Duration of Menopause, Rather than Primary Hyperparathyroidism Severity, Predicts Osteoporosis in Postmenopausal Women: A Pilot Study from a Spanish Reference Center
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
- -
- Caucasian menopausal female patients. Menopause is defined as occurring at 45 years of age.
- -
- Biochemical diagnosis of PHPT characterised by elevated serum calcium levels accompanied by high i-PTH levels (>75 pg/mL) or “inappropriate” normal levels, confirmed in at least two measurements following treatment for 25-hydroxy vitamin D deficiency (optimal range 30–100 ng/mL).
- -
- Patients eligible for surgical treatment: symptomatic PHPT or asymptomatic PHPT meeting the criteria for surgical intervention as determined by international consensus guidelines (Serum calcium >1 mg/dL (0.25 mmol/L) above upper limit of normal. Skeletal features: Fracture by VFA or vertebral X-ray/BMD by T-score≤ −2.5 at any site. Renal features: eGFR or CrCl <60 cc/minute/Nephrocalcinosis or nephrolithiasis on X-ray, ultrasound, or other imaging modality/Urinary calcium excretion >400 mg/day. Age < 50) [16].
- -
- Patients who have provided informed consent for the intervention and potential use of their information for educational and/or research purposes.
- -
- Histologically confirmed diagnosis.
- -
- Bone involvement at diagnosis determined by T-Score [1] on DEXA scan of the femur and/or spine: Low bone density: T-Score between −1 and −2.5 SD. Osteoporosis: T-Score less than −2.5 SD.
- -
- Patients with PHPT with multiglandular disease.
- -
- Patients with PHPT associated with a known genetic syndrome.
- -
- Patients with parathyroid carcinoma.
- -
- Patients with secondary hyperparathyroidism and tertiary hyperparathyroidism.
- -
- Recurrence of PHPT in patients previously treated with surgery.
- -
- Hypercalcemia due to lithium or thiazide use.
- -
- Previous hormone replacement therapy.
2.2. Clinical, Laboratory and BMD Evaluation
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McClung, M.R.; Pinkerton, J.; Blake, J.; Cosman, F.; Lewiecki, E.; Shapiro, M. Management of osteoporosis in postmenopausal women: The 2021 position statement of The North American Menopause Society. Menopause 2021, 28, 973–997. [Google Scholar] [CrossRef]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Adachi, J.D.; Cooper, C.; Clark, P.; Cummings, S.R.; Diaz-Curiel, M.; Harvey, N.; Hiligsmann, M.; Papaioannou, A.; Pierroz, D.D.; et al. Standardising the descriptive epidemiology of osteoporosis: Recommendations from the Epidemiology and Quality of Life Working Group of IOF. Osteoporos. Int. 2013, 24, 2763–2764. [Google Scholar] [CrossRef]
- Shevroja, E.; Lamy, O.; Kohlmeier, L.; Koromani, F.; Rivadeneira, F.; Hans, D. Use of Trabecular Bone Score (TBS) as a Complementary Approach to Dual-energy X-ray Absorptiometry (DXA) for Fracture Risk Assessment in Clinical Practice. J. Clin. Densitom. 2017, 20, 334–345. [Google Scholar] [CrossRef]
- Cosman, F.; de Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [Google Scholar] [CrossRef]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; et al. American association of clinical endocrinologists/american college of endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis-2020 update. Endocr. Pract. 2020, 26 (Suppl. S1), 1–46. [Google Scholar] [CrossRef]
