.; González-Martin, A.; Gourley, C.; Leary, A.; Lorusso, D.; et al. ESGO-ESMO-ESP consensus conference recommendations on ovarian cancer: Pathology and molecular biology and early, advanced and recurrent disease. Ann. Oncol. 2024, 35, 248–266. [Google Scholar] [CrossRef]
- Oaknin, A.; Bosse, T.J.; Creutzberg, C.L.; Giornelli, G.; Harter, P.; Joly, F.; Lorusso, D.; Marth, C.; Makker, V.; Mirza, M.R.; et al. Endometrial cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 860–877. [Google Scholar] [CrossRef] [PubMed]
- Fokom-Defo, V.; Dille, I.; Fokom-Domgue, J. Single Dose HPV Vaccine in Achieving Global Cervical Cancer Elimination. Lancet Glob. Health 2024, 12, e360–e361. [Google Scholar] [CrossRef]
- Silva, E. Cancer Statistics. Mixed Results in Gynecologic Oncology. Int. J. Gynecol. Cancer 2024, 34, 964. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Vang, R.; Davidson, B.; Kong, C.S.; Longacre, T.A.; Malpica, A. WHO Classification of Female Genital Tumors; International Agency for Research on Cancer: Lyon, France, 2021; pp. 43–44. [Google Scholar]
- Kiehl, T.R. Digital and Computational Pathology: A Specialty Reimagined. In The Future Circle of Healthcare. Future of Business and Finance; Ehsani, S., Glauner, P., Plugmann, P., Thieringer, F.M., Eds.; Springer: Cham, Switzerland, 2021; pp. 227–250. [Google Scholar] [CrossRef]
- Kaplan, K.J.; Rao, L.K.F. Digital Pathology: Historical Perspectives, Current Concepts and Future Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 1–116. [Google Scholar] [CrossRef]
- Parwani, A.V. Whole Slide Imaging: Current Applications and Future Directions; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 1–242. [Google Scholar]
- Eloy, C.; Marques, A.; Pinto, J.; Pinheiro, J.; Campelos, S.; Curado, M.; Vale, J.; Polónia, A. Artificial intelligence–assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies. Virchows Arch. 2023, 82, 595–604. [Google Scholar] [CrossRef]
- Viswanathan, V.S.; Toro, P.; Corredor, G.; Mukhopadhyay, S.; Madabhushi, A. The state of the art for artificial intelligence in lung digital pathology. J. Pathol. 2022, 257, 413–429. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, M.; Li, X. Progress on deep learning in digital pathology of breast cancer: A narrative review. Gland. Surg. 2022, 11, 751–766. [Google Scholar] [CrossRef]
- Griem, J.; Eich, M.L.; Schallenberg, S.; Pryalukhin, A.; Bychkov, A.; Fukuoka, J.; Zayats, V.; Hulla, W.; Munkhdelger, J.; Seper, A.; et al. Artificial Intelligence-Based Tool for Tumor Detection and Quantitative Tissue Analysis in Colorectal Specimens. Artificial Intelligence-Based Tool for Tumor Detection and Quantitative Tissue Analysis in Colorectal Specimens. Mod. Pathol. 2023, 36, 100327. [Google Scholar] [CrossRef]
- Chen, G.M.; Kannan, L.; Geistlinger, L.; Kofia, V.; Safikhani, Z.; Gendoo, D.M.A.; Parmigiani, G.; Birrer, M.; Haibe-Kains, B.; Waldron, L. Consensus on Molecular Subtypes of High-Grade Serous Ovarian Carcinoma Consensus on Molecular Subtypes of High-Grade Serous Ovarian Carcinoma. Clin. Cancer Res. 2018, 24, 5037–5047. [Google Scholar] [CrossRef]
- Ahn, B.; Moon, D.; Kim, H.S.; Lee, C.; Cho, N.H.; Choi, H.K.; Kim, D.; Lee, J.Y.; Nam, E.J.; Won, D.; et al. Histopathologic image-based deep learning classifier for predicting platinum-based treatment responses in high-grade serous ovarian cancer. Nat. Commun. 2024, 15, 4253. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, L.; Zhang, M.; Luo, Y.; Ma, X. Integration of histopathological images and multi-dimensional omics analyses predicts molecular features and prognosis in high-grade serous ovarian cancer. Gynecol. Oncol. 2021, 163, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Bourgade, R.; Rabilloud, N.; Perennec, T.; Pécot, T.; Garrec, C.; Guédon, A.F.; Delnatte, C.; Bézieau, S.; Lespagnol, A.; de Tayrac, M.; et al. Deep Learning for Detecting BRCA Mutations in High-Grade Ovarian Cancer Based on an Innovative Tumor Segmentation Method From Whole Slide Images. Mod. Pathol. 2023, 36, 100304. [Google Scholar] [CrossRef] [PubMed]