- Rubin, M.R.; Bilezikian, J.P.; McMahon, D.J.; Jacobs, T.; Shane, E.; Siris, E.; Udesky, J.; Silverberg, S.J. The natural history of primary hyperparathyroidism with or without parathyroid surgery after 15 years. J. Clin. Endocrinol. Metab. 2008, 93, 3462–3470. [Google Scholar] [CrossRef]
- Mazeh, H.; Sippel, R.S.; Chen, H. The role of gender in primary hyperparathyroidism: Same disease, different presentation. Ann. Surg. Oncol. 2012, 19, 2958–2962. [Google Scholar] [CrossRef]
- Bilezikian, J.P. Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2018, 103, 3993–4004. [Google Scholar] [CrossRef] [PubMed]
- Iwanowska, M.; Kochman, M.; Szatko, A.; Zgliczyński, W.; Glinicki, P. Bone Disease in Primary Hyperparathyroidism-Changes Occurring in Bone Metabolism and New Potential Treatment Strategies. Int. J. Mol. Sci. 2024, 25, 11639. [Google Scholar] [CrossRef] [PubMed]
- Vignali, E.; Viccica, G.; Diacinti, D.; Cetani, F.; Cianferotti, L.; Ambrogini, E.; Banti, C.; Del Fiacco, R.; Bilezikian, J.P.; Pinchera, A.; et al. Morphometric vertebral fractures in postmenopausal women with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2009, 94, 2306–2312. [Google Scholar] [CrossRef]
- Romagnoli, E.; Cipriani, C.; Nofroni, I.; Castro, C.; Angelozzi, M.; Scarpiello, A.; Pepe, J.; Diacinti, D.; Piemonte, S.; Carnevale, V.; et al. “Trabecular Bone Score” (TBS): An indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone 2013, 53, 154–159. [Google Scholar] [CrossRef]
- Santos, L.M.D.; Ohe, M.N.; Pallone, S.G.; Nacaguma, I.O.; Kunii, I.S.; da Silva, R.E.C.; Vieira, J.G.H.; Lazaretti-Castro, M. Trabecular Bone Score (TBS) in Primary Hyperparathyroidism (PHPT): A Useful Tool? J. Clin. Densitom. 2021, 24, 563–570. [Google Scholar] [CrossRef]
- De Geronimo, S.; Romagnoli, E.; Diacinti, D.; D’Erasmo, E.; Minisola, S. The risk of fractures in postmenopausal women with primary hyperparathyroidism. Eur. J. Endocrinol. 2006, 155, 415–420. [Google Scholar] [CrossRef]
- Muñoz-Torres, M.; Manzanares Córdova, R.; García-Martín, A.; Avilés-Pérez, M.D.; Serrano, R.N.; Andújar-Vera, F.; García-Fontana, B. Usefulness of Trabecular Bone Score (TBS) to Identify Bone Fragility in Patients with Primary Hyperparathyroidism. J. Clin. Densitom. 2019, 22, 162–170. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Brandi, M.L.; Eastell, R.; Silverberg, S.J.; Udelsman, R.; Marcocci, C.; Potts, J.T. Guidelines for the management of asymptomatic primary hyperparathyroidism: Summary statement from the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014, 99, 3561–3569. [Google Scholar] [CrossRef]
- Shevroja, E.; Reginster, J.Y.; Lamy, O.; Al-Daghri, N.; Chandran, M.; Demoux-Baiada, A.-L.; Kohlmeier, L.; Lecart, M.-P.; Messina, D.; Camargos, B.M.; et al. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: Results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging. Osteoporos. Int. 2023, 34, 1501–1529. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Khan, A.A.; Silverberg, S.J.; Fuleihan, G.E.-H.; Marcocci, C.; Minisola, S.; Perrier, N.; Sitges-Serra, A.; Thakker, R.V.; Guyatt, G.; et al. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J. Bone Miner. Res. 2022, 37, 2293–2314. [Google Scholar] [CrossRef]
- Grigorie, D.; Coles, D.; Sucaliuc, A. Trabecular bone score (tbs) has a poor discriminative power for vertebral fractures in 153 romanian patients with primary hyperparathyroidism. Acta Endocrinol. 2018, 14, 208–212. [Google Scholar] [CrossRef]
- Liu, M.; Williams, J.; Kuo, J.; Lee, J.A.; Silverberg, S.J.; Walker, M.D. Risk factors for vertebral fracture in primary hyperparathyroidism. Endocrine 2019, 66, 682–690. [Google Scholar] [CrossRef]