- Fraune, C.; Rosebrock, J.; Simon, R.; Hube-Magg, C.; Makrypidi-Fraune, G.; Kluth, M.; Büscheck, F.; Höflmayer, D.; Schmalfeldt, B.; Müller, V.; et al. High homogeneity of MMR deficiency in ovarian cancer. Gynecol. Oncol. 2020, 156, 669–675. [Google Scholar] [CrossRef]
- Jain, E.; Patel, A.; Parwani, A.V.; Shafi, S.; Brar, Z.; Sharma, S.; Mohanty, S.K. Whole Slide Imaging Technology and Its Applications: Current and Emerging Perspectives. Int. J. Surg. Pathol. 2024, 32, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Mastrosimini, M.G.; Eccher, A.; Nottegar, A.; Montin, U.; Scarpa, A.; Pantanowitz, L.; Girolami, I. WSI validation studies in breast and gynecological pathology. Pathol. Res. Pract. 2022, 240, 154191. [Google Scholar] [CrossRef]
- Prewitt, J.M.; Mendelsohn, M.L. The analysis of cell images. Ann. N. Y. Acad. Sci. 1966, 128, 1035–1053. [Google Scholar] [CrossRef] [PubMed]
- Snead, D.R.J.; Tsang, Y.-W.; Meskiri, A.; Kimani, P.; Crossman, R.J.; Rajpoot, N.M.; Blessing, E.; Chen, K.; Gopalakrishnan, K.; Matthews, P.; et al. Validation of digital pathology imaging for primary histopathological diagnosis. Histopathology 2016, 68, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Aloqaily, A.; Polonia, A.; Campelos, S.; Alrefae, N.; Vale, J.; Caramelo, A.; Eloy, C. Digital Versus Optical Diagnosis of Follicular Patterned Thyroid Lesions. Head. Neck Pathol. 2021, 15, 537–543. [Google Scholar] [CrossRef]
- Marra, A.; Morganti, S.; Pareja, F.; Campanella, G.; Bibeau, F.; Fuchs, T.; Loda, M.; Parwani, A.; Scarpa, A.; Reis-Filho, J.S.; et al. Artificial intelligence entering the pathology arena in oncology: Current applications and future perspectives. Ann. Oncol. 2025, 36, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Pell, R.; Oien, K.; Robinson, M.; Pitman, H.; Rajpoot, N.; Rittscher, J.; Snead, D.; Verrill, C.; UK National Cancer Research Institute (NCRI) Cellular-Molecular Pathology (CM-Path) Quality Assurance Working Group. The use of digital pathology and im-age analysis in clinical trials. J. Pathol. Clin. Res. 2019, 5, 81–90. [Google Scholar] [CrossRef]
- Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022, 35, 23–32. [Google Scholar] [CrossRef]
- Ersavas, T.; Smith, M.A.; Mattick, J.S. Novel applications of Convolutional Neural Networks in the age of Transformers. Sci. Rep. 2024, 14, 10000. [Google Scholar] [CrossRef]
- Shah, M.; Polónia, A.; Curado, M.; Vale, J.; Janowczyk, A.; Eloy, C. Impact of Tissue Thickness on Computational Quantification of Features in Whole Slide Images for Diagnostic Pathology. Endocr. Pathol. 2025, 36, 10, Erratum in Endocr. Pathol. 2025, 36, 26. https://doi.org/10.1007/s12022-025-09872-1. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Li, X.; Shen, H.; Chen, Y.; Wang, L.; Chen, H.; Feng, J.; Liu, J. A systematic review of deep learning-based cervical cytology screening: From cell identification to whole slide image analysis. Artif. Intell. Rev. 2023, 56, 2687–2758. [Google Scholar] [CrossRef]
- Kim, D.; Sundling, K.; Virk, R.; Thrall, M.; Alperstein, S.; Bui, M.; Chen-Yost, H.; Donnelly, A.; Lin, O.; Liu, X.; et al. Digital cytology part 2: Artificial intelligence in cytology: A concept paper with review and recommendations from the American Society of Cytopathology Digital Cytology Task Force. J. Am. Soc. Cytopathol. 2024, 13, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Sundling, K.; Virk, R.; Thrall, M.; Alperstein, S.; Bui, M.; Chen-Yost, H.; Donnelly, A.; Lin, O.; Liu, X.; et al. Digital cytology part 1: Digital cytology implementation for practice: A concept paper with review and recommendations from the American Society of Cytopathology Digital Cytology Task Force. J. Am. Soc. Cytopathol. 2024, 13, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, Y.; Tan, Y.; Wan, H.; Zheng, N.; He, Z.; Mao, L.; Ren, W.; Chen, K.; Lin, Z.; et al. Artificial intelligence enables precision diagnosis of cervical cytology grades and cervical cancer. Nat. Commun. 2024, 15, 4369. [Google Scholar] [CrossRef] [PubMed]
- BenTaieb, A.; Nosrati, M.; Li-Chang, H.; Huntsman, D.; Hamarneh, G. Clinically-inspired automatic classification of ovarian carcinoma subtypes. J. Pathol. Inform. 2016, 7, 28. [Google Scholar] [CrossRef]
- BenTaieb, A.; Li-Chang, H.; Huntsman, D.; Hamarneh, G. A structured latent model for ovarian carcinoma subtyping from histopathology slides. Med. Image Anal. 2017, 39, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Peng, J.; Farnell, D.; Nursey, M.; Wang, Y.; Naso, J.; Ren, H.; Farahani, H.; Chen, C.; Chiu, D.; et al. Synthesis of diagnostic quality cancer pathology images by generative adversarial networks. J. Pathol. 2020, 252, 178–188. [Google Scholar] [CrossRef]
- Kasture, K.; Choudhari, D.; Matte, P. Prediction and Classification of Ovarian Cancer Using Enhanced Deep Convolutional Neural Network. IJETT 2022, 70, 310–318. [Google Scholar] [CrossRef]
- Boschman, J.; Farahani, H.; Darbandsari, A.; Ahmadvand, P.; Van Spankeren, A.; Farnell, D.; Levine, A.; Naso, J.; Churg, A.; Jones, S.; et al. The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images. J. Pathol. 2022, 256, 15–24. [Google Scholar] [CrossRef]
- Farahani, H.; Boschman, J.; Farnell, D.; Darbandsari, A.; Zhang, A.; Ahmadvand, P.; Jones, S.; Huntsman, D.; Köbel, M.; Gilks, C.; et al. Deep learning-based histotype diagnosis of ovarian carcinoma whole-slide pathology images. Mod. Pathol. 2022, 35, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Idlahcen, F.; Mboukou, P.F.C.; Idri, A.; El Attar, H. PathoCoder: Rethinking the Flaws of Patch-Based Learning for Multi-Class Classification in Computational Pathology. Microsc. Res. Tech. 2025, 88, 1712–1726. [Google Scholar] [CrossRef] [PubMed]
- Genestie, C.; Auguste, A.; Al Battal, M.; Scoazec, J.Y.; Gouy, S.; Lacroix, L.; Morice, P.; Pautier, P.; Leary, A.; Devouassoux-Shisheboran, M. Histological classification of mucinous ovarian tumors: Inter-observer reproducibility, clinical relevance, and role of genetic biomarkers. Virchows Arch. 2021, 478, 885–891. [Google Scholar] [CrossRef]
- Handley, K.F.; Sims, T.T.; Bateman, N.W.; Glassman, D.; Foster, K.I.; Lee, S.; Yao, J.; Yao, H.; Fellman, B.M.; Liu, J.; et al. Classification of High-Grade Serous Ovarian Cancer Using Tumor Morphologic Characteristics. JAMA Netw. Open 2022, 5, e2236626. [Google Scholar] [CrossRef]
- Yu, K.; Hu, V.; Wang, F.; Matulonis, U.; Mutter, G.; Golden, J.; Kohane, I. Deciphering serous ovarian carcinoma histopathology and platinum response by convolutional neural networks. BMC Med. 2020, 18, 236. [Google Scholar] [CrossRef] [PubMed]
- Ghoniem, R.M.; Algarni, A.D.; Refky, B.; Ewees, A.A. Multi-Modal Evolutionary Deep Learning Model for Ovarian Cancer Diagnosis. Symmetry 2021, 13, 643. [Google Scholar] [CrossRef]
- Yu, K.; Hu, V.; Wang, F.; Matulonis, U.; Mutter, G.; Golden, J.; Kohane, I. Histological grading of ovarian mucinous carcinoma—An outcome-based analysis of traditional and novel systems. Histopathology 2020, 77, 26–34. [Google Scholar] [CrossRef]
- De Decker, K.; Wenzel, H.H.B.; Bart, J.; van der Aa, M.A.; Kruitwagen, R.F.P.M.; Nijman, H.W.; Kruse, A.J. Stage, treatment and survival of low-grade serous ovarian carcinoma in the Netherlands: A nationwide study. Acta Obstet. Gynecol. Scand. 2023, 102, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Shiradkar, R.; Liu, Z. Integrating pathomics with radiomics and genomics for cancer prognosis: A brief review. Chin. J. Cancer Res. 2021, 33, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Bülow, R.D.; Hölscher, D.L.; Costa, I.G.; Boor, P. Extending the landscape of omics technologies by pathomics. NPJ Syst. Biol. Appl. 2023, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Poruthoor, A.; Phan, J.H.; Kothari, S.; Wang, M.D. Exploration of Genomic, Proteomic, and Histopathological Image Data Integration Methods for Clinical Prediction. IEEE China Summit Int. Conf. Signal Inf. Process. 2013, 2013, 259–263. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Y.; Zhuo, L.; Sun, K.; Meng, F.; Zhou, M.; Sun, J. Prediction of prognosis and treatment response in ovarian cancer patients from histopathology images using graph deep learning: A multicenter retrospective study. Eur. J. Cancer. 2024, 199, 113532. [Google Scholar] [CrossRef]