- Ramos, L.; Piedra, M.; Muñoz, P.; Vázquez, L.A.; García-Unzueta, M.T.; Montalbán, C.; Amado, J.A. Bone mineral density evolution and incidence of fractures in a cohort of patients with primary hyperparathyroidism treated with parathyroid surgery vs. active surveillance during 6 years of follow-up. Evolución de la densidad mineral ósea y aparición de fracturas en una cohorte de pacientes con hiperparatiroidismo primario tratados con cirugía paratiroidea vs. vigilancia activa sin cirugía en 6 años de seguimiento. Endocrinol. Diabetes Nutr. (Engl. Ed.). 2019, 66, 41–48. [Google Scholar] [CrossRef]
- Jones, A.R.; Simons, K.; Harvey, S.; Grill, V. Bone Mineral Density Compared to Trabecular Bone Score in Primary Hyperparathyroidism. J. Clin. Med. 2022, 11, 330. [Google Scholar] [CrossRef]
- Oprea, T.E.; Barbu, C.G.; Martin, S.C.; Sarbu, A.E.; Duta, S.G.; Nistor, I.M.; Fica, S. Degraded Bone Microarchitecture in Women with PHPT-Significant Predictor of Fracture Probability. Clin. Med. Insights Endocrinol. Diabetes. 2023, 16, 11795514221145840. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ramírez, J.; Arranz Jiménez, R. Surgical tactics of parathyroidectomy: Should we abandon the use of ioPTH? Am. J. Surg. 2024, 235, 115709. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Scientific Group. Research on the menopause in the 1990s. Report of a WHO Scientific Group. World Health Organ Tech. Rep. Ser. 1996, 866, 1. [Google Scholar]
- Villarroya-Marquina, I.; Lorente-Poch, L.; Sancho, J.; Sitges-Serra, A. Influence of gender and women’s age on the prevalence of parathyroid failure after total thyroidectomy for multinodular goiter. Gland. Surg. 2020, 9, 245–251. [Google Scholar] [CrossRef]
- Sowers, M.R.; Zheng, H.; McConnell, D.; Nan, B.; Harlow, S.; Randolph, J.F., Jr. Follicle stimulating hormone and its rate of change in defining menopause transition stages. J. Clin. Endocrinol. Metab. 2008, 93, 3958–3964. [Google Scholar] [CrossRef]
- Menopause: Identification and Management; National Institute for Health and Care Excellence (NICE): London, UK. 2024. Available online: https://pubmed.ncbi.nlm.nih.gov/31940155/ (accessed on 15 October 2025).
- Minisola, S.; Arnold, A.; Belaya, Z.; Brandi, M.L.; Clarke, B.L.; Hannan, F.M.; Hofbauer, L.C.; Insogna, K.L.; Lacroix, A.; Liberman, U.; et al. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2315–2329. [Google Scholar] [CrossRef]
- Corbetta, S.; Gianotti, L.; Castellano, E.; Carrara, S.; Raineri, F.; Munari, E.; Guabello, G.; Cairoli, E.; Chiodini, I.; Giovanelli, L.; et al. Skeletal phenotypes in postmenopausal women affected by primary hyperparathyroidism. Front. Endocrinol. 2024, 15, 1475147. [Google Scholar] [CrossRef]
- Johansson, H.; Kanis, J.A.; Odén, A.; McCloskey, E.; Chapurlat, R.D.; Christiansen, C.; Cummings, S.R.; Diez-Perez, A.; A Eisman, J.; Fujiwara, S.; et al. A meta-analysis of the association of fracture risk and body mass index in women. J. Bone Miner. Res. 2014, 29, 223–233. [Google Scholar] [CrossRef]
- Wu, S.F.; Du, X.J. Body Mass Index May Positively Correlate with Bone Mineral Density of Lumbar Vertebra and Femoral Neck in Postmenopausal Females. Med. Sci. Monit. 2016, 22, 145–151. [Google Scholar] [CrossRef]
- Mornar, M.; Novak, A.; Bozic, J.; Vrdoljak, J.; Kumric, M.; Vilovic, T.; Rakovic, I.; Kurir, T.T.; Martinovic, D.; Urlic, H.; et al. Quality of life in postmenopausal women with osteoporosis and osteopenia: Associations with bone microarchitecture and nutritional status. Qual. Life Res. 2024, 33, 561–572. [Google Scholar] [CrossRef] [PubMed]