- Li, S.; Tao, L.; Dai, H.; Gong, X.; Zhuo, Y.; Xiang, H.; Zhao, Y.; Gao, Q.; Deng, L. BRCA1 Versus BRCA2 and PARP Inhibitors Efficacy in Solid Tumors:A Meta-Analysis of Randomized Controlled Trials. Front. Oncol. 2021, 11, 718871. [Google Scholar] [CrossRef] [PubMed]
- Bhamidipati, D.; Haro-Silerio, J.I.; Yap, T.A.; Ngoi, N. PARP inhibitors: Enhancing efficacy through rational combinations. Br. J. Cancer. 2023, 129, 904–916. [Google Scholar] [CrossRef]
- Romey, M.; Rodepeter, F.; Hattesohl, A.; Kaiser, K.; Teply-Szymanski, J.; Heitz, F.; Staebler, A.; Serra, V.; Grass, A.; Marmé, F.; et al. Systematic Analysis of Homologous Recombination Deficiency Testing in Ovarian Cancer-Development of Recommendations for Optimal Assay Performance. Mod. Pathol. 2024, 37, 100445. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Shao, D.; Cai, Y.; Bi, R.; Ju, X.; Chen, D.; Song, C.; Chen, X.; Li, J.; An, N.; et al. Homologous recombination deficiency status predicts response to platinum-based chemotherapy in Chinese patients with high-grade serous ovarian carcinoma. J. Ovarian Res. 2023, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gu, Y.; Zhang, M.; Shi, X.; Li, Z.; Xu, X.; Sun, T.; Dong, Y.; Xue, C.; Zhu, X.; et al. HRD effects on first-line adjuvant chemotherapy and PARPi maintenance therapy in Chinese ovarian cancer patients. NPJ Precis. Oncol. 2023, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.K.; Alvarez, R.D.; Bakkum-Gamez, J.N.; Barroilhet, L.; Behbakht, K.; Berchuck, A.; Chen, L.M.; Cristea, M.; DeRosa, M.; Eisenhauer, E.L.; et al. Ovarian Cancer, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc Netw. 2021, 19, 191–226. [Google Scholar] [CrossRef] [PubMed]
- Soslow, R.A.; Han, G.; Park, K.J.; Garg, K.; Olvera, N.; Spriggs, D.R.; Kauff, N.D.; Levine, D.A. Morphologic patterns associated with BRCA1 and BRCA2 genotype in ovarian carcinoma. Mod. Pathol. 2012, 25, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Nero, C.; Boldrini, L.; Lenkowicz, J.; Giudice, M.T.; Piermattei, A.; Inzani, F.; Pasciuto, T.; Minucci, A.; Fagotti, A.; Zannoni, G.; et al. Learning to Predict BRCA Mutation and Survival from Digital H&E Slides of Epithelial Ovarian Cancer. Int. J. Mol. Sci. 2022, 23, 11326. [Google Scholar] [CrossRef]
- Ho, D.J.; Chui, M.H.; Vanderbilt, C.M.; Jung, J.; Robson, M.E.; Park, C.S.; Roh, J.; Fuchs, T.J. Deep Interactive Learning-based ovarian cancer segmentation of H&E-stained whole slide images to study morphological patterns of BRCA mutation. J. Pathol. Inform. 2022, 14, 100160. [Google Scholar] [CrossRef] [PubMed]
- Arslan, S.; Schmidt, J.; Bass, C.; Mehrotra, D.; Geraldes, A.; Singhal, S.; Hense, J.; Li, X.; Raharja-Liu, P.; Maiques, O.; et al. A systematic pan-cancer study on deep learning-based prediction of multi-omic biomarkers from routine pathology images. Commun. Med. 2024, 4, 48. [Google Scholar] [CrossRef]
- Saldanha, O.L.; Loeffler, C.M.L.; Niehues, J.M.; van Treeck, M.; Seraphin, T.P.; Hewitt, K.J.; Cifci, D.; Veldhuizen, G.P.; Ramesh, S.; Pearson, A.T.; et al. Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology. NPJ Precis. Oncol. 2023, 7, 35. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, E.Y.; Luchini, C.; Eccher, A.; Tizaoui, K.; Shin, J.I.; Lim, B.J. Artificial Intelligence for Predicting Microsatellite Instability Based on Tumor Histomorphology: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 2462. [Google Scholar] [CrossRef]
- Loeffler, C.M.L.; El Nahhas, O.S.M.; Muti, H.S.; Seibel, T.; Cifci, D.; van Treeck, M.; Gustav, M.; Carrero, Z.I.; Gaisa, N.T.; Lehmann, K.V.; et al. Direct prediction of Homologous Recombination Deficiency from routine histology in ten different tumor types with attention-based Multiple Instance Learning: A development and validation study. medRxiv, 2023; preprint. [Google Scholar] [CrossRef]
- Frenel, J.-S.; Bossard, C.; Rynkiewicz, J.; Thomas, F.; Salhi, Y.; Salhi, S.; Chetritt, J. Artificial intelligence to predict homologous recombination deficiency in ovarian cancer from whole-slide histopathological images. J. Clin. Oncol. 2024, 42, 5578. [Google Scholar] [CrossRef]