- López-Gómez, J.J.; Pérez Castrillón, J.L.; de Luis Román, D.A. Impact of obesity on bone metabolism. Influencia de la obesidad sobre el metabolismo óseo. Endocrinol. Nutr. 2016, 63, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Pluskiewicz, W.; Adamczyk, P.; Werner, A.; Bach, M.; Drozdzowska, B. Height Loss Is an Independent Predictor of Fracture Incidence in Postmenopausal Women: The Results from the Gliwice Osteoporosis Study (GO Study). Biomedicines 2023, 11, 2231. [Google Scholar] [CrossRef] [PubMed]
- Kobza, A.O.; Herman, D.; Papaioannou, A.; Lau, A.N.; Adachi, J.D. Understanding and Managing Corticosteroid-Induced Osteoporosis. Open Access Rheumatol. 2021, 13, 177–190. [Google Scholar] [CrossRef]
| Age (years) | 64.5 ± 8.75 |
| BMI (kg/m2) | 27.3 ± 5.03 |
| Smoking habit | 18.1% |
| YSM | 14.1 ± 8.93 |
| Surgical menopause | 13.2% |
| MHca (months) | 38.9 ± 38.24 |
| Asymptomatic | 27.0% |
| Patients with fractures | 16.7% |
| Comorbidities | |
| Diabetes mellitus | 14.2% |
| Hyperthyroidism | 7.9% |
| Inflammatory arthropathy | 3.9% |
| Liver disease | 3.4% |
| Haematological disease | 3.4% |
| Breast cancer | 2.0% |
| Malabsorptive syndrome | 1.5% |
| Chronic Treatments | |
| P-pi | 17.3% |
| Antidepressants | 11.3% |
| Glucocorticoids | 3.4% |
| Immunosuppressants | 3.4% |
| Thyroxine | 1.0% |
| 25-OH-Vitamin D deficiency | 52.9% |
| Osteoporosis | 22.5% |
| Biochemistry | |
| s-Ca (mg/dL) | 11.3 ± 0.73 |
| i-PTH (pg/mL) | 201.7 ± 203.41 |
| 25-OH-Vitamin D (ng/mL) | 20.9 ± 10.78 |
| 24-h urine calcium (mg/24 h) | 338.3 ± 169.47 |
| Bone mineral density (BMD) | |
| Femoral neck (%) | N 26%, OSTP 51%, OSPR 23% |
| Lumbar spine (%) | N 20%, OSTP 39%, OSPR 41% |
| Quantitative Variables |
Without Femoral OSPR
(n = 157) |
With Femoral OSPR
(n = 47) | p = |
Without Spinal OSPR
(n = 120) |
With Spinal OSPR
(n = 84) | p = |
|---|---|---|---|---|---|---|
| Age at diagnosis (years) | 63.81 ± 0.704 | 66.79 ±1.195 | 0.043 | 64.14 ± 0.851 | 65.00 ± 0.863 | 0.505 |
| Weight (kg) | 68.33 ± 1.005 | 63.60 ± 1.723 | 0.032 | 69.38 ± 1.170 | 64.19 ± 1.264 | 0.004 |
| Height (cm) | 1.57 ± 0.005 | 1.56 ± 0.09 | 0.548 | 1.58 ± 0.006 | 1.56 ± 0.006 | 0.010 |
| BMI (kg/m2) | 27.68 ± 0.403 | 25.99 ± 0.711 | 0.039 | 27.88 ± 0.468 | 26.47 ± 0.530 | 0.055 |
| Previous pregnancies (n =) | 2.15 ± 0.109 | 2.19 ± 0.227 | 0.800 | 2.14 ± 0.123 | 2.19 ± 0.163 | 0.825 |
| Age at menopause (years) | 50.52 ± 0.225 | 50.02 ± 0.456 | 0.316 | 50.49 ± 0.273 | 50.29 ± 0.300 | 0.827 |
| YSM | 13.29 ± 0.693 | 16.76 ± 1.355 | 0.027 | 13.65 ± 0.858 | 14.71 ± 0.897 | 0.301 |
| MHca | 40.89 ± 3.304 | 31.93 ± 5.241 | 0.200 | 41.25 ± 3.535 | 35.64 ± 4.634 | 0.038 |
| i-PTH (pg/mL) | 206.86 ± 18.186 | 184.76 ± 11.408 | 0.396 | 223.07 ± 23.36 | 171.34 ± 8.236 | 0.290 |
| s-Ca (mg/dL) | 11.40 ± 0.061 | 11.15 ± 0.080 | 0.040 | 11.45 ± 0.065 | 11.19 ± 0.078 | 0.002 |
| Calcium excretion (mg/24 h) | 343.99 ± 13.806 | 322.11 ± 25.555 | 0.406 | 331.78 ± 16.749 | 348.75 ± 17.322 | 0.312 |
| 25-hydroxyvitaminD (ng/mL) | 20.571 ± 0.840 | 21.98 ± 1.817 | 0.603 | 20.003 ± 0.869 | 22.14 ± 1.385 | 0.485 |
| Weight of parathyroid adenoma (mg) | 1117.71 ± 102.980 | 746.11 ± 84.852 | 0.104 | 1043.98 ± 106.8 | 1015.11 ± 129.76 | 0.975 |
| Qualitative Variables | Without Femoral OSPR (n = 157) | With Femoral OSPR (n = 47) | p = | Without Spinal OSPR (n = 120) | With Spinal OSPR (n = 84) | p = |