- Marmé, F.; Krieghoff-Henning, E.I.; Kiehl, L.; Wies, C.; Hauke, J.; Hahnen, E.; Harter, P.; Schouten, P.C.; Brodkorb, T.; Kayali, M.; et al. Predicting benefit from PARP inhibitors using deep learning on H&E-stained ovarian cancer slides. Eur. J. Cancer. 2025, 216, 115199. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, E.N.; Abbasi, A.; Díaz-Gay, M.; Galland, L.; Ladoire, S.; Lippman, S.M.; Alexandrov, L.B. Deep Learning Artificial Intelligence Predicts Homologous Recombination Deficiency and Platinum Response from Histologic Slides. J. Clin. Oncol. 2024, 42, 3550–3560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Qiu, Y.; Feng, S.; Yin, H.; Liu, Q.; Zhu, Y.; Cui, H.; Wei, X.; Wang, G.; Wang, X.; et al. Development of model for identifying homologous recombination deficiency (HRD) status of ovarian cancer with deep learning on whole slide images. J. Transl. Med. 2025, 23, 267. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lee, Y.; Lin, Y.; Chang, C.; Sai, A.; Wang, C. Interpretable attention-based deep learning ensemble for personalized ovarian cancer treatment without manual annotations. Comput. Med. Imaging Graph. 2023, 107, 102233. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lee, Y.; Chang, C.; Lin, Y.; Liou, Y.; Hsu, P.; Chang, C.; Sai, A.; Wang, C.; Chao, T. A Weakly Supervised Deep Learning Method for Guiding Ovarian Cancer Treatment and Identifying an Effective Biomarker. Cancers 2022, 14, 1651. [Google Scholar] [CrossRef] [PubMed]
- Gilley, P.; Zhang, K.; Abdoli, N.; Sadri, Y.; Adhikari, L.; Fung, K.; Qiu, Y. Utilizing a Pathomics Biomarker to Predict the Effectiveness of Bevacizumab in Ovarian Cancer Treatment. Bioengineering 2024, 11, 678. [Google Scholar] [CrossRef]
- Miyagawa, C.; Nakai, H.; Otani, T.; Murakami, R.; Takamura, S.; Takaya, H.; Murakami, K.; Mandai, M.; Matsumura, N. Histopathological subtyping of high-grade serous ovarian cancer using whole slide imaging. J. Gynecol. Oncol. 2023, 34, e47. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Liu, W.; DeLair, D.; Razavian, N.; Fenyö, D. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Rep. Med. 2021, 2, 100400. [Google Scholar] [CrossRef]
- Song, J.; Im, S.; Lee, S.; Jang, H. Deep Learning-Based Classification of Uterine Cervical and Endometrial Cancer Subtypes from Whole-Slide Histopathology Images. Diagnostics 2022, 12, 2623. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Wang, Y.; Li, J.; Xu, K.; Chen, J.; Zhao, J. Deep learning-based methods for classification of microsatellite instability in endometrial cancer from HE-stained pathological images. J. Cancer Res. Clin. Oncol. 2023, 149, 8877–8888. [Google Scholar] [CrossRef]
- Kildal, W.; Cyll, K.; Kalsnes, J.; Islam, R.; Julbø, F.M.; Pradhan, M.; Ersvær, E.; Shepherd, N.; Vlatkovic, L.; OSBREAC—Oslo Breast Cancer Consortium; et al. Deep learning for automated scoring of immunohistochemically stained tumour tissue sections—Validation across tumour types based on patient outcomes. Heliyon. 2024, 10, e32529. [Google Scholar] [CrossRef]
- Ji, C.; Oshima, K.; Urata, T.; Kimura, F.; Ishii, K.; Uehara, T.; Suzuki, K.; Takeyama, S.; Yamaguchi, M. Transformation from hematoxylin-and-eosin staining to Ki-67 immunohistochemistry digital staining images using deep learning: Experimental validation on the labeling index. J. Med. Imaging 2024, 11, 047501. [Google Scholar] [CrossRef] [PubMed]
- Fremond, S.; Andani, S.; Barkey Wolf, J.; Dijkstra, J.; Melsbach, S.; Jobsen, J.; Brinkhuis, M.; Roothaan, S.; Jurgenliemk-Schulz, I.; Lutgens, L.; et al. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: A combined analysis of the PORTEC randomised trials and clinical cohorts. Lancet Digit. Health. 2023, 5, e71–e82. [Google Scholar] [CrossRef] [PubMed]
- Goyal, M.; Tafe, L.; Feng, J.; Muller, K.; Hondelink, L.; Bentz, J. Deep Learning for Grading Endometrial Cancer. Am. J. Pathol. 2024, 194, 1701–1711. [Google Scholar] [CrossRef]
- Kather, J.; Pearson, A.; Halama, N.; Jäger, D.; Krause, J.; Loosen, S.; Marx, A.; Boor, P.; Tacke, F.; Neumann, U.; et al. Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat. Med. 2019, 25, 1054–1056. [Google Scholar] [CrossRef]
- Wang, T.; Lu, W.; Yang, F.; Liu, L. Microsatellite instability prediction of uterine corpus endometrial carcinoma based on H&E histology whole-slide imaging. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 1289–1292. [Google Scholar] [CrossRef]
- Wang, C.; Muzakky, H.; Firdi, N.; Liu, T.; Lai, P.; Wang, Y.; Yu, M.; Chao, T. Deep learning to assess microsatellite instability directly from histopathological whole slide images in endometrial cancer. Digit. Med. 2024, 7, 143. [Google Scholar] [CrossRef] [PubMed]
- Whangbo, J.; Lee, Y.S.; Kim, Y.J.; Kim, J.; Kim, K.G. Predicting Mismatch Repair Deficiency Status in Endometrial Cancer through Multi-Resolution Ensemble Learning in Digital Pathology. J. Imaging Inform. Med. 2024, 37, 1674–1682. [Google Scholar] [CrossRef]
- Umemoto, M.; Mariya, T.; Nambu, Y.; Nagata, M.; Horimai, T.; Sugita, S.; Kanaseki, T.; Takenaka, Y.; Shinkai, S.; Matsuura, M.; et al. Prediction of Mismatch Repair Status in Endometrial Cancer from Histological Slide Images Using Various Deep Learning-Based Algorithms. Cancers 2024, 16, 1810. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jing, B.; Liu, X.; Li, R.; Wan, Z.; Zhang, J.; Ouyang, X.; Kong, Q.; Kang, X.; Wang, D.; et al. MMRNet: Ensemble deep learning models for predicting mismatch repair deficiency in endometrial cancer from histopathological images. Cell Rep. Med. 2025, 6, 102099. [Google Scholar] [CrossRef]
- Linz, V.C.; Löwe, A.; van der Ven, J.; Hasenburg, A.; Battista, M.J. Incidence of pelvic high-grade serous carcinoma after isolated STIC diagnosis: A systematic review of the literature. Front. Oncol. 2022, 12, 951292. [Google Scholar] [CrossRef] [PubMed]
- Lisio, M.A.; Fu, L.; Goyeneche, A.; Gao, Z.H.; Telleria, C. High-Grade Serous Ovarian Cancer: Basic Sciences, Clinical and Therapeutic Standpoints. Int. J. Mol. Sci. 2019, 20, 952. [Google Scholar] [CrossRef] [PubMed]
- Nik, N.N.; Vang, R.; Shih, I.; Kurman, R.J. Origin and pathogenesis of pelvic (ovarian, tubal, and primary peritoneal) serous carcinoma. Annu. Rev. Pathol. 2014, 9, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, J.M.A.; Steenbeek, M.P.; van Bommel, M.H.D.; Bulten, J.; van der Laak, J.A.W.M.; de Hullu, J.A.; Simons, M. Recommendations for diagnosing STIC: A systematic review and meta-analysis. Virchows Arch. 2022, 480, 725–737. [Google Scholar] [CrossRef]
- Ruel-Laliberté, J.; Kasasni, S.M.; Oprea, D.; Viau, M. Outcome and Management of Serous Tubal Intraepithelial Carcinoma Following Opportunistic Salpingectomy: Systematic Review and Meta-Analysis. J. Obstet. Gynaecol. Can. 2022, 44, 1174–1180. [Google Scholar] [CrossRef]
- Leblanc, E.; Narducci, F.; Ferron, G.; Mailliez, A.; Charvolin, J.; Houssein, E.; Guyon, F.; Fourchotte, V.; Lambaudie, E.; Crouzet, A.; et al. Prophylactic Radical Fimbriectomy with Delayed Oophorectomy in Women with a High Risk of Developing an Ovarian Carcinoma: Results of a Prospective National Pilot Study. Cancers 2023, 15, 1141. [Google Scholar] [CrossRef]
- Vang, R.; Visvanathan, K.; Gross, A.; Maambo, E.; Gupta, M.; Kuhn, E.; Li, R.; Ronnett, B.; Seidman, J.; Yemelyanova, A.; et al. Validation of an algorithm for the diagnosis of serous tubal intraepithelial carcinoma. Int. J. Gynecol. Pathol. 2012, 31, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, J.; Bokhorst, J.; Simons, M.; Bommel, M.; Steenbeek, M.; Hullu, J.; Linmans, J.; Bart, J.; Bentz, J.; Bosse, T.; et al. Deep learning detects premalignant lesions in the Fallopian tube. J. Womens Health 2024, 2, 11. [Google Scholar] [CrossRef]
- Berek, J.; Matias-Guiu, X.; Creutzberg, C.; Fotopoulou, C.; Gaffney, D.; Kehoe, S.; Lindemann, K.; Mutch, D.; Concin, N. Endometrial Cancer Staging Subcommittee, FIGO Women’s Cancer Committee. FIGO staging of endometrial cancer: 2023. Int. J. Gynaecol. Obstet. 2023, 162, 383–394. [Google Scholar] [CrossRef]