|---|---|---|---|---|---|---|
| Smoking habit NO YES | 146 11 | 41 6 | 0.445 | 113 7 | 74 10 | 0.303 |
| Induced menopause NO YES | 136 21 | 41 6 | 0.914 | 105 15 | 72 12 | 0.711 |
| Diabetes Mellitus NO YES | 132 25 | 43 4 | 0.202 | 102 18 | 73 11 | 0.701 |
| Hyperthyroidism NO YES | 144 13 | 44 3 | 0.125 | 111 9 | 77 7 | 0.487 |
| Previous breast cancer NO YES | 155 2 | 45 2 | 0.196 | 118 2 | 82 2 | 0.717 |
| Prev. glucocorticoid treatment NO YES | 154 3 | 43 4 | 0.029 | 116 4 | 81 3 | 0.927 |
| Prev. immunosuppressant treatment NO YES | 152 5 | 45 2 | 0.724 | 114 6 | 83 1 | 0.141 |
| Prev. proton-pump inhibitor treatment NO YES | 126 31 | 42 5 | 0.151 | 101 19 | 67 17 | 0.417 |
| Prev. antidepressant treatment NO YES | 138 19 | 43 4 | 0.495 | 106 14 | 75 9 | 0.832 |
| Prev. Vit D treatment NO YES | 73 84 | 23 24 | 0.769 | 58 62 | 38 46 | 0.663 |
| Variables | p = | B | ExpB | CI (Inf) | CI (Sup) | |
|---|---|---|---|---|---|---|
| Multiple logistic regression | YSM | 0.411 | 0.058 | 1.060 | 0.922 | 1.218 |
| MHca | 0.209 | −0.007 | 0.993 | 0.982 | 1.004 | |
| s-Ca | 0.024 | −0.785 | 0.456 | 0.231 | 0.902 | |
| Age | 0.713 | 0.028 | 1.028 | 0.888 | 1.190 | |
| BMI | 0.002 | −0.146 | 0.864 | 0.788 | 0.948 | |
| GcT | 0.007 | 2.410 | 11.135 | 1.934 | 64.106 | |
| Final Step of the Wald method | YSM | <0.001 | 0.081 | 1.084 | 1.034 | 1.137 |
| s-Ca | 0.018 | −0.841 | 0.431 | 0.214 | 0.867 | |
| BMI | 0.002 | −0.143 | 0.867 | 0.792 | 0.950 | |
| GcT | 0.006 | 2.454 | 11.632 | 2.047 | 66.102 |
| Variables | p = | B | ExpB | CI (Inf) | CI (Sup) | |
|---|---|---|---|---|---|---|
| Multiple logistic regression | YSM | 0.080 | 0.034 | 1.034 | 0.996 | 1.074 |
| MHca | 0.217 | −0.005 | 0.995 | 0.987 | 1.003 | |
| s-Ca | 0.027 | −0.545 | 0.580 | 0.357 | 0.940 | |
| Weight | 0.010 | −0.037 | 0.963 | 0.936 | 0.991 | |
| Height | 0.164 | −3.964 | 0.019 | 0.000 | 5.026 | |
| Final Step of the Wald method | YSM | 0.036 | 0.039 | 1.040 | 1.003 | 1.078 |
| s-Ca | 0.031 | −0.531 | 0.588 | 0.363 | 0.953 | |
| Weight | 0.003 | −0.042 | 0.959 | 0.933 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arana, A.; Ocerin, I.; López, J.I.; Echevarría, E.; Larrinaga, G. Duration of Menopause, Rather than Primary Hyperparathyroidism Severity, Predicts Osteoporosis in Postmenopausal Women: A Pilot Study from a Spanish Reference Center. J. Clin. Med. 2025, 14, 7398. https://doi.org/10.3390/jcm14207398
Arana A, Ocerin I, López JI, Echevarría E, Larrinaga G. Duration of Menopause, Rather than Primary Hyperparathyroidism Severity, Predicts Osteoporosis in Postmenopausal Women: A Pilot Study from a Spanish Reference Center. Journal of Clinical Medicine. 2025; 14(20):7398. https://doi.org/10.3390/jcm14207398
Chicago/Turabian StyleArana, Ainhoa, Iratxe Ocerin, José I. López, Enrique Echevarría, and Gorka Larrinaga. 2025. "Duration of Menopause, Rather than Primary Hyperparathyroidism Severity, Predicts Osteoporosis in Postmenopausal Women: A Pilot Study from a Spanish Reference Center" Journal of Clinical Medicine 14, no. 20: 7398. https://doi.org/10.3390/jcm14207398
APA StyleArana, A., Ocerin, I., López, J. I., Echevarría, E., & Larrinaga, G. (2025). Duration of Menopause, Rather than Primary Hyperparathyroidism Severity, Predicts Osteoporosis in Postmenopausal Women: A Pilot Study from a Spanish Reference Center. Journal of Clinical Medicine, 14(20), 7398. https://doi.org/10.3390/jcm14207398