- Baker-Rand, H.; Kitson, S.J. Recent Advances in Endometrial Cancer Prevention, Early Diagnosis and Treatment. Cancers 2024, 16, 1028. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, S.; Xiao, Q.; Li, C.; Grzegorzek, M.; Zhang, Y.; Li, X.; Kang, Y.; Liu, F.; Huang, D.; et al. Role of artificial intelligence in digital pathology for gynecological cancers. Comput. Struct. Biotechnol. J. 2024, 24, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Volinsky-Fremond, S.; Horeweg, N.; Andani, S.; Barkey Wolf, J.; Lafarge, M.; Kroon, C.; Ørtoft, G.; Høgdall, E.; Dijkstra, J.; Jobsen, J.; et al. Prediction of recurrence risk in endometrial cancer with multimodal deep learning. Nat. Med. 2024, 30, 1962–1973. [Google Scholar] [CrossRef]
- Levine, D.; The Cancer Genome Atlas Research Network. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Talhouk, A.; McConechy, M.; Leung, S.; Li-Chang, H.; Kwon, J.; Melnyk, N.; Yang, W.; Senz, J.; Boyd, N.; Karnezis, A.; et al. A clinically applicable molecular-based classification for endometrial cancers. Br. J. Cancer. 2015, 113, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Osinski, B.L.; Taxter, T.J.; Perera, J.; Lau, D.J.; Khan, A.A. Adversarial deep learning for microsatellite instability prediction from histopathology slides. In Proceedings of the 1st Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherlands, 4–6 July 2018; pp. 4–6. [Google Scholar]
- Rubisz, P.; Ciebiera, M.; Hirnle, L.; Zgliczyńska, M.; Łoziński, T.; Dzięgiel, P.; Kobierzycki, C. The Usefulness of Immunohistochemistry in the Differential Diagnosis of Lesions Originating from the Myometrium. Int. J. Mol. Sci. 2019, 20, 1136. [Google Scholar] [CrossRef] [PubMed]
- Ubago, J.; Zhang, Q.; Kim, J.; Kong, B.; Wei, J. Two Subtypes of Atypical Leiomyoma: Clinical, Histologic, and Molecular Analysis. Am. J. Surg. Pathol. 2016, 40, 923–933. [Google Scholar] [CrossRef]
- Balkenhol, M.; Tellez, D.; Vreuls, W.; Clahsen, P.; Pinckaers, H.; Ciompi, F.; Bult, P.; Laak, J. Deep learning assisted mitotic counting for breast cancer. Lab. Invest. 2019, 99, 1596–1606. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Du, D.; Zheng, T.; Liu, L.; Wang, Z.; Du, J.; Yi, H.; Cui, Y.; Liu, D.; Fang, Y. Deep learning and radiomics to predict the mitotic index of gastrointestinal stromal tumors based on multiparametric MRI. Front. Oncol. 2022, 12, 948557. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Yang, S.; Xiang, J.; Luo, F.; Wang, M.; Zhang, J.; Yang, W.; Huang, J.; Han, X. A generalizable and robust deep learning algorithm for mitosis detection in multicenter breast histopathological images. Med. Image Anal. 2023, 84, 102703. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Jo, V.; Mills, A.; Zhu, S.; Lee, C.; Espinosa, I.; Nucci, M.; Varma, S.; Forgó, E.; Hastie, T.; et al. Clinically Relevant Molecular Subtypes in Leiomyosarcoma. Clin. Cancer Res. 2015, 21, 3501–3511. [Google Scholar] [CrossRef]
- Beck, A.H.; Lee, C.H.; Witten, D.M.; Gleason, B.C.; Edris, B.; Espinosa, I.; Zhu, S.; Li, R.; Montgomery, K.D.; Marinelli, R.J.; et al. Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling. Oncogene 2010, 29, 845–854. [Google Scholar] [CrossRef]
- Yang, X.; Stamp, M. Computer-aided diagnosis of low grade endometrial stromal sarcoma (LGESS). Comput. Biol. Med. 2021, 138, 104874. [Google Scholar] [CrossRef] [PubMed]
- Palee, P.; Sharp, B.; Noriega, L.; Sebire, N.; Platt, C. Heuristic neural network approach in histological sections detection of hydatidiform mole. J. Med. Imaging 2019, 6, 044501. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Adams, E.; Huang, J.; Ronnett, B. Refined diagnosis of hydatidiform moles with p57 immunohistochemistry and molecular genotyping: Updated analysis of a prospective series of 2217 cases. Mod Pathol. 2021, 34, 961–982. [Google Scholar] [CrossRef]
- Ronnett, B.M. Hydatidiform Moles: Ancillary Techniques to Refine Diagnosis. Arch. Pathol. Lab. Med. 2018, 142, 1485–1502. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, L.; Zhang, X.; Zhang, H.; Cai, L.; Zhou, L.; Huang, B.; Qian, J. Hematoxylin and Eosin Staining Helps Reduce Maternal Contamination in Short Tandem Repeat Genotyping for Hydatidiform Mole Diagnosis. Int. J. Gynecol. Pathol. 2024, 43, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A.; Valls, J.; Baena, A.; Rojas, F.; Ramírez, K.; Álvarez, R.; Cristaldo, C.; Henríquez, O.; Moreno, A.; Reynaga, D.; et al. Performance of cervical cytology and HPV testing for primary cervical cancer screening in Latin America: An analysis within the ESTAMPA study. Lancet Reg. Health Am. 2023, 26, 100593. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, L.W.; Zewde, E.T.; Simegn, G.L. Cervix Type and Cervical Cancer Classification System Using Deep Learning Techniques. Med. Devices 2022, 16, 163–176. [Google Scholar] [CrossRef]
- Youneszade, N.; Marjani, M.; Pei, C.P. Deep Learning in Cervical Cancer Diagnosis: Architecture, Opportunities, and Open Research Challenges. IEEE Access. Inst. Electr. Electron. Eng. Inc. 2023, 11, 6133–6149. [Google Scholar] [CrossRef]
- Li, Y.X.; Chen, F.; Shi, J.J.; Huang, Y.L.; Wang, M. Convolutional Neural Networks for Classifying Cervical Cancer Types Using Histological Images. J. Digit. Imaging 2023, 36, 441–449. [Google Scholar] [CrossRef]
- Nuño, T.; García, F. The Lower Anogenital Squamous Terminology Project and its implications for clinical care. Obs. Gynecol. Clin. North. Am. 2013, 40, 225–233. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Ding, L.; Ma, M.; Huang, A.; Gan, Y.; Sheng, D.; Jiang, Z.; Zhang, X. Deep Learning-Based Recognition of Cervical Squamous Interepithelial Lesions. Diagnostics 2023, 13, 1720. [Google Scholar] [CrossRef]
- Jeffus, S.K.; Quick, C.M. Coexpression of p53 and p16 in Vulvar Squamous Neoplasia. Mod. Pathol. 2023, 36, 100319. [Google Scholar] [CrossRef]
- Podoll, M.B.; Singh, N.; Gilks, C.B.; Moghadamfalahi, M.; Sanders, M.A. Assessment of CK17 as a Marker for the Diagnosis of Differentiated Vulvar Intraepithelial Neoplasia. Int. J. Gynecol. Pathol. 2017, 36, 273–280. [Google Scholar] [CrossRef]
- Thompson, E.F.; Chen, J.; Huvila, J.; Pors, J.; Ren, H.; Ho, J.; Chow, C.; Ta, M.; Proctor, L.; McAlpine, J.N.; et al. p53 Immunohistochemical patterns in HPV-related neoplasms of the female lower genital tract can be mistaken for TP53 null or missense mutational patterns. Mod. Pathol. 2020, 33, 1649–1659. [Google Scholar] [CrossRef]
- Carreras-Dieguez, N.; Saco, A.; Del Pino, M.; Marimon, L.; López Del Campo, R.; Manzotti, C.; Fusté, P.; Pumarola, C.; Torné, A.; Garcia, A.; et al. Human papillomavirus and p53 status define three types of vulvar squamous cell carcinomas with distinct clinical, pathological, and prognostic features. Histopathology 2023, 83, 17–30. [Google Scholar] [CrossRef]
- Choschzick, M.; Alyahiaoui, M.; Ciritsis, A.; Rossi, C.; Gut, A.; Hejduk, P.; Boss, A. Deep learning for the standardized classification of Ki-67 in vulva carcinoma: A feasibility study. Heliyon 2021, 7, e07577. [Google Scholar] [CrossRef] [PubMed]
- Erul, E.; Aktekin, Y.; Danışman, F.B.; Gümüştaş, Ş.A.; Aktekin, B.S.; Yekedüz, E.; Ürün, Y. Perceptions, Attitudes, and Concerns on Artificial Intelligence. Appl. Patients Cancer Cancer Control 2025, 32, 10732748251343245. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asaturova, A.; Pinto, J.; Polonia, A.; Karpulevich, E.; Mattias-Guiu, X.; Eloy, C. Artificial Intelligence Tools for Supporting Histopathologic and Molecular Characterization of Gynecological Cancers: A Review. J. Clin. Med. 2025, 14, 7465. https://doi.org/10.3390/jcm14217465
Asaturova A, Pinto J, Polonia A, Karpulevich E, Mattias-Guiu X, Eloy C. Artificial Intelligence Tools for Supporting Histopathologic and Molecular Characterization of Gynecological Cancers: A Review. Journal of Clinical Medicine. 2025; 14(21):7465. https://doi.org/10.3390/jcm14217465
Chicago/Turabian StyleAsaturova, Aleksandra, João Pinto, António Polonia, Evgeny Karpulevich, Xavier Mattias-Guiu, and Catarina Eloy. 2025. "Artificial Intelligence Tools for Supporting Histopathologic and Molecular Characterization of Gynecological Cancers: A Review" Journal of Clinical Medicine 14, no. 21: 7465. https://doi.org/10.3390/jcm14217465
APA StyleAsaturova, A., Pinto, J., Polonia, A., Karpulevich, E., Mattias-Guiu, X., & Eloy, C. (2025). Artificial Intelligence Tools for Supporting Histopathologic and Molecular Characterization of Gynecological Cancers: A Review. Journal of Clinical Medicine, 14(21), 7465. https://doi.org/10.3390/jcm14217465